MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vcm Structured version   Visualization version   GIF version

Theorem vcm 29518
Description: Minus 1 times a vector is the underlying group's inverse element. Equation 2 of [Kreyszig] p. 51. (Contributed by NM, 25-Nov-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
vcm.1 𝐺 = (1st𝑊)
vcm.2 𝑆 = (2nd𝑊)
vcm.3 𝑋 = ran 𝐺
vcm.4 𝑀 = (inv‘𝐺)
Assertion
Ref Expression
vcm ((𝑊 ∈ CVecOLD𝐴𝑋) → (-1𝑆𝐴) = (𝑀𝐴))

Proof of Theorem vcm
StepHypRef Expression
1 vcm.1 . . . . 5 𝐺 = (1st𝑊)
21vcgrp 29512 . . . 4 (𝑊 ∈ CVecOLD𝐺 ∈ GrpOp)
32adantr 481 . . 3 ((𝑊 ∈ CVecOLD𝐴𝑋) → 𝐺 ∈ GrpOp)
4 neg1cn 12267 . . . 4 -1 ∈ ℂ
5 vcm.2 . . . . 5 𝑆 = (2nd𝑊)
6 vcm.3 . . . . 5 𝑋 = ran 𝐺
71, 5, 6vccl 29505 . . . 4 ((𝑊 ∈ CVecOLD ∧ -1 ∈ ℂ ∧ 𝐴𝑋) → (-1𝑆𝐴) ∈ 𝑋)
84, 7mp3an2 1449 . . 3 ((𝑊 ∈ CVecOLD𝐴𝑋) → (-1𝑆𝐴) ∈ 𝑋)
9 eqid 2736 . . . 4 (GId‘𝐺) = (GId‘𝐺)
106, 9grporid 29459 . . 3 ((𝐺 ∈ GrpOp ∧ (-1𝑆𝐴) ∈ 𝑋) → ((-1𝑆𝐴)𝐺(GId‘𝐺)) = (-1𝑆𝐴))
113, 8, 10syl2anc 584 . 2 ((𝑊 ∈ CVecOLD𝐴𝑋) → ((-1𝑆𝐴)𝐺(GId‘𝐺)) = (-1𝑆𝐴))
12 simpr 485 . . . . . 6 ((𝑊 ∈ CVecOLD𝐴𝑋) → 𝐴𝑋)
13 vcm.4 . . . . . . . 8 𝑀 = (inv‘𝐺)
146, 13grpoinvcl 29466 . . . . . . 7 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (𝑀𝐴) ∈ 𝑋)
152, 14sylan 580 . . . . . 6 ((𝑊 ∈ CVecOLD𝐴𝑋) → (𝑀𝐴) ∈ 𝑋)
166grpoass 29445 . . . . . 6 ((𝐺 ∈ GrpOp ∧ ((-1𝑆𝐴) ∈ 𝑋𝐴𝑋 ∧ (𝑀𝐴) ∈ 𝑋)) → (((-1𝑆𝐴)𝐺𝐴)𝐺(𝑀𝐴)) = ((-1𝑆𝐴)𝐺(𝐴𝐺(𝑀𝐴))))
173, 8, 12, 15, 16syl13anc 1372 . . . . 5 ((𝑊 ∈ CVecOLD𝐴𝑋) → (((-1𝑆𝐴)𝐺𝐴)𝐺(𝑀𝐴)) = ((-1𝑆𝐴)𝐺(𝐴𝐺(𝑀𝐴))))
181, 5, 6vcidOLD 29506 . . . . . . . 8 ((𝑊 ∈ CVecOLD𝐴𝑋) → (1𝑆𝐴) = 𝐴)
1918oveq2d 7373 . . . . . . 7 ((𝑊 ∈ CVecOLD𝐴𝑋) → ((-1𝑆𝐴)𝐺(1𝑆𝐴)) = ((-1𝑆𝐴)𝐺𝐴))
20 ax-1cn 11109 . . . . . . . . . 10 1 ∈ ℂ
21 1pneg1e0 12272 . . . . . . . . . 10 (1 + -1) = 0
2220, 4, 21addcomli 11347 . . . . . . . . 9 (-1 + 1) = 0
2322oveq1i 7367 . . . . . . . 8 ((-1 + 1)𝑆𝐴) = (0𝑆𝐴)
241, 5, 6vcdir 29508 . . . . . . . . . 10 ((𝑊 ∈ CVecOLD ∧ (-1 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝐴𝑋)) → ((-1 + 1)𝑆𝐴) = ((-1𝑆𝐴)𝐺(1𝑆𝐴)))
