Proof of Theorem ipidsq
Step | Hyp | Ref
| Expression |
1 | | ipid.1 |
. . . 4
⊢ 𝑋 = (BaseSet‘𝑈) |
2 | | eqid 2738 |
. . . 4
⊢ (
+𝑣 ‘𝑈) = ( +𝑣 ‘𝑈) |
3 | | eqid 2738 |
. . . 4
⊢ (
·𝑠OLD ‘𝑈) = ( ·𝑠OLD
‘𝑈) |
4 | | ipid.6 |
. . . 4
⊢ 𝑁 =
(normCV‘𝑈) |
5 | | ipid.7 |
. . . 4
⊢ 𝑃 =
(·𝑖OLD‘𝑈) |
6 | 1, 2, 3, 4, 5 | ipval2 28970 |
. . 3
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝐴𝑃𝐴) = (((((𝑁‘(𝐴( +𝑣 ‘𝑈)𝐴))↑2) − ((𝑁‘(𝐴( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐴)))↑2)) + (i · (((𝑁‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐴)))↑2) − ((𝑁‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐴)))↑2)))) / 4)) |
7 | 6 | 3anidm23 1419 |
. 2
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝐴𝑃𝐴) = (((((𝑁‘(𝐴( +𝑣 ‘𝑈)𝐴))↑2) − ((𝑁‘(𝐴( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐴)))↑2)) + (i · (((𝑁‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐴)))↑2) − ((𝑁‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐴)))↑2)))) / 4)) |
8 | 1, 2, 3 | nv2 28895 |
. . . . . . . . . . 11
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝐴( +𝑣 ‘𝑈)𝐴) = (2(
·𝑠OLD ‘𝑈)𝐴)) |
9 | 8 | fveq2d 6760 |
. . . . . . . . . 10
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝑁‘(𝐴( +𝑣 ‘𝑈)𝐴)) = (𝑁‘(2(
·𝑠OLD ‘𝑈)𝐴))) |
10 | | 2re 11977 |
. . . . . . . . . . . 12
⊢ 2 ∈
ℝ |
11 | | 0le2 12005 |
. . . . . . . . . . . 12
⊢ 0 ≤
2 |
12 | 10, 11 | pm3.2i 470 |
. . . . . . . . . . 11
⊢ (2 ∈
ℝ ∧ 0 ≤ 2) |
13 | 1, 3, 4 | nvsge0 28927 |
. . . . . . . . . . 11
⊢ ((𝑈 ∈ NrmCVec ∧ (2 ∈
ℝ ∧ 0 ≤ 2) ∧ 𝐴 ∈ 𝑋) → (𝑁‘(2(
·𝑠OLD ‘𝑈)𝐴)) = (2 · (𝑁‘𝐴))) |
14 | 12, 13 | mp3an2 1447 |
. . . . . . . . . 10
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝑁‘(2(
·𝑠OLD ‘𝑈)𝐴)) = (2 · (𝑁‘𝐴))) |
15 | 9, 14 | eqtrd 2778 |
. . . . . . . . 9
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝑁‘(𝐴( +𝑣 ‘𝑈)𝐴)) = (2 · (𝑁‘𝐴))) |
16 | 15 | oveq1d 7270 |
. . . . . . . 8
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → ((𝑁‘(𝐴( +𝑣 ‘𝑈)𝐴))↑2) = ((2 · (𝑁‘𝐴))↑2)) |
17 | 1, 4 | nvcl 28924 |
. . . . . . . . . . 11
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) ∈ ℝ) |
18 | 17 | recnd 10934 |
. . . . . . . . . 10
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) ∈ ℂ) |
19 | | 2cn 11978 |
. . . . . . . . . . 11
⊢ 2 ∈
ℂ |
20 | | 2nn0 12180 |
. . . . . . . . . . 11
⊢ 2 ∈
ℕ0 |
21 | | mulexp 13750 |
. . . . . . . . . . 11
⊢ ((2
∈ ℂ ∧ (𝑁‘𝐴) ∈ ℂ ∧ 2 ∈
ℕ0) → ((2 · (𝑁‘𝐴))↑2) = ((2↑2) · ((𝑁‘𝐴)↑2))) |
22 | 19, 20, 21 | mp3an13 1450 |
. . . . . . . . . 10
⊢ ((𝑁‘𝐴) ∈ ℂ → ((2 · (𝑁‘𝐴))↑2) = ((2↑2) · ((𝑁‘𝐴)↑2))) |
23 | 18, 22 | syl 17 |
. . . . . . . . 9
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → ((2 · (𝑁‘𝐴))↑2) = ((2↑2) · ((𝑁‘𝐴)↑2))) |
24 | | sq2 13842 |
. . . . . . . . . 10
⊢
(2↑2) = 4 |
25 | 24 | oveq1i 7265 |
. . . . . . . . 9
⊢
((2↑2) · ((𝑁‘𝐴)↑2)) = (4 · ((𝑁‘𝐴)↑2)) |
26 | 23, 25 | eqtrdi 2795 |
. . . . . . . 8
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → ((2 · (𝑁‘𝐴))↑2) = (4 · ((𝑁‘𝐴)↑2))) |
27 | 16, 26 | eqtrd 2778 |
