MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipidsq Structured version   Visualization version   GIF version

Theorem ipidsq 28021
Description: The inner product of a vector with itself is the square of the vector's norm. Equation I4 of [Ponnusamy] p. 362. (Contributed by NM, 1-Feb-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
ipid.1 𝑋 = (BaseSet‘𝑈)
ipid.6 𝑁 = (normCV𝑈)
ipid.7 𝑃 = (·𝑖OLD𝑈)
Assertion
Ref Expression
ipidsq ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴𝑃𝐴) = ((𝑁𝐴)↑2))

Proof of Theorem ipidsq
StepHypRef Expression
1 ipid.1 . . . 4 𝑋 = (BaseSet‘𝑈)
2 eqid 2765 . . . 4 ( +𝑣𝑈) = ( +𝑣𝑈)
3 eqid 2765 . . . 4 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
4 ipid.6 . . . 4 𝑁 = (normCV𝑈)
5 ipid.7 . . . 4 𝑃 = (·𝑖OLD𝑈)
61, 2, 3, 4, 5ipval2 28018 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐴𝑋) → (𝐴𝑃𝐴) = (((((𝑁‘(𝐴( +𝑣𝑈)𝐴))↑2) − ((𝑁‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴)))↑2)) + (i · (((𝑁‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2) − ((𝑁‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))↑2)))) / 4))
763anidm23 1544 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴𝑃𝐴) = (((((𝑁‘(𝐴( +𝑣𝑈)𝐴))↑2) − ((𝑁‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴)))↑2)) + (i · (((𝑁‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2) − ((𝑁‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))↑2)))) / 4))
81, 2, 3nv2 27943 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴( +𝑣𝑈)𝐴) = (2( ·𝑠OLD𝑈)𝐴))
98fveq2d 6379 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁‘(𝐴( +𝑣𝑈)𝐴)) = (𝑁‘(2( ·𝑠OLD𝑈)𝐴)))
10 2re 11346 . . . . . . . . . . . 12 2 ∈ ℝ
11 0le2 11381 . . . . . . . . . . . 12 0 ≤ 2
1210, 11pm3.2i 462 . . . . . . . . . . 11 (2 ∈ ℝ ∧ 0 ≤ 2)
131, 3, 4nvsge0 27975 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ (2 ∈ ℝ ∧ 0 ≤ 2) ∧ 𝐴𝑋) → (𝑁‘(2( ·𝑠OLD𝑈)𝐴)) = (2 · (𝑁𝐴)))
1412, 13mp3an2 1573 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁‘(2( ·𝑠OLD𝑈)𝐴)) = (2 · (𝑁𝐴)))
159, 14eqtrd 2799 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁‘(𝐴( +𝑣𝑈)𝐴)) = (2 · (𝑁𝐴)))
1615oveq1d 6857 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((𝑁‘(𝐴( +𝑣𝑈)𝐴))↑2) = ((2 · (𝑁𝐴))↑2))
171, 4nvcl 27972 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁𝐴) ∈ ℝ)
1817recnd 10322 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁𝐴) ∈ ℂ)
19 2cn 11347 . . . . . . . . . . 11 2 ∈ ℂ
20 2nn0 11557 . . . . . . . . . . 11 2 ∈ ℕ0
21 mulexp 13106 . . . . . . . . . . 11 ((2 ∈ ℂ ∧ (𝑁𝐴) ∈ ℂ ∧ 2 ∈ ℕ0) → ((2 · (𝑁𝐴))↑2) = ((2↑2) · ((𝑁𝐴)↑2)))
2219, 20, 21mp3an13 1576 . . . . . . . . . 10 ((𝑁𝐴) ∈ ℂ → ((2 · (𝑁𝐴))↑2) = ((2↑2) · ((𝑁𝐴)↑2)))
2318, 22syl 17 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((2 · (𝑁𝐴))↑2) = ((2↑2) · ((𝑁𝐴)↑2)))
24 sq2 13167 . . . . . . . . . 10 (2↑2) = 4
2524oveq1i 6852 . . . . . . . . 9 ((2↑2) · ((𝑁𝐴)↑2)) = (4 · ((𝑁𝐴)↑2))
2623, 25syl6eq 2815 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((2 · (𝑁𝐴))↑2) = (4 · ((𝑁𝐴)↑2)))
2716, 26eqtrd 2799 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((𝑁‘(𝐴( +𝑣𝑈)𝐴))↑2) = (4 · ((𝑁𝐴)↑2)))
28 eqid 2765 . . . . . . . . . . 11 (0vec𝑈) = (0vec𝑈)
291, 2, 3, 28nvrinv 27962 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴)) = (0vec𝑈))
3029fveq2d 6379 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴))) = (𝑁‘(0vec𝑈)))
3128, 4nvz0 27979 . . . . . . . . . 10 (𝑈 ∈ NrmCVec → (𝑁‘(0vec𝑈)) = 0)
3231adantr 472 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁‘(0vec𝑈)) = 0)
3330, 32eqtrd 2799 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴))) = 0)