254, 24mp3anr1 1458 . . . . . . . . 9 ((𝑊 ∈ CVecOLD ∧ (1 ∈ ℂ ∧ 𝐴𝑋)) → ((-1 + 1)𝑆𝐴) = ((-1𝑆𝐴)𝐺(1𝑆𝐴)))
2620, 25mpanr1 701 . . . . . . . 8 ((𝑊 ∈ CVecOLD𝐴𝑋) → ((-1 + 1)𝑆𝐴) = ((-1𝑆𝐴)𝐺(1𝑆𝐴)))
271, 5, 6, 9vc0 29516 . . . . . . . 8 ((𝑊 ∈ CVecOLD𝐴𝑋) → (0𝑆𝐴) = (GId‘𝐺))
2823, 26, 273eqtr3a 2800 . . . . . . 7 ((𝑊 ∈ CVecOLD𝐴𝑋) → ((-1𝑆𝐴)𝐺(1𝑆𝐴)) = (GId‘𝐺))
2919, 28eqtr3d 2778 . . . . . 6 ((𝑊 ∈ CVecOLD𝐴𝑋) → ((-1𝑆𝐴)𝐺𝐴) = (GId‘𝐺))
3029oveq1d 7372 . . . . 5 ((𝑊 ∈ CVecOLD𝐴𝑋) → (((-1𝑆𝐴)𝐺𝐴)𝐺(𝑀𝐴)) = ((GId‘𝐺)𝐺(𝑀𝐴)))
3117, 30eqtr3d 2778 . . . 4 ((𝑊 ∈ CVecOLD𝐴𝑋) → ((-1𝑆𝐴)𝐺(𝐴𝐺(𝑀𝐴))) = ((GId‘𝐺)𝐺(𝑀𝐴)))
326, 9, 13grporinv 29469 . . . . . 6 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (𝐴𝐺(𝑀𝐴)) = (GId‘𝐺))
332, 32sylan 580 . . . . 5 ((𝑊 ∈ CVecOLD𝐴𝑋) → (𝐴𝐺(𝑀𝐴)) = (GId‘𝐺))
3433oveq2d 7373 . . . 4 ((𝑊 ∈ CVecOLD𝐴𝑋) → ((-1𝑆𝐴)𝐺(𝐴𝐺(𝑀𝐴))) = ((-1𝑆𝐴)𝐺(GId‘𝐺)))
3531, 34eqtr3d 2778 . . 3 ((𝑊 ∈ CVecOLD𝐴𝑋) → ((GId‘𝐺)𝐺(𝑀𝐴)) = ((-1𝑆𝐴)𝐺(GId‘𝐺)))
366, 9grpolid 29458 . . . 4 ((𝐺 ∈ GrpOp ∧ (𝑀𝐴) ∈ 𝑋) → ((GId‘𝐺)𝐺(𝑀𝐴)) = (𝑀𝐴))
373, 15, 36syl2anc 584 . . 3 ((𝑊 ∈ CVecOLD𝐴𝑋) → ((GId‘𝐺)𝐺(𝑀𝐴)) = (𝑀𝐴))
3835, 37eqtr3d 2778 . 2 ((𝑊 ∈ CVecOLD𝐴𝑋) → ((-1𝑆𝐴)𝐺(GId‘𝐺)) = (𝑀𝐴))
3911, 38eqtr3d 2778 1 ((𝑊 ∈ CVecOLD𝐴𝑋) → (-1𝑆𝐴) = (𝑀𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  ran crn 5634  cfv 6496  (class class class)co 7357  1st c1st 7919  2nd c2nd 7920  cc 11049  0cc0 11051  1c1 11052   + caddc 11054  -cneg 11386  GrpOpcgr 29431  GIdcgi 29432  invcgn 29433  CVecOLDcvc 29500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-po 5545  df-so 5546  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-1st 7921  df-2nd 7922  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-ltxr 11194  df-sub 11387  df-neg 11388  df-grpo 29435  df-gid 29436  df-ginv 29437  df-ablo 29487  df-vc 29501
This theorem is referenced by:  nvinv  29581
  Copyright terms: Public domain W3C validator