. . . . . . 7
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → ((𝑁‘(𝐴( +𝑣 ‘𝑈)𝐴))↑2) = (4 · ((𝑁‘𝐴)↑2))) |
28 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(0vec‘𝑈) = (0vec‘𝑈) |
29 | 1, 2, 3, 28 | nvrinv 28914 |
. . . . . . . . . 10
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝐴( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐴)) = (0vec‘𝑈)) |
30 | 29 | fveq2d 6760 |
. . . . . . . . 9
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝑁‘(𝐴( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐴))) = (𝑁‘(0vec‘𝑈))) |
31 | 28, 4 | nvz0 28931 |
. . . . . . . . . 10
⊢ (𝑈 ∈ NrmCVec → (𝑁‘(0vec‘𝑈)) = 0) |
32 | 31 | adantr 480 |
. . . . . . . . 9
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝑁‘(0vec‘𝑈)) = 0) |
33 | 30, 32 | eqtrd 2778 |
. . . . . . . 8
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝑁‘(𝐴( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐴))) = 0) |
34 | 33 | sq0id 13839 |
. . . . . . 7
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → ((𝑁‘(𝐴( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐴)))↑2) = 0) |
35 | 27, 34 | oveq12d 7273 |
. . . . . 6
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (((𝑁‘(𝐴( +𝑣 ‘𝑈)𝐴))↑2) − ((𝑁‘(𝐴( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐴)))↑2)) = ((4 · ((𝑁‘𝐴)↑2)) − 0)) |
36 | | 4cn 11988 |
. . . . . . . 8
⊢ 4 ∈
ℂ |
37 | 18 | sqcld 13790 |
. . . . . . . 8
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → ((𝑁‘𝐴)↑2) ∈ ℂ) |
38 | | mulcl 10886 |
. . . . . . . 8
⊢ ((4
∈ ℂ ∧ ((𝑁‘𝐴)↑2) ∈ ℂ) → (4 ·
((𝑁‘𝐴)↑2)) ∈ ℂ) |
39 | 36, 37, 38 | sylancr 586 |
. . . . . . 7
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (4 · ((𝑁‘𝐴)↑2)) ∈ ℂ) |
40 | 39 | subid1d 11251 |
. . . . . 6
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → ((4 · ((𝑁‘𝐴)↑2)) − 0) = (4 · ((𝑁‘𝐴)↑2))) |
41 | 35, 40 | eqtrd 2778 |
. . . . 5
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (((𝑁‘(𝐴( +𝑣 ‘𝑈)𝐴))↑2) − ((𝑁‘(𝐴( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐴)))↑2)) = (4 · ((𝑁‘𝐴)↑2))) |
42 | | 1re 10906 |
. . . . . . . . . . . . . . . 16
⊢ 1 ∈
ℝ |
43 | | neg1rr 12018 |
. . . . . . . . . . . . . . . 16
⊢ -1 ∈
ℝ |
44 | | absreim 14933 |
. . . . . . . . . . . . . . . 16
⊢ ((1
∈ ℝ ∧ -1 ∈ ℝ) → (abs‘(1 + (i ·
-1))) = (√‘((1↑2) + (-1↑2)))) |
45 | 42, 43, 44 | mp2an 688 |
. . . . . . . . . . . . . . 15
⊢
(abs‘(1 + (i · -1))) = (√‘((1↑2) +
(-1↑2))) |
46 | | ax-icn 10861 |
. . . . . . . . . . . . . . . . . . 19
⊢ i ∈
ℂ |
47 | | ax-1cn 10860 |
. . . . . . . . . . . . . . . . . . 19
⊢ 1 ∈
ℂ |
48 | 46, 47 | mulneg2i 11352 |
. . . . . . . . . . . . . . . . . 18
⊢ (i
· -1) = -(i · 1) |
49 | 46 | mulid1i 10910 |
. . . . . . . . . . . . . . . . . . 19
⊢ (i
· 1) = i |
50 | 49 | negeqi 11144 |
. . . . . . . . . . . . . . . . . 18
⊢ -(i
· 1) = -i |
51 | 48, 50 | eqtri 2766 |
. . . . . . . . . . . . . . . . 17
⊢ (i
· -1) = -i |
52 | 51 | oveq2i 7266 |
. . . . . . . . . . . . . . . 16
⊢ (1 + (i
· -1)) = (1 + -i) |
