Proof of Theorem vcm
| Step | Hyp | Ref
| Expression |
| 1 | | vcm.1 |
. . . . 5
⊢ 𝐺 = (1st ‘𝑊) |
| 2 | 1 | vcgrp 30556 |
. . . 4
⊢ (𝑊 ∈ CVecOLD
→ 𝐺 ∈
GrpOp) |
| 3 | 2 | adantr 480 |
. . 3
⊢ ((𝑊 ∈ CVecOLD ∧
𝐴 ∈ 𝑋) → 𝐺 ∈ GrpOp) |
| 4 | | neg1cn 12359 |
. . . 4
⊢ -1 ∈
ℂ |
| 5 | | vcm.2 |
. . . . 5
⊢ 𝑆 = (2nd ‘𝑊) |
| 6 | | vcm.3 |
. . . . 5
⊢ 𝑋 = ran 𝐺 |
| 7 | 1, 5, 6 | vccl 30549 |
. . . 4
⊢ ((𝑊 ∈ CVecOLD ∧
-1 ∈ ℂ ∧ 𝐴
∈ 𝑋) → (-1𝑆𝐴) ∈ 𝑋) |
| 8 | 4, 7 | mp3an2 1451 |
. . 3
⊢ ((𝑊 ∈ CVecOLD ∧
𝐴 ∈ 𝑋) → (-1𝑆𝐴) ∈ 𝑋) |
| 9 | | eqid 2736 |
. . . 4
⊢
(GId‘𝐺) =
(GId‘𝐺) |
| 10 | 6, 9 | grporid 30503 |
. . 3
⊢ ((𝐺 ∈ GrpOp ∧ (-1𝑆𝐴) ∈ 𝑋) → ((-1𝑆𝐴)𝐺(GId‘𝐺)) = (-1𝑆𝐴)) |
| 11 | 3, 8, 10 | syl2anc 584 |
. 2
⊢ ((𝑊 ∈ CVecOLD ∧
𝐴 ∈ 𝑋) → ((-1𝑆𝐴)𝐺(GId‘𝐺)) = (-1𝑆𝐴)) |
| 12 | | simpr 484 |
. . . . . 6
⊢ ((𝑊 ∈ CVecOLD ∧
𝐴 ∈ 𝑋) → 𝐴 ∈ 𝑋) |
| 13 | | vcm.4 |
. . . . . . . 8
⊢ 𝑀 = (inv‘𝐺) |
| 14 | 6, 13 | grpoinvcl 30510 |
. . . . . . 7
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝑀‘𝐴) ∈ 𝑋) |
| 15 | 2, 14 | sylan 580 |
. . . . . 6
⊢ ((𝑊 ∈ CVecOLD ∧
𝐴 ∈ 𝑋) → (𝑀‘𝐴) ∈ 𝑋) |
| 16 | 6 | grpoass 30489 |
. . . . . 6
⊢ ((𝐺 ∈ GrpOp ∧ ((-1𝑆𝐴) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ (𝑀‘𝐴) ∈ 𝑋)) → (((-1𝑆𝐴)𝐺𝐴)𝐺(𝑀‘𝐴)) = ((-1𝑆𝐴)𝐺(𝐴𝐺(𝑀‘𝐴)))) |
| 17 | 3, 8, 12, 15, 16 | syl13anc 1374 |
. . . . 5
⊢ ((𝑊 ∈ CVecOLD ∧
𝐴 ∈ 𝑋) → (((-1𝑆𝐴)𝐺𝐴)𝐺(𝑀‘𝐴)) = ((-1𝑆𝐴)𝐺(𝐴𝐺(𝑀‘𝐴)))) |
| 18 | 1, 5, 6 | vcidOLD 30550 |
. . . . . . . 8
⊢ ((𝑊 ∈ CVecOLD ∧
𝐴 ∈ 𝑋) → (1𝑆𝐴) = 𝐴) |
| 19 | 18 | oveq2d 7426 |
. . . . . . 7
⊢ ((𝑊 ∈ CVecOLD ∧
𝐴 ∈ 𝑋) → ((-1𝑆𝐴)𝐺(1𝑆𝐴)) = ((-1𝑆𝐴)𝐺𝐴)) |
| 20 | | ax-1cn 11192 |
. . . . . . . . . 10
⊢ 1 ∈
ℂ |
| 21 | | 1pneg1e0 12364 |
. . . . . . . . . 10
⊢ (1 + -1)
= 0 |
| 22 | 20, 4, 21 | addcomli 11432 |
. . . . . . . . 9
⊢ (-1 + 1)