3433sq0id 13164 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((𝑁‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴)))↑2) = 0)
3527, 34oveq12d 6860 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (((𝑁‘(𝐴( +𝑣𝑈)𝐴))↑2) − ((𝑁‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴)))↑2)) = ((4 · ((𝑁𝐴)↑2)) − 0))
36 4cn 11358 . . . . . . . 8 4 ∈ ℂ
3718sqcld 13213 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((𝑁𝐴)↑2) ∈ ℂ)
38 mulcl 10273 . . . . . . . 8 ((4 ∈ ℂ ∧ ((𝑁𝐴)↑2) ∈ ℂ) → (4 · ((𝑁𝐴)↑2)) ∈ ℂ)
3936, 37, 38sylancr 581 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (4 · ((𝑁𝐴)↑2)) ∈ ℂ)
4039subid1d 10635 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((4 · ((𝑁𝐴)↑2)) − 0) = (4 · ((𝑁𝐴)↑2)))
4135, 40eqtrd 2799 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (((𝑁‘(𝐴( +𝑣𝑈)𝐴))↑2) − ((𝑁‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴)))↑2)) = (4 · ((𝑁𝐴)↑2)))
42 1re 10293 . . . . . . . . . . . . . . . 16 1 ∈ ℝ
43 neg1rr 11394 . . . . . . . . . . . . . . . 16 -1 ∈ ℝ
44 absreim 14318 . . . . . . . . . . . . . . . 16 ((1 ∈ ℝ ∧ -1 ∈ ℝ) → (abs‘(1 + (i · -1))) = (√‘((1↑2) + (-1↑2))))
4542, 43, 44mp2an 683 . . . . . . . . . . . . . . 15 (abs‘(1 + (i · -1))) = (√‘((1↑2) + (-1↑2)))
46 ax-icn 10248 . . . . . . . . . . . . . . . . . . 19 i ∈ ℂ
47 ax-1cn 10247 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℂ
4846, 47mulneg2i 10731 . . . . . . . . . . . . . . . . . 18 (i · -1) = -(i · 1)
4946mulid1i 10298 . . . . . . . . . . . . . . . . . . 19 (i · 1) = i
5049negeqi 10528 . . . . . . . . . . . . . . . . . 18 -(i · 1) = -i
5148, 50eqtri 2787 . . . . . . . . . . . . . . . . 17 (i · -1) = -i
5251oveq2i 6853 . . . . . . . . . . . . . . . 16 (1 + (i · -1)) = (1 + -i)
5352fveq2i 6378 . . . . . . . . . . . . . . 15 (abs‘(1 + (i · -1))) = (abs‘(1 + -i))
54 sqneg 13130 . . . . . . . . . . . . . . . . . 18 (1 ∈ ℂ → (-1↑2) = (1↑2))
5547, 54ax-mp 5 . . . . . . . . . . . . . . . . 17 (-1↑2) = (1↑2)
5655oveq2i 6853 . . . . . . . . . . . . . . . 16 ((1↑2) + (-1↑2)) = ((1↑2) + (1↑2))
5756fveq2i 6378 . . . . . . . . . . . . . . 15 (√‘((1↑2) + (-1↑2))) = (√‘((1↑2) + (1↑2)))
5845, 53, 573eqtr3i 2795 . . . . . . . . . . . . . 14 (abs‘(1 + -i)) = (√‘((1↑2) + (1↑2)))
59 absreim 14318 . . . . . . . . . . . . . . 15 ((1 ∈ ℝ ∧ 1 ∈ ℝ) → (abs‘(1 + (i · 1))) = (√‘((1↑2) + (1↑2))))
6042, 42, 59mp2an 683 . . . . . . . . . . . . . 14 (abs‘(1 + (i · 1))) = (√‘((1↑2) + (1↑2)))
6149oveq2i 6853 . . . . . . . . . . . . . . 15 (1 + (i · 1)) = (1 + i)
6261fveq2i 6378 . . . . . . . . . . . . . 14 (abs‘(1 + (i · 1))) = (abs‘(1 + i))
6358, 60, 623eqtr2i 2793 . . . . . . . . . . . . 13 (abs‘(1 + -i)) = (abs‘(1 + i))
6463oveq1i 6852 . . . . . . . . . . . 12 ((abs‘(1 + -i)) · (𝑁𝐴)) = ((abs‘(1 + i)) · (𝑁𝐴))
65 negicn 10536 . . . . . . . . . . . . . 14 -i ∈ ℂ
6647, 65addcli 10300 . . . . . . . . . . . . 13 (1 + -i) ∈ ℂ
671, 3, 4nvs 27974 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ (1 + -i) ∈ ℂ ∧ 𝐴𝑋) → (𝑁‘((1 + -i)( ·𝑠OLD𝑈)𝐴)) = ((abs‘(1 + -i)) · (𝑁𝐴)))
6866, 67mp3an2 1573 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁‘((1 + -i)( ·𝑠OLD𝑈)𝐴)) = ((abs‘(1 + -i)) · (𝑁𝐴)))
6947, 46addcli 10300 . . . . . . . . . . . . 13 (1 + i) ∈ ℂ
701, 3, 4nvs 27974 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ (1 + i) ∈ ℂ ∧ 𝐴𝑋) → (𝑁‘((1 + i)( ·𝑠OLD𝑈)𝐴)) = ((abs‘(1 + i)) · (𝑁𝐴)))
7169, 70mp3an2 1573 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁‘((1 + i)( ·𝑠OLD𝑈)𝐴)) = ((abs‘(1 + i)) · (𝑁𝐴)))
7264, 68, 713eqtr4a 2825 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁‘((1 + -i)( ·𝑠OLD𝑈)𝐴)) = (𝑁‘((1 + i)( ·𝑠OLD𝑈)𝐴)))
731, 2, 3nvdir 27942 . . . . . . . . . . . . . . 15 ((𝑈 ∈ NrmCVec ∧ (1 ∈ ℂ ∧ -i ∈ ℂ ∧ 𝐴𝑋)) → ((1 + -i)( ·𝑠OLD𝑈)𝐴) = ((1( ·𝑠OLD𝑈)𝐴)( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))
