MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipidsq Structured version   Visualization version   GIF version

Theorem ipidsq 29652
Description: The inner product of a vector with itself is the square of the vector's norm. Equation I4 of [Ponnusamy] p. 362. (Contributed by NM, 1-Feb-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
ipid.1 𝑋 = (BaseSet‘𝑈)
ipid.6 𝑁 = (normCV𝑈)
ipid.7 𝑃 = (·𝑖OLD𝑈)
Assertion
Ref Expression
ipidsq ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴𝑃𝐴) = ((𝑁𝐴)↑2))

Proof of Theorem ipidsq
StepHypRef Expression
1 ipid.1 . . . 4 𝑋 = (BaseSet‘𝑈)
2 eqid 2736 . . . 4 ( +𝑣𝑈) = ( +𝑣𝑈)
3 eqid 2736 . . . 4 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
4 ipid.6 . . . 4 𝑁 = (normCV𝑈)
5 ipid.7 . . . 4 𝑃 = (·𝑖OLD𝑈)
61, 2, 3, 4, 5ipval2 29649 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐴𝑋) → (𝐴𝑃𝐴) = (((((𝑁‘(𝐴( +𝑣𝑈)𝐴))↑2) − ((𝑁‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴)))↑2)) + (i · (((𝑁‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2) − ((𝑁‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))↑2)))) / 4))
763anidm23 1421 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴𝑃𝐴) = (((((𝑁‘(𝐴( +𝑣𝑈)𝐴))↑2) − ((𝑁‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴)))↑2)) + (i · (((𝑁‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2) − ((𝑁‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))↑2)))) / 4))
81, 2, 3nv2 29574 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴( +𝑣𝑈)𝐴) = (2( ·𝑠OLD𝑈)𝐴))
98fveq2d 6846 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁‘(𝐴( +𝑣𝑈)𝐴)) = (𝑁‘(2( ·𝑠OLD𝑈)𝐴)))
10 2re 12227 . . . . . . . . . . . 12 2 ∈ ℝ
11 0le2 12255 . . . . . . . . . . . 12 0 ≤ 2
1210, 11pm3.2i 471 . . . . . . . . . . 11 (2 ∈ ℝ ∧ 0 ≤ 2)
131, 3, 4nvsge0 29606 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ (2 ∈ ℝ ∧ 0 ≤ 2) ∧ 𝐴𝑋) → (𝑁‘(2( ·𝑠OLD𝑈)𝐴)) = (2 · (𝑁𝐴)))
1412, 13mp3an2 1449 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁‘(2( ·𝑠OLD𝑈)𝐴)) = (2 · (𝑁𝐴)))
159, 14eqtrd 2776 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁‘(𝐴( +𝑣𝑈)𝐴)) = (2 · (𝑁𝐴)))
1615oveq1d 7372 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((𝑁‘(𝐴( +𝑣𝑈)𝐴))↑2) = ((2 · (𝑁𝐴))↑2))
171, 4nvcl 29603 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁𝐴) ∈ ℝ)
1817recnd 11183 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁𝐴) ∈ ℂ)
19 2cn 12228 . . . . . . . . . . 11 2 ∈ ℂ
20 2nn0 12430 . . . . . . . . . . 11 2 ∈ ℕ0
21 mulexp 14007 . . . . . . . . . . 11 ((2 ∈ ℂ ∧ (𝑁𝐴) ∈ ℂ ∧ 2 ∈ ℕ0) → ((2 · (𝑁𝐴))↑2) = ((2↑2) · ((𝑁𝐴)↑2)))
2219, 20, 21mp3an13 1452 . . . . . . . . . 10 ((𝑁𝐴) ∈ ℂ → ((2 · (𝑁𝐴))↑2) = ((2↑2) · ((𝑁𝐴)↑2)))
2318, 22syl 17 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((2 · (𝑁𝐴))↑2) = ((2↑2) · ((𝑁𝐴)↑2)))
24 sq2 14101 . . . . . . . . . 10 (2↑2) = 4
2524oveq1i 7367 . . . . . . . . 9 ((2↑2) · ((𝑁𝐴)↑2)) = (4 · ((𝑁𝐴)↑2))
2623, 25eqtrdi 2792 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((2 · (𝑁𝐴))↑2) = (4 · ((𝑁𝐴)↑2)))
2716, 26eqtrd 2776 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((𝑁‘(𝐴( +𝑣𝑈)𝐴))↑2) = (4 · ((𝑁𝐴)↑2)))
28 eqid 2736 . . . . . . . . . . 11 (0vec𝑈) = (0vec𝑈)
291, 2, 3, 28nvrinv 29593 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴)) = (0vec𝑈))