= 0 |
| 23 | 22 | oveq1i 7420 |
. . . . . . . 8
⊢ ((-1 +
1)𝑆𝐴) = (0𝑆𝐴) |
| 24 | 1, 5, 6 | vcdir 30552 |
. . . . . . . . . 10
⊢ ((𝑊 ∈ CVecOLD ∧
(-1 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝐴 ∈ 𝑋)) → ((-1 + 1)𝑆𝐴) = ((-1𝑆𝐴)𝐺(1𝑆𝐴))) |
| 25 | 4, 24 | mp3anr1 1460 |
. . . . . . . . 9
⊢ ((𝑊 ∈ CVecOLD ∧
(1 ∈ ℂ ∧ 𝐴
∈ 𝑋)) → ((-1 +
1)𝑆𝐴) = ((-1𝑆𝐴)𝐺(1𝑆𝐴))) |
| 26 | 20, 25 | mpanr1 703 |
. . . . . . . 8
⊢ ((𝑊 ∈ CVecOLD ∧
𝐴 ∈ 𝑋) → ((-1 + 1)𝑆𝐴) = ((-1𝑆𝐴)𝐺(1𝑆𝐴))) |
| 27 | 1, 5, 6, 9 | vc0 30560 |
. . . . . . . 8
⊢ ((𝑊 ∈ CVecOLD ∧
𝐴 ∈ 𝑋) → (0𝑆𝐴) = (GId‘𝐺)) |
| 28 | 23, 26, 27 | 3eqtr3a 2795 |
. . . . . . 7
⊢ ((𝑊 ∈ CVecOLD ∧
𝐴 ∈ 𝑋) → ((-1𝑆𝐴)𝐺(1𝑆𝐴)) = (GId‘𝐺)) |
| 29 | 19, 28 | eqtr3d 2773 |
. . . . . 6
⊢ ((𝑊 ∈ CVecOLD ∧
𝐴 ∈ 𝑋) → ((-1𝑆𝐴)𝐺𝐴) = (GId‘𝐺)) |
| 30 | 29 | oveq1d 7425 |
. . . . 5
⊢ ((𝑊 ∈ CVecOLD ∧
𝐴 ∈ 𝑋) → (((-1𝑆𝐴)𝐺𝐴)𝐺(𝑀‘𝐴)) = ((GId‘𝐺)𝐺(𝑀‘𝐴))) |
| 31 | 17, 30 | eqtr3d 2773 |
. . . 4
⊢ ((𝑊 ∈ CVecOLD ∧
𝐴 ∈ 𝑋) → ((-1𝑆𝐴)𝐺(𝐴𝐺(𝑀‘𝐴))) = ((GId‘𝐺)𝐺(𝑀‘𝐴))) |
| 32 | 6, 9, 13 | grporinv 30513 |
. . . . . 6
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝐴𝐺(𝑀‘𝐴)) = (GId‘𝐺)) |
| 33 | 2, 32 | sylan 580 |
. . . . 5
⊢ ((𝑊 ∈ CVecOLD ∧
𝐴 ∈ 𝑋) → (𝐴𝐺(𝑀‘𝐴)) = (GId‘𝐺)) |
| 34 | 33 | oveq2d 7426 |
. . . 4
⊢ ((𝑊 ∈ CVecOLD ∧
𝐴 ∈ 𝑋) → ((-1𝑆𝐴)𝐺(𝐴𝐺(𝑀‘𝐴))) = ((-1𝑆𝐴)𝐺(GId‘𝐺))) |
| 35 | 31, 34 | eqtr3d 2773 |
. . 3
⊢ ((𝑊 ∈ CVecOLD ∧
𝐴 ∈ 𝑋) → ((GId‘𝐺)𝐺(𝑀‘𝐴)) = ((-1𝑆𝐴)𝐺(GId‘𝐺))) |
| 36 | 6, 9 | grpolid 30502 |
. . . 4
⊢ ((𝐺 ∈ GrpOp ∧ (𝑀‘𝐴) ∈ 𝑋) → ((GId‘𝐺)𝐺(𝑀‘𝐴)) = (𝑀‘𝐴)) |
| 37 | 3, 15, 36 | syl2anc 584 |
. . 3
⊢ ((𝑊 ∈ CVecOLD ∧
𝐴 ∈ 𝑋) → ((GId‘𝐺)𝐺(𝑀‘𝐴)) = (𝑀‘𝐴)) |
| 38 | 35, 37 | eqtr3d 2773 |
. 2
⊢ ((𝑊 ∈ CVecOLD ∧
𝐴 ∈ 𝑋) → ((-1𝑆𝐴)𝐺(GId‘𝐺)) = (𝑀‘𝐴)) |
| 39 | 11, 38 | eqtr3d 2773 |
1
⊢ ((𝑊 ∈ CVecOLD ∧
𝐴 ∈ 𝑋) → (-1𝑆𝐴) = (𝑀‘𝐴)) |