MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vcm Structured version   Visualization version   GIF version

Theorem vcm 30562
Description: Minus 1 times a vector is the underlying group's inverse element. Equation 2 of [Kreyszig] p. 51. (Contributed by NM, 25-Nov-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
vcm.1 𝐺 = (1st𝑊)
vcm.2 𝑆 = (2nd𝑊)
vcm.3 𝑋 = ran 𝐺
vcm.4 𝑀 = (inv‘𝐺)
Assertion
Ref Expression
vcm ((𝑊 ∈ CVecOLD𝐴𝑋) → (-1𝑆𝐴) = (𝑀𝐴))

Proof of Theorem vcm
StepHypRef Expression
1 vcm.1 . . . . 5 𝐺 = (1st𝑊)
21vcgrp 30556 . . . 4 (𝑊 ∈ CVecOLD𝐺 ∈ GrpOp)
32adantr 480 . . 3 ((𝑊 ∈ CVecOLD𝐴𝑋) → 𝐺 ∈ GrpOp)
4 neg1cn 12359 . . . 4 -1 ∈ ℂ
5 vcm.2 . . . . 5 𝑆 = (2nd𝑊)
6 vcm.3 . . . . 5 𝑋 = ran 𝐺
71, 5, 6vccl 30549 . . . 4 ((𝑊 ∈ CVecOLD ∧ -1 ∈ ℂ ∧ 𝐴𝑋) → (-1𝑆𝐴) ∈ 𝑋)
84, 7mp3an2 1451 . . 3 ((𝑊 ∈ CVecOLD𝐴𝑋) → (-1𝑆𝐴) ∈ 𝑋)
9 eqid 2736 . . . 4 (GId‘𝐺) = (GId‘𝐺)
106, 9grporid 30503 . . 3 ((𝐺 ∈ GrpOp ∧ (-1𝑆𝐴) ∈ 𝑋) → ((-1𝑆𝐴)𝐺(GId‘𝐺)) = (-1𝑆𝐴))
113, 8, 10syl2anc 584 . 2 ((𝑊 ∈ CVecOLD𝐴𝑋) → ((-1𝑆𝐴)𝐺(GId‘𝐺)) = (-1𝑆𝐴))
12 simpr 484 . . . . . 6 ((𝑊 ∈ CVecOLD𝐴𝑋) → 𝐴𝑋)
13 vcm.4 . . . . . . . 8 𝑀 = (inv‘𝐺)
146, 13grpoinvcl 30510 . . . . . . 7 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (𝑀𝐴) ∈ 𝑋)
152, 14sylan 580 . . . . . 6 ((𝑊 ∈ CVecOLD𝐴𝑋) → (𝑀𝐴) ∈ 𝑋)
166grpoass 30489 . . . . . 6 ((𝐺 ∈ GrpOp ∧ ((-1𝑆𝐴) ∈ 𝑋𝐴𝑋 ∧ (𝑀𝐴) ∈ 𝑋)) → (((-1𝑆𝐴)𝐺𝐴)𝐺(𝑀𝐴)) = ((-1𝑆𝐴)𝐺(𝐴𝐺(𝑀𝐴))))
173, 8, 12, 15, 16syl13anc 1374 . . . . 5 ((𝑊 ∈ CVecOLD𝐴𝑋) → (((-1𝑆𝐴)𝐺𝐴)𝐺(𝑀𝐴)) = ((-1𝑆𝐴)𝐺(𝐴𝐺(𝑀𝐴))))
181, 5, 6vcidOLD 30550 . . . . . . . 8 ((𝑊 ∈ CVecOLD𝐴𝑋) → (1𝑆𝐴) = 𝐴)
1918oveq2d 7426 . . . . . . 7 ((𝑊 ∈ CVecOLD𝐴𝑋) → ((-1𝑆𝐴)𝐺(1𝑆𝐴)) = ((-1𝑆𝐴)𝐺𝐴))
20 ax-1cn 11192 . . . . . . . . . 10 1 ∈ ℂ
21 1pneg1e0 12364 . . . . . . . . . 10 (1 + -1) = 0
2220, 4, 21addcomli 11432 . . . . . . . . 9 (-1 + 1) = 0
2322oveq1i 7420 . . . . . . . 8 ((-1 + 1)𝑆𝐴) = (0𝑆𝐴)
241, 5, 6vcdir 30552 . . . . . . . . . 10 ((𝑊 ∈ CVecOLD ∧ (-1 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝐴𝑋)) → ((-1 + 1)𝑆𝐴) = ((-1𝑆𝐴)𝐺(1𝑆𝐴)))