3029fveq2d 6846 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴))) = (𝑁‘(0vec𝑈)))
3128, 4nvz0 29610 . . . . . . . . . 10 (𝑈 ∈ NrmCVec → (𝑁‘(0vec𝑈)) = 0)
3231adantr 481 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁‘(0vec𝑈)) = 0)
3330, 32eqtrd 2776 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴))) = 0)
3433sq0id 14098 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((𝑁‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴)))↑2) = 0)
3527, 34oveq12d 7375 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (((𝑁‘(𝐴( +𝑣𝑈)𝐴))↑2) − ((𝑁‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴)))↑2)) = ((4 · ((𝑁𝐴)↑2)) − 0))
36 4cn 12238 . . . . . . . 8 4 ∈ ℂ
3718sqcld 14049 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((𝑁𝐴)↑2) ∈ ℂ)
38 mulcl 11135 . . . . . . . 8 ((4 ∈ ℂ ∧ ((𝑁𝐴)↑2) ∈ ℂ) → (4 · ((𝑁𝐴)↑2)) ∈ ℂ)
3936, 37, 38sylancr 587 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (4 · ((𝑁𝐴)↑2)) ∈ ℂ)
4039subid1d 11501 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((4 · ((𝑁𝐴)↑2)) − 0) = (4 · ((𝑁𝐴)↑2)))
4135, 40eqtrd 2776 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (((𝑁‘(𝐴( +𝑣𝑈)𝐴))↑2) − ((𝑁‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴)))↑2)) = (4 · ((𝑁𝐴)↑2)))
42 1re 11155 . . . . . . . . . . . . . . . 16 1 ∈ ℝ
43 neg1rr 12268 . . . . . . . . . . . . . . . 16 -1 ∈ ℝ
44 absreim 15178 . . . . . . . . . . . . . . . 16 ((1 ∈ ℝ ∧ -1 ∈ ℝ) → (abs‘(1 + (i · -1))) = (√‘((1↑2) + (-1↑2))))
4542, 43, 44mp2an 690 . . . . . . . . . . . . . . 15 (abs‘(1 + (i · -1))) = (√‘((1↑2) + (-1↑2)))
46 ax-icn 11110 . . . . . . . . . . . . . . . . . . 19 i ∈ ℂ
47 ax-1cn 11109 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℂ
4846, 47mulneg2i 11602 . . . . . . . . . . . . . . . . . 18 (i · -1) = -(i · 1)
4946mulid1i 11159 . . . . . . . . . . . . . . . . . . 19 (i · 1) = i
5049negeqi 11394 . . . . . . . . . . . . . . . . . 18 -(i · 1) = -i
5148, 50eqtri 2764 . . . . . . . . . . . . . . . . 17 (i · -1) = -i
5251oveq2i 7368 . . . . . . . . . . . . . . . 16 (1 + (i · -1)) = (1 + -i)
5352fveq2i 6845 . . . . . . . . . . . . . . 15 (abs‘(1 + (i · -1))) = (abs‘(1 + -i))
54 sqneg 14021 . . . . . . . . . . . . . . . . . 18 (1 ∈ ℂ → (-1↑2) = (1↑2))
5547, 54ax-mp 5 . . . . . . . . . . . . . . . . 17 (-1↑2) = (1↑2)
5655oveq2i 7368 . . . . . . . . . . . . . . . 16 ((1↑2) + (-1↑2)) = ((1↑2) + (1↑2))
5756fveq2i 6845 . . . . . . . . . . . . . . 15 (√‘((1↑2) + (-1↑2))) = (√‘((1↑2) + (1↑2)))
5845, 53, 573eqtr3i 2772 . . . . . . . . . . . . . 14 (abs‘(1 + -i)) = (√‘((1↑2) + (1↑2)))
59 absreim 15178 . . . . . . . . . . . . . . 15 ((1 ∈ ℝ ∧ 1 ∈ ℝ) → (abs‘(1 + (i · 1))) = (√‘((1↑2) + (1↑2))))
6042, 42, 59mp2an 690 . . . . . . . . . . . . . 14 (abs‘(1 + (i · 1))) = (√‘((1↑2) + (1↑2)))
6149oveq2i 7368 . . . . . . . . . . . . . . 15 (1 + (i · 1)) = (1 + i)
6261fveq2i 6845 . . . . . . . . . . . . . 14 (abs‘(1 + (i · 1))) = (abs‘(1 + i))
6358, 60, 623eqtr2i 2770 . . . . . . . . . . . . 13 (abs‘(1 + -i)) = (abs‘(1 + i))
6463oveq1i 7367 . . . . . . . . . . . 12 ((abs‘(1 + -i)) · (𝑁𝐴)) = ((abs‘(1 + i)) · (𝑁𝐴))
65 negicn 11402 . . . . . . . . . . . . . 14 -i ∈ ℂ
