MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vcm Structured version   Visualization version   GIF version

Theorem vcm 29829
Description: Minus 1 times a vector is the underlying group's inverse element. Equation 2 of [Kreyszig] p. 51. (Contributed by NM, 25-Nov-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
vcm.1 𝐺 = (1st β€˜π‘Š)
vcm.2 𝑆 = (2nd β€˜π‘Š)
vcm.3 𝑋 = ran 𝐺
vcm.4 𝑀 = (invβ€˜πΊ)
Assertion
Ref Expression
vcm ((π‘Š ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) β†’ (-1𝑆𝐴) = (π‘€β€˜π΄))

Proof of Theorem vcm
StepHypRef Expression
1 vcm.1 . . . . 5 𝐺 = (1st β€˜π‘Š)
21vcgrp 29823 . . . 4 (π‘Š ∈ CVecOLD β†’ 𝐺 ∈ GrpOp)
32adantr 482 . . 3 ((π‘Š ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) β†’ 𝐺 ∈ GrpOp)
4 neg1cn 12326 . . . 4 -1 ∈ β„‚
5 vcm.2 . . . . 5 𝑆 = (2nd β€˜π‘Š)
6 vcm.3 . . . . 5 𝑋 = ran 𝐺
71, 5, 6vccl 29816 . . . 4 ((π‘Š ∈ CVecOLD ∧ -1 ∈ β„‚ ∧ 𝐴 ∈ 𝑋) β†’ (-1𝑆𝐴) ∈ 𝑋)
84, 7mp3an2 1450 . . 3 ((π‘Š ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) β†’ (-1𝑆𝐴) ∈ 𝑋)
9 eqid 2733 . . . 4 (GIdβ€˜πΊ) = (GIdβ€˜πΊ)
106, 9grporid 29770 . . 3 ((𝐺 ∈ GrpOp ∧ (-1𝑆𝐴) ∈ 𝑋) β†’ ((-1𝑆𝐴)𝐺(GIdβ€˜πΊ)) = (-1𝑆𝐴))
113, 8, 10syl2anc 585 . 2 ((π‘Š ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) β†’ ((-1𝑆𝐴)𝐺(GIdβ€˜πΊ)) = (-1𝑆𝐴))
12 simpr 486 . . . . . 6 ((π‘Š ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) β†’ 𝐴 ∈ 𝑋)
13 vcm.4 . . . . . . . 8 𝑀 = (invβ€˜πΊ)
146, 13grpoinvcl 29777 . . . . . . 7 ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) β†’ (π‘€β€˜π΄) ∈ 𝑋)
152, 14sylan 581 . . . . . 6 ((π‘Š ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) β†’ (π‘€β€˜π΄) ∈ 𝑋)
166grpoass 29756 . . . . . 6 ((𝐺 ∈ GrpOp ∧ ((-1𝑆𝐴) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ (π‘€β€˜π΄) ∈ 𝑋)) β†’ (((-1𝑆𝐴)𝐺𝐴)𝐺(π‘€β€˜π΄)) = ((-1𝑆𝐴)𝐺(𝐴𝐺(π‘€β€˜π΄))))
173, 8, 12, 15, 16syl13anc 1373 . . . . 5 ((π‘Š ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) β†’ (((-1𝑆𝐴)𝐺𝐴)𝐺(π‘€β€˜π΄)) = ((-1𝑆𝐴)𝐺(𝐴𝐺(π‘€β€˜π΄))))
181, 5, 6vcidOLD 29817 . . . . . . . 8 ((π‘Š ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) β†’ (1𝑆𝐴) = 𝐴)
1918oveq2d 7425 . . . . . . 7 ((π‘Š ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) β†’ ((-1𝑆𝐴)𝐺(1𝑆𝐴)) = ((-1𝑆𝐴)𝐺𝐴))
20 ax-1cn 11168 . . . . . . . . . 10 1 ∈ β„‚
21 1pneg1e0 12331 . . . . . . . . . 10 (1 + -1) = 0
2220, 4, 21addcomli 11406 . . . . . . . . 9 (-1 + 1) = 0
2322oveq1i 7419 . . . . . . . 8 ((-1 + 1)𝑆𝐴) = (0𝑆𝐴)
241, 5, 6vcdir 29819 . . . . . . . . . 10 ((π‘Š ∈ CVecOLD ∧ (-1 ∈ β„‚ ∧ 1 ∈ β„‚ ∧ 𝐴 ∈ 𝑋)) β†’ ((-1 + 1)𝑆𝐴) = ((-1𝑆𝐴)𝐺(1𝑆𝐴)))