7447, 73mp3anr1 1582 . . . . . . . . . . . . . 14 ((𝑈 ∈ NrmCVec ∧ (-i ∈ ℂ ∧ 𝐴𝑋)) → ((1 + -i)( ·𝑠OLD𝑈)𝐴) = ((1( ·𝑠OLD𝑈)𝐴)( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))
7565, 74mpanr1 694 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((1 + -i)( ·𝑠OLD𝑈)𝐴) = ((1( ·𝑠OLD𝑈)𝐴)( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))
761, 3nvsid 27938 . . . . . . . . . . . . . 14 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (1( ·𝑠OLD𝑈)𝐴) = 𝐴)
7776oveq1d 6857 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((1( ·𝑠OLD𝑈)𝐴)( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)) = (𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))
7875, 77eqtrd 2799 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((1 + -i)( ·𝑠OLD𝑈)𝐴) = (𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))
7978fveq2d 6379 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁‘((1 + -i)( ·𝑠OLD𝑈)𝐴)) = (𝑁‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴))))
801, 2, 3nvdir 27942 . . . . . . . . . . . . . . 15 ((𝑈 ∈ NrmCVec ∧ (1 ∈ ℂ ∧ i ∈ ℂ ∧ 𝐴𝑋)) → ((1 + i)( ·𝑠OLD𝑈)𝐴) = ((1( ·𝑠OLD𝑈)𝐴)( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))
8147, 80mp3anr1 1582 . . . . . . . . . . . . . 14 ((𝑈 ∈ NrmCVec ∧ (i ∈ ℂ ∧ 𝐴𝑋)) → ((1 + i)( ·𝑠OLD𝑈)𝐴) = ((1( ·𝑠OLD𝑈)𝐴)( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))
8246, 81mpanr1 694 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((1 + i)( ·𝑠OLD𝑈)𝐴) = ((1( ·𝑠OLD𝑈)𝐴)( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))
8376oveq1d 6857 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((1( ·𝑠OLD𝑈)𝐴)( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)) = (𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))
8482, 83eqtrd 2799 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((1 + i)( ·𝑠OLD𝑈)𝐴) = (𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))
8584fveq2d 6379 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁‘((1 + i)( ·𝑠OLD𝑈)𝐴)) = (𝑁‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴))))
8672, 79, 853eqtr3d 2807 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴))) = (𝑁‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴))))
8786oveq1d 6857 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((𝑁‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))↑2) = ((𝑁‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2))
8887oveq2d 6858 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (((𝑁‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2) − ((𝑁‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))↑2)) = (((𝑁‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2) − ((𝑁‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2)))
891, 2, 3, 4, 5ipval2lem4 28017 . . . . . . . . . . 11 (((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐴𝑋) ∧ i ∈ ℂ) → ((𝑁‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2) ∈ ℂ)
9046, 89mpan2 682 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐴𝑋) → ((𝑁‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2) ∈ ℂ)
91903anidm23 1544 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((𝑁‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2) ∈ ℂ)
9291subidd 10634 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (((𝑁‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2) − ((𝑁‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2)) = 0)
9388, 92eqtrd 2799 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (((𝑁‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2) − ((𝑁‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))↑2)) = 0)