53 | 52 | fveq2i 6759 |
. . . . . . . . . . . . . . 15
⊢
(abs‘(1 + (i · -1))) = (abs‘(1 +
-i)) |
54 | | sqneg 13764 |
. . . . . . . . . . . . . . . . . 18
⊢ (1 ∈
ℂ → (-1↑2) = (1↑2)) |
55 | 47, 54 | ax-mp 5 |
. . . . . . . . . . . . . . . . 17
⊢
(-1↑2) = (1↑2) |
56 | 55 | oveq2i 7266 |
. . . . . . . . . . . . . . . 16
⊢
((1↑2) + (-1↑2)) = ((1↑2) + (1↑2)) |
57 | 56 | fveq2i 6759 |
. . . . . . . . . . . . . . 15
⊢
(√‘((1↑2) + (-1↑2))) = (√‘((1↑2)
+ (1↑2))) |
58 | 45, 53, 57 | 3eqtr3i 2774 |
. . . . . . . . . . . . . 14
⊢
(abs‘(1 + -i)) = (√‘((1↑2) +
(1↑2))) |
59 | | absreim 14933 |
. . . . . . . . . . . . . . 15
⊢ ((1
∈ ℝ ∧ 1 ∈ ℝ) → (abs‘(1 + (i · 1)))
= (√‘((1↑2) + (1↑2)))) |
60 | 42, 42, 59 | mp2an 688 |
. . . . . . . . . . . . . 14
⊢
(abs‘(1 + (i · 1))) = (√‘((1↑2) +
(1↑2))) |
61 | 49 | oveq2i 7266 |
. . . . . . . . . . . . . . 15
⊢ (1 + (i
· 1)) = (1 + i) |
62 | 61 | fveq2i 6759 |
. . . . . . . . . . . . . 14
⊢
(abs‘(1 + (i · 1))) = (abs‘(1 + i)) |
63 | 58, 60, 62 | 3eqtr2i 2772 |
. . . . . . . . . . . . 13
⊢
(abs‘(1 + -i)) = (abs‘(1 + i)) |
64 | 63 | oveq1i 7265 |
. . . . . . . . . . . 12
⊢
((abs‘(1 + -i)) · (𝑁‘𝐴)) = ((abs‘(1 + i)) · (𝑁‘𝐴)) |
65 | | negicn 11152 |
. . . . . . . . . . . . . 14
⊢ -i ∈
ℂ |
66 | 47, 65 | addcli 10912 |
. . . . . . . . . . . . 13
⊢ (1 + -i)
∈ ℂ |
67 | 1, 3, 4 | nvs 28926 |
. . . . . . . . . . . . 13
⊢ ((𝑈 ∈ NrmCVec ∧ (1 + -i)
∈ ℂ ∧ 𝐴
∈ 𝑋) → (𝑁‘((1 + -i)(
·𝑠OLD ‘𝑈)𝐴)) = ((abs‘(1 + -i)) · (𝑁‘𝐴))) |
68 | 66, 67 | mp3an2 1447 |
. . . . . . . . . . . 12
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝑁‘((1 + -i)(
·𝑠OLD ‘𝑈)𝐴)) = ((abs‘(1 + -i)) · (𝑁‘𝐴))) |
69 | 47, 46 | addcli 10912 |
. . . . . . . . . . . . 13
⊢ (1 + i)
∈ ℂ |
70 | 1, 3, 4 | nvs 28926 |
. . . . . . . . . . . . 13
⊢ ((𝑈 ∈ NrmCVec ∧ (1 + i)
∈ ℂ ∧ 𝐴
∈ 𝑋) → (𝑁‘((1 + i)(
·𝑠OLD ‘𝑈)𝐴)) = ((abs‘(1 + i)) · (𝑁‘𝐴))) |
71 | 69, 70 | mp3an2 1447 |
. . . . . . . . . . . 12
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝑁‘((1 + i)(
·𝑠OLD ‘𝑈)𝐴)) = ((abs‘(1 + i)) · (𝑁‘𝐴))) |
72 | 64, 68, 71 | 3eqtr4a 2805 |
. . . . . . . . . . 11
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝑁‘((1 + -i)(
·𝑠OLD ‘𝑈)𝐴)) = (𝑁‘((1 + i)(
·𝑠OLD ‘𝑈)𝐴))) |
73 | 1, 2, 3 | nvdir 28894 |
. . . . . . . . . . . . . . 15
⊢ ((𝑈 ∈ NrmCVec ∧ (1 ∈
ℂ ∧ -i ∈ ℂ ∧ 𝐴 ∈ 𝑋)) → ((1 + -i)(
·𝑠OLD ‘𝑈)𝐴) = ((1(
·𝑠OLD ‘𝑈)𝐴)( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐴))) |
74 | 47, 73 | mp3anr1 1456 |
. . . . . . . . . . . . . 14
⊢ ((𝑈 ∈ NrmCVec ∧ (-i ∈
ℂ ∧ 𝐴 ∈
𝑋)) → ((1 + -i)(
·𝑠OLD ‘𝑈)𝐴) = ((1(
·𝑠OLD ‘𝑈)𝐴)( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐴))) |
75 | 65, 74 | mpanr1 699 |
. . . . . . . . . . . . 13
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → ((1 + -i)(
·𝑠OLD ‘𝑈)𝐴) = ((1(
·𝑠OLD ‘𝑈)𝐴)( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐴))) |
76 | 1, 3 | nvsid 28890 |
. . . . . . . . . . . . . 14
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (1(
·𝑠OLD ‘𝑈)𝐴) = 𝐴) |
77 | 76 | oveq1d 7270 |
. . . . . . . . . . . . 13
