MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vcm Structured version   Visualization version   GIF version

Theorem vcm 30301
Description: Minus 1 times a vector is the underlying group's inverse element. Equation 2 of [Kreyszig] p. 51. (Contributed by NM, 25-Nov-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
vcm.1 𝐺 = (1st𝑊)
vcm.2 𝑆 = (2nd𝑊)
vcm.3 𝑋 = ran 𝐺
vcm.4 𝑀 = (inv‘𝐺)
Assertion
Ref Expression
vcm ((𝑊 ∈ CVecOLD𝐴𝑋) → (-1𝑆𝐴) = (𝑀𝐴))

Proof of Theorem vcm
StepHypRef Expression
1 vcm.1 . . . . 5 𝐺 = (1st𝑊)
21vcgrp 30295 . . . 4 (𝑊 ∈ CVecOLD𝐺 ∈ GrpOp)
32adantr 480 . . 3 ((𝑊 ∈ CVecOLD𝐴𝑋) → 𝐺 ∈ GrpOp)
4 neg1cn 12324 . . . 4 -1 ∈ ℂ
5 vcm.2 . . . . 5 𝑆 = (2nd𝑊)
6 vcm.3 . . . . 5 𝑋 = ran 𝐺
71, 5, 6vccl 30288 . . . 4 ((𝑊 ∈ CVecOLD ∧ -1 ∈ ℂ ∧ 𝐴𝑋) → (-1𝑆𝐴) ∈ 𝑋)
84, 7mp3an2 1445 . . 3 ((𝑊 ∈ CVecOLD𝐴𝑋) → (-1𝑆𝐴) ∈ 𝑋)
9 eqid 2724 . . . 4 (GId‘𝐺) = (GId‘𝐺)
106, 9grporid 30242 . . 3 ((𝐺 ∈ GrpOp ∧ (-1𝑆𝐴) ∈ 𝑋) → ((-1𝑆𝐴)𝐺(GId‘𝐺)) = (-1𝑆𝐴))
113, 8, 10syl2anc 583 . 2 ((𝑊 ∈ CVecOLD𝐴𝑋) → ((-1𝑆𝐴)𝐺(GId‘𝐺)) = (-1𝑆𝐴))
12 simpr 484 . . . . . 6 ((𝑊 ∈ CVecOLD𝐴𝑋) → 𝐴𝑋)
13 vcm.4 . . . . . . . 8 𝑀 = (inv‘𝐺)
146, 13grpoinvcl 30249 . . . . . . 7 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (𝑀𝐴) ∈ 𝑋)
152, 14sylan 579 . . . . . 6 ((𝑊 ∈ CVecOLD𝐴𝑋) → (𝑀𝐴) ∈ 𝑋)
166grpoass 30228 . . . . . 6 ((𝐺 ∈ GrpOp ∧ ((-1𝑆𝐴) ∈ 𝑋𝐴𝑋 ∧ (𝑀𝐴) ∈ 𝑋)) → (((-1𝑆𝐴)𝐺𝐴)𝐺(𝑀𝐴)) = ((-1𝑆𝐴)𝐺(𝐴𝐺(𝑀𝐴))))
173, 8, 12, 15, 16syl13anc 1369 . . . . 5 ((𝑊 ∈ CVecOLD𝐴𝑋) → (((-1𝑆𝐴)𝐺𝐴)𝐺(𝑀𝐴)) = ((-1𝑆𝐴)𝐺(𝐴𝐺(𝑀𝐴))))
181, 5, 6vcidOLD 30289 . . . . . . . 8 ((𝑊 ∈ CVecOLD𝐴𝑋) → (1𝑆𝐴) = 𝐴)
1918oveq2d 7418 . . . . . . 7 ((𝑊 ∈ CVecOLD𝐴𝑋) → ((-1𝑆𝐴)𝐺(1𝑆𝐴)) = ((-1𝑆𝐴)𝐺𝐴))
20 ax-1cn 11165 . . . . . . . . . 10 1 ∈ ℂ
21 1pneg1e0 12329 . . . . . . . . . 10 (1 + -1) = 0
2220, 4, 21addcomli 11404 . . . . . . . . 9 (-1 + 1) = 0
2322oveq1i 7412 . . . . . . . 8 ((-1 + 1)𝑆𝐴) = (0𝑆𝐴)
241, 5, 6vcdir 30291 . . . . . . . . . 10 ((𝑊 ∈ CVecOLD ∧ (-1 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝐴𝑋)) → ((-1 + 1)𝑆𝐴) = ((-1𝑆𝐴)𝐺(1𝑆𝐴)))