254, 24mp3anr1 1459 . . . . . . . . 9 ((π‘Š ∈ CVecOLD ∧ (1 ∈ β„‚ ∧ 𝐴 ∈ 𝑋)) β†’ ((-1 + 1)𝑆𝐴) = ((-1𝑆𝐴)𝐺(1𝑆𝐴)))
2620, 25mpanr1 702 . . . . . . . 8 ((π‘Š ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) β†’ ((-1 + 1)𝑆𝐴) = ((-1𝑆𝐴)𝐺(1𝑆𝐴)))
271, 5, 6, 9vc0 29827 . . . . . . . 8 ((π‘Š ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) β†’ (0𝑆𝐴) = (GIdβ€˜πΊ))
2823, 26, 273eqtr3a 2797 . . . . . . 7 ((π‘Š ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) β†’ ((-1𝑆𝐴)𝐺(1𝑆𝐴)) = (GIdβ€˜πΊ))
2919, 28eqtr3d 2775 . . . . . 6 ((π‘Š ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) β†’ ((-1𝑆𝐴)𝐺𝐴) = (GIdβ€˜πΊ))
3029oveq1d 7424 . . . . 5 ((π‘Š ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) β†’ (((-1𝑆𝐴)𝐺𝐴)𝐺(π‘€β€˜π΄)) = ((GIdβ€˜πΊ)𝐺(π‘€β€˜π΄)))
3117, 30eqtr3d 2775 . . . 4 ((π‘Š ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) β†’ ((-1𝑆𝐴)𝐺(𝐴𝐺(π‘€β€˜π΄))) = ((GIdβ€˜πΊ)𝐺(π‘€β€˜π΄)))
326, 9, 13grporinv 29780 . . . . . 6 ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) β†’ (𝐴𝐺(π‘€β€˜π΄)) = (GIdβ€˜πΊ))
332, 32sylan 581 . . . . 5 ((π‘Š ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) β†’ (𝐴𝐺(π‘€β€˜π΄)) = (GIdβ€˜πΊ))
3433oveq2d 7425 . . . 4 ((π‘Š ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) β†’ ((-1𝑆𝐴)𝐺(𝐴𝐺(π‘€β€˜π΄))) = ((-1𝑆𝐴)𝐺(GIdβ€˜πΊ)))
3531, 34eqtr3d 2775 . . 3 ((π‘Š ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) β†’ ((GIdβ€˜πΊ)𝐺(π‘€β€˜π΄)) = ((-1𝑆𝐴)𝐺(GIdβ€˜πΊ)))
366, 9grpolid 29769 . . . 4 ((𝐺 ∈ GrpOp ∧ (π‘€β€˜π΄) ∈ 𝑋) β†’ ((GIdβ€˜πΊ)𝐺(π‘€β€˜π΄)) = (π‘€β€˜π΄))
373, 15, 36syl2anc 585 . . 3 ((π‘Š ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) β†’ ((GIdβ€˜πΊ)𝐺(π‘€β€˜π΄)) = (π‘€β€˜π΄))
3835, 37eqtr3d 2775 . 2 ((π‘Š ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) β†’ ((-1𝑆𝐴)𝐺(GIdβ€˜πΊ)) = (π‘€β€˜π΄))
3911, 38eqtr3d 2775 1 ((π‘Š ∈ CVecOLD ∧ 𝐴 ∈ 𝑋) β†’ (-1𝑆𝐴) = (π‘€β€˜π΄))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   = wceq 1542   ∈ wcel 2107  ran crn 5678  β€˜cfv 6544  (class class class)co 7409  1st c1st 7973  2nd c2nd 7974  β„‚cc 11108  0cc0 11110  1c1 11111   + caddc 11113  -cneg 11445  GrpOpcgr 29742  GIdcgi 29743  invcgn 29744  CVecOLDcvc 29811
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-po 5589  df-so 5590  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-1st 7975  df-2nd 7976  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-pnf 11250  df-mnf 11251  df-ltxr 11253  df-sub 11446  df-neg 11447  df-grpo 29746  df-gid 29747  df-ginv 29748  df-ablo 29798  df-vc 29812
This theorem is referenced by:  nvinv  29892
  Copyright terms: Public domain W3C validator