6647, 65addcli 11161 . . . . . . . . . . . . 13 (1 + -i) ∈ ℂ
671, 3, 4nvs 29605 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ (1 + -i) ∈ ℂ ∧ 𝐴𝑋) → (𝑁‘((1 + -i)( ·𝑠OLD𝑈)𝐴)) = ((abs‘(1 + -i)) · (𝑁𝐴)))
6866, 67mp3an2 1449 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁‘((1 + -i)( ·𝑠OLD𝑈)𝐴)) = ((abs‘(1 + -i)) · (𝑁𝐴)))
6947, 46addcli 11161 . . . . . . . . . . . . 13 (1 + i) ∈ ℂ
701, 3, 4nvs 29605 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ (1 + i) ∈ ℂ ∧ 𝐴𝑋) → (𝑁‘((1 + i)( ·𝑠OLD𝑈)𝐴)) = ((abs‘(1 + i)) · (𝑁𝐴)))
7169, 70mp3an2 1449 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁‘((1 + i)( ·𝑠OLD𝑈)𝐴)) = ((abs‘(1 + i)) · (𝑁𝐴)))
7264, 68, 713eqtr4a 2802 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁‘((1 + -i)( ·𝑠OLD𝑈)𝐴)) = (𝑁‘((1 + i)( ·𝑠OLD𝑈)𝐴)))
731, 2, 3nvdir 29573 . . . . . . . . . . . . . . 15 ((𝑈 ∈ NrmCVec ∧ (1 ∈ ℂ ∧ -i ∈ ℂ ∧ 𝐴𝑋)) → ((1 + -i)( ·𝑠OLD𝑈)𝐴) = ((1( ·𝑠OLD𝑈)𝐴)( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))
7447, 73mp3anr1 1458 . . . . . . . . . . . . . 14 ((𝑈 ∈ NrmCVec ∧ (-i ∈ ℂ ∧ 𝐴𝑋)) → ((1 + -i)( ·𝑠OLD𝑈)𝐴) = ((1( ·𝑠OLD𝑈)𝐴)( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))
7565, 74mpanr1 701 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((1 + -i)( ·𝑠OLD𝑈)𝐴) = ((1( ·𝑠OLD𝑈)𝐴)( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))
761, 3nvsid 29569 . . . . . . . . . . . . . 14 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (1( ·𝑠OLD𝑈)𝐴) = 𝐴)
7776oveq1d 7372 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((1( ·𝑠OLD𝑈)𝐴)( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)) = (𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))
7875, 77eqtrd 2776 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((1 + -i)( ·𝑠OLD𝑈)𝐴) = (𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))
7978fveq2d 6846 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁‘((1 + -i)( ·𝑠OLD𝑈)𝐴)) = (𝑁‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴))))
801, 2, 3nvdir 29573 . . . . . . . . . . . . . . 15 ((𝑈 ∈ NrmCVec ∧ (1 ∈ ℂ ∧ i ∈ ℂ ∧ 𝐴𝑋)) → ((1 + i)( ·𝑠OLD𝑈)𝐴) = ((1( ·𝑠OLD𝑈)𝐴)( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))
8147, 80mp3anr1 1458 . . . . . . . . . . . . . 14 ((𝑈 ∈ NrmCVec ∧ (i ∈ ℂ ∧ 𝐴𝑋)) → ((1 + i)( ·𝑠OLD𝑈)𝐴) = ((1( ·𝑠OLD𝑈)𝐴)( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))
8246, 81mpanr1 701 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((1 + i)( ·𝑠OLD𝑈)𝐴) = ((1( ·𝑠OLD𝑈)𝐴)( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))
8376oveq1d 7372 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((1( ·𝑠OLD𝑈)𝐴)( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)) = (𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))
8482, 83eqtrd 2776 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((1 + i)( ·𝑠OLD𝑈)𝐴) = (𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))
8584fveq2d 6846 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁‘((1 + i)( ·𝑠OLD𝑈)𝐴)) = (𝑁‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴))))
8672, 79, 853eqtr3d 2784 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴))) = (𝑁‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴))))