9493oveq2d 6858 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (i · (((𝑁‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2) − ((𝑁‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))↑2))) = (i · 0))
95 it0e0 11500 . . . . . 6 (i · 0) = 0
9694, 95syl6eq 2815 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (i · (((𝑁‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2) − ((𝑁‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))↑2))) = 0)
9741, 96oveq12d 6860 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((((𝑁‘(𝐴( +𝑣𝑈)𝐴))↑2) − ((𝑁‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴)))↑2)) + (i · (((𝑁‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2) − ((𝑁‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))↑2)))) = ((4 · ((𝑁𝐴)↑2)) + 0))
9839addid1d 10490 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((4 · ((𝑁𝐴)↑2)) + 0) = (4 · ((𝑁𝐴)↑2)))
9997, 98eqtr2d 2800 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (4 · ((𝑁𝐴)↑2)) = ((((𝑁‘(𝐴( +𝑣𝑈)𝐴))↑2) − ((𝑁‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴)))↑2)) + (i · (((𝑁‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2) − ((𝑁‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))↑2)))))
10099oveq1d 6857 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((4 · ((𝑁𝐴)↑2)) / 4) = (((((𝑁‘(𝐴( +𝑣𝑈)𝐴))↑2) − ((𝑁‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴)))↑2)) + (i · (((𝑁‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2) − ((𝑁‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))↑2)))) / 4))
101 4ne0 11387 . . . 4 4 ≠ 0
102 divcan3 10965 . . . 4 ((((𝑁𝐴)↑2) ∈ ℂ ∧ 4 ∈ ℂ ∧ 4 ≠ 0) → ((4 · ((𝑁𝐴)↑2)) / 4) = ((𝑁𝐴)↑2))
10336, 101, 102mp3an23 1577 . . 3 (((𝑁𝐴)↑2) ∈ ℂ → ((4 · ((𝑁𝐴)↑2)) / 4) = ((𝑁𝐴)↑2))
10437, 103syl 17 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((4 · ((𝑁𝐴)↑2)) / 4) = ((𝑁𝐴)↑2))
1057, 100, 1043eqtr2d 2805 1 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴𝑃𝐴) = ((𝑁𝐴)↑2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1107   = wceq 1652  wcel 2155  wne 2937   class class class wbr 4809  cfv 6068  (class class class)co 6842  cc 10187  cr 10188  0cc0 10189  1c1 10190  ici 10191   + caddc 10192   · cmul 10194  cle 10329  cmin 10520  -cneg 10521   / cdiv 10938  2c2 11327  4c4 11329  0cn0 11538  cexp 13067  csqrt 14258  abscabs 14259  NrmCVeccnv 27895   +𝑣 cpv 27896  BaseSetcba 27897   ·𝑠OLD cns 27898  0veccn0v 27899  normCVcnmcv 27901  ·𝑖OLDcdip 28011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-inf2 8753  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-pre-sup 10267
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-se 5237  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-isom 6077  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-1st 7366  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-oadd 7768  df-er 7947  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-sup 8555  df-oi 8622  df-card 9016  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-div 10939  df-nn 11275  df-2 11335  df-3 11336  df-4 11337  df-n0 11539  df-z 11625  df-uz 11887  df-rp 12029  df-fz 12534  df-fzo 12674  df-seq 13009  df-exp 13068  df-hash 13322  df-cj 14124  df-re 14125  df-im 14126  df-sqrt 14260  df-abs 14261  df-clim 14504  df-sum 14702  df-grpo 27804  df-gid 27805  df-ginv 27806  df-ablo 27856  df-vc 27870  df-nv 27903  df-va 27906  df-ba 27907  df-sm 27908  df-0v 27909  df-nmcv 27911  df-dip 28012
This theorem is referenced by:  ipnm  28022  ipz  28030  pythi  28161  siilem1  28162  hlipgt0  28226  htthlem  28230
  Copyright terms: Public domain W3C validator