254, 24mp3anr1 1460 . . . . . . . . 9 ((𝑊 ∈ CVecOLD ∧ (1 ∈ ℂ ∧ 𝐴𝑋)) → ((-1 + 1)𝑆𝐴) = ((-1𝑆𝐴)𝐺(1𝑆𝐴)))
2620, 25mpanr1 703 . . . . . . . 8 ((𝑊 ∈ CVecOLD𝐴𝑋) → ((-1 + 1)𝑆𝐴) = ((-1𝑆𝐴)𝐺(1𝑆𝐴)))
271, 5, 6, 9vc0 30560 . . . . . . . 8 ((𝑊 ∈ CVecOLD𝐴𝑋) → (0𝑆𝐴) = (GId‘𝐺))
2823, 26, 273eqtr3a 2795 . . . . . . 7 ((𝑊 ∈ CVecOLD𝐴𝑋) → ((-1𝑆𝐴)𝐺(1𝑆𝐴)) = (GId‘𝐺))
2919, 28eqtr3d 2773 . . . . . 6 ((𝑊 ∈ CVecOLD𝐴𝑋) → ((-1𝑆𝐴)𝐺𝐴) = (GId‘𝐺))
3029oveq1d 7425 . . . . 5 ((𝑊 ∈ CVecOLD𝐴𝑋) → (((-1𝑆𝐴)𝐺𝐴)𝐺(𝑀𝐴)) = ((GId‘𝐺)𝐺(𝑀𝐴)))
3117, 30eqtr3d 2773 . . . 4 ((𝑊 ∈ CVecOLD𝐴𝑋) → ((-1𝑆𝐴)𝐺(𝐴𝐺(𝑀𝐴))) = ((GId‘𝐺)𝐺(𝑀𝐴)))
326, 9, 13grporinv 30513 . . . . . 6 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (𝐴𝐺(𝑀𝐴)) = (GId‘𝐺))
332, 32sylan 580 . . . . 5 ((𝑊 ∈ CVecOLD𝐴𝑋) → (𝐴𝐺(𝑀𝐴)) = (GId‘𝐺))
3433oveq2d 7426 . . . 4 ((𝑊 ∈ CVecOLD𝐴𝑋) → ((-1𝑆𝐴)𝐺(𝐴𝐺(𝑀𝐴))) = ((-1𝑆𝐴)𝐺(GId‘𝐺)))
3531, 34eqtr3d 2773 . . 3 ((𝑊 ∈ CVecOLD𝐴𝑋) → ((GId‘𝐺)𝐺(𝑀𝐴)) = ((-1𝑆𝐴)𝐺(GId‘𝐺)))
366, 9grpolid 30502 . . . 4 ((𝐺 ∈ GrpOp ∧ (𝑀𝐴) ∈ 𝑋) → ((GId‘𝐺)𝐺(𝑀𝐴)) = (𝑀𝐴))
373, 15, 36syl2anc 584 . . 3 ((𝑊 ∈ CVecOLD𝐴𝑋) → ((GId‘𝐺)𝐺(𝑀𝐴)) = (𝑀𝐴))
3835, 37eqtr3d 2773 . 2 ((𝑊 ∈ CVecOLD𝐴𝑋) → ((-1𝑆𝐴)𝐺(GId‘𝐺)) = (𝑀𝐴))
3911, 38eqtr3d 2773 1 ((𝑊 ∈ CVecOLD𝐴𝑋) → (-1𝑆𝐴) = (𝑀𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  ran crn 5660  cfv 6536  (class class class)co 7410  1st c1st 7991  2nd c2nd 7992  cc 11132  0cc0 11134  1c1 11135   + caddc 11137  -cneg 11472  GrpOpcgr 30475  GIdcgi 30476  invcgn 30477  CVecOLDcvc 30544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-po 5566  df-so 5567  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-1st 7993  df-2nd 7994  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-ltxr 11279  df-sub 11473  df-neg 11474  df-grpo 30479  df-gid 30480  df-ginv 30481  df-ablo 30531  df-vc 30545
This theorem is referenced by:  nvinv  30625
  Copyright terms: Public domain W3C validator