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → ((1(
·𝑠OLD ‘𝑈)𝐴)( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐴)) = (𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐴))) |
78 | 75, 77 | eqtrd 2778 |
. . . . . . . . . . . 12
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → ((1 + -i)(
·𝑠OLD ‘𝑈)𝐴) = (𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐴))) |
79 | 78 | fveq2d 6760 |
. . . . . . . . . . 11
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝑁‘((1 + -i)(
·𝑠OLD ‘𝑈)𝐴)) = (𝑁‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐴)))) |
80 | 1, 2, 3 | nvdir 28894 |
. . . . . . . . . . . . . . 15
⊢ ((𝑈 ∈ NrmCVec ∧ (1 ∈
ℂ ∧ i ∈ ℂ ∧ 𝐴 ∈ 𝑋)) → ((1 + i)(
·𝑠OLD ‘𝑈)𝐴) = ((1(
·𝑠OLD ‘𝑈)𝐴)( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐴))) |
81 | 47, 80 | mp3anr1 1456 |
. . . . . . . . . . . . . 14
⊢ ((𝑈 ∈ NrmCVec ∧ (i ∈
ℂ ∧ 𝐴 ∈
𝑋)) → ((1 + i)(
·𝑠OLD ‘𝑈)𝐴) = ((1(
·𝑠OLD ‘𝑈)𝐴)( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐴))) |
82 | 46, 81 | mpanr1 699 |
. . . . . . . . . . . . 13
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → ((1 + i)(
·𝑠OLD ‘𝑈)𝐴) = ((1(
·𝑠OLD ‘𝑈)𝐴)( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐴))) |
83 | 76 | oveq1d 7270 |
. . . . . . . . . . . . 13
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → ((1(
·𝑠OLD ‘𝑈)𝐴)( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐴)) = (𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐴))) |
84 | 82, 83 | eqtrd 2778 |
. . . . . . . . . . . 12
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → ((1 + i)(
·𝑠OLD ‘𝑈)𝐴) = (𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐴))) |
85 | 84 | fveq2d 6760 |
. . . . . . . . . . 11
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝑁‘((1 + i)(
·𝑠OLD ‘𝑈)𝐴)) = (𝑁‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐴)))) |
86 | 72, 79, 85 | 3eqtr3d 2786 |
. . . . . . . . . 10
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝑁‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐴))) = (𝑁‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐴)))) |
87 | 86 | oveq1d 7270 |
. . . . . . . . 9
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → ((𝑁‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐴)))↑2) = ((𝑁‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐴)))↑2)) |
88 | 87 | oveq2d 7271 |
. . . . . . . 8
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (((𝑁‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐴)))↑2) − ((𝑁‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐴)))↑2)) = (((𝑁‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐴)))↑2) − ((𝑁‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐴)))↑2))) |
89 | 1, 2, 3, 4, 5 | ipval2lem4 28969 |
. . . . . . . . . . 11
⊢ (((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) ∧ i ∈ ℂ) → ((𝑁‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐴)))↑2) ∈ ℂ) |
90 | 46, 89 | mpan2 687 |
. . . . . . . . . 10