254, 24mp3anr1 1454 . . . . . . . . 9 ((𝑊 ∈ CVecOLD ∧ (1 ∈ ℂ ∧ 𝐴𝑋)) → ((-1 + 1)𝑆𝐴) = ((-1𝑆𝐴)𝐺(1𝑆𝐴)))
2620, 25mpanr1 700 . . . . . . . 8 ((𝑊 ∈ CVecOLD𝐴𝑋) → ((-1 + 1)𝑆𝐴) = ((-1𝑆𝐴)𝐺(1𝑆𝐴)))
271, 5, 6, 9vc0 30299 . . . . . . . 8 ((𝑊 ∈ CVecOLD𝐴𝑋) → (0𝑆𝐴) = (GId‘𝐺))
2823, 26, 273eqtr3a 2788 . . . . . . 7 ((𝑊 ∈ CVecOLD𝐴𝑋) → ((-1𝑆𝐴)𝐺(1𝑆𝐴)) = (GId‘𝐺))
2919, 28eqtr3d 2766 . . . . . 6 ((𝑊 ∈ CVecOLD𝐴𝑋) → ((-1𝑆𝐴)𝐺𝐴) = (GId‘𝐺))
3029oveq1d 7417 . . . . 5 ((𝑊 ∈ CVecOLD𝐴𝑋) → (((-1𝑆𝐴)𝐺𝐴)𝐺(𝑀𝐴)) = ((GId‘𝐺)𝐺(𝑀𝐴)))
3117, 30eqtr3d 2766 . . . 4 ((𝑊 ∈ CVecOLD𝐴𝑋) → ((-1𝑆𝐴)𝐺(𝐴𝐺(𝑀𝐴))) = ((GId‘𝐺)𝐺(𝑀𝐴)))
326, 9, 13grporinv 30252 . . . . . 6 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (𝐴𝐺(𝑀𝐴)) = (GId‘𝐺))
332, 32sylan 579 . . . . 5 ((𝑊 ∈ CVecOLD𝐴𝑋) → (𝐴𝐺(𝑀𝐴)) = (GId‘𝐺))
3433oveq2d 7418 . . . 4 ((𝑊 ∈ CVecOLD𝐴𝑋) → ((-1𝑆𝐴)𝐺(𝐴𝐺(𝑀𝐴))) = ((-1𝑆𝐴)𝐺(GId‘𝐺)))
3531, 34eqtr3d 2766 . . 3 ((𝑊 ∈ CVecOLD𝐴𝑋) → ((GId‘𝐺)𝐺(𝑀𝐴)) = ((-1𝑆𝐴)𝐺(GId‘𝐺)))
366, 9grpolid 30241 . . . 4 ((𝐺 ∈ GrpOp ∧ (𝑀𝐴) ∈ 𝑋) → ((GId‘𝐺)𝐺(𝑀𝐴)) = (𝑀𝐴))
373, 15, 36syl2anc 583 . . 3 ((𝑊 ∈ CVecOLD𝐴𝑋) → ((GId‘𝐺)𝐺(𝑀𝐴)) = (𝑀𝐴))
3835, 37eqtr3d 2766 . 2 ((𝑊 ∈ CVecOLD𝐴𝑋) → ((-1𝑆𝐴)𝐺(GId‘𝐺)) = (𝑀𝐴))
3911, 38eqtr3d 2766 1 ((𝑊 ∈ CVecOLD𝐴𝑋) → (-1𝑆𝐴) = (𝑀𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wcel 2098  ran crn 5668  cfv 6534  (class class class)co 7402  1st c1st 7967  2nd c2nd 7968  cc 11105  0cc0 11107  1c1 11108   + caddc 11110  -cneg 11443  GrpOpcgr 30214  GIdcgi 30215  invcgn 30216  CVecOLDcvc 30283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5276  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-id 5565  df-po 5579  df-so 5580  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-riota 7358  df-ov 7405  df-oprab 7406  df-mpo 7407  df-1st 7969  df-2nd 7970  df-er 8700  df-en 8937  df-dom 8938  df-sdom 8939  df-pnf 11248  df-mnf 11249  df-ltxr 11251  df-sub 11444  df-neg 11445  df-grpo 30218  df-gid 30219  df-ginv 30220  df-ablo 30270  df-vc 30284
This theorem is referenced by:  nvinv  30364
  Copyright terms: Public domain W3C validator