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → ((𝑁‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐴)))↑2) ∈ ℂ) |
91 | 90 | 3anidm23 1419 |
. . . . . . . . 9
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → ((𝑁‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐴)))↑2) ∈ ℂ) |
92 | 91 | subidd 11250 |
. . . . . . . 8
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (((𝑁‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐴)))↑2) − ((𝑁‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐴)))↑2)) = 0) |
93 | 88, 92 | eqtrd 2778 |
. . . . . . 7
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (((𝑁‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐴)))↑2) − ((𝑁‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐴)))↑2)) = 0) |
94 | 93 | oveq2d 7271 |
. . . . . 6
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (i · (((𝑁‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐴)))↑2) − ((𝑁‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐴)))↑2))) = (i ·
0)) |
95 | | it0e0 12125 |
. . . . . 6
⊢ (i
· 0) = 0 |
96 | 94, 95 | eqtrdi 2795 |
. . . . 5
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (i · (((𝑁‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐴)))↑2) − ((𝑁‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐴)))↑2))) = 0) |
97 | 41, 96 | oveq12d 7273 |
. . . 4
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → ((((𝑁‘(𝐴( +𝑣 ‘𝑈)𝐴))↑2) − ((𝑁‘(𝐴( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐴)))↑2)) + (i · (((𝑁‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐴)))↑2) − ((𝑁‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐴)))↑2)))) = ((4 · ((𝑁‘𝐴)↑2)) + 0)) |
98 | 39 | addid1d 11105 |
. . . 4
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → ((4 · ((𝑁‘𝐴)↑2)) + 0) = (4 · ((𝑁‘𝐴)↑2))) |
99 | 97, 98 | eqtr2d 2779 |
. . 3
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (4 · ((𝑁‘𝐴)↑2)) = ((((𝑁‘(𝐴( +𝑣 ‘𝑈)𝐴))↑2) − ((𝑁‘(𝐴( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐴)))↑2)) + (i · (((𝑁‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐴)))↑2) − ((𝑁‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐴)))↑2))))) |
100 | 99 | oveq1d 7270 |
. 2
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → ((4 · ((𝑁‘𝐴)↑2)) / 4) = (((((𝑁‘(𝐴( +𝑣 ‘𝑈)𝐴))↑2) − ((𝑁‘(𝐴( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝐴)))↑2)) + (i · (((𝑁‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝐴)))↑2) − ((𝑁‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝐴)))↑2)))) / 4)) |
101 | | 4ne0 12011 |
. . . 4
⊢ 4 ≠
0 |
102 | | divcan3 11589 |
. . . 4
⊢ ((((𝑁‘𝐴)↑2) ∈ ℂ ∧ 4 ∈
ℂ ∧ 4 ≠ 0) → ((4 · ((𝑁‘𝐴)↑2)) / 4) = ((𝑁‘𝐴)↑2)) |
103 | 36, 101, 102 | mp3an23 1451 |
. . 3
⊢ (((𝑁‘𝐴)↑2) ∈ ℂ → ((4 ·
((𝑁‘𝐴)↑2)) / 4) = ((𝑁‘𝐴)↑2)) |
104 | 37, 103 | syl 17 |
. 2
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → ((4 · ((𝑁‘𝐴)↑2)) / 4) = ((𝑁‘𝐴)↑2)) |
105 | 7, 100, 104 | 3eqtr2d 2784 |
1
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝐴𝑃𝐴) = ((𝑁‘𝐴)↑2)) |