8786oveq1d 7372 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((𝑁‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))↑2) = ((𝑁‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2))
8887oveq2d 7373 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (((𝑁‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2) − ((𝑁‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))↑2)) = (((𝑁‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2) − ((𝑁‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2)))
891, 2, 3, 4, 5ipval2lem4 29648 . . . . . . . . . . 11 (((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐴𝑋) ∧ i ∈ ℂ) → ((𝑁‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2) ∈ ℂ)
9046, 89mpan2 689 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐴𝑋) → ((𝑁‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2) ∈ ℂ)
91903anidm23 1421 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((𝑁‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2) ∈ ℂ)
9291subidd 11500 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (((𝑁‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2) − ((𝑁‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2)) = 0)
9388, 92eqtrd 2776 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (((𝑁‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2) − ((𝑁‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))↑2)) = 0)
9493oveq2d 7373 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (i · (((𝑁‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2) − ((𝑁‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))↑2))) = (i · 0))
95 it0e0 12375 . . . . . 6 (i · 0) = 0
9694, 95eqtrdi 2792 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (i · (((𝑁‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2) − ((𝑁‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))↑2))) = 0)
9741, 96oveq12d 7375 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((((𝑁‘(𝐴( +𝑣𝑈)𝐴))↑2) − ((𝑁‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴)))↑2)) + (i · (((𝑁‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2) − ((𝑁‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))↑2)))) = ((4 · ((𝑁𝐴)↑2)) + 0))
9839addid1d 11355 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((4 · ((𝑁𝐴)↑2)) + 0) = (4 · ((𝑁𝐴)↑2)))
9997, 98eqtr2d 2777 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (4 · ((𝑁𝐴)↑2)) = ((((𝑁‘(𝐴( +𝑣𝑈)𝐴))↑2) − ((𝑁‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴)))↑2)) + (i · (((𝑁‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2) − ((𝑁‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))↑2)))))
10099oveq1d 7372 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((4 · ((𝑁𝐴)↑2)) / 4) = (((((𝑁‘(𝐴( +𝑣𝑈)𝐴))↑2) − ((𝑁‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴)))↑2)) + (i · (((𝑁‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2) − ((𝑁‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))↑2)))) / 4))
101 4ne0 12261 . . . 4 4 ≠ 0
102 divcan3 11839 . . . 4 ((((𝑁𝐴)↑2) ∈ ℂ ∧ 4 ∈ ℂ ∧ 4 ≠ 0) → ((4 · ((𝑁𝐴)↑2)) / 4) = ((𝑁𝐴)↑2))
10336, 101, 102mp3an23 1453 . . 3 (((𝑁𝐴)↑2) ∈ ℂ → ((4 · ((𝑁𝐴)↑2)) / 4) = ((𝑁𝐴)↑2))
10437, 103syl 17 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((4 · ((𝑁𝐴)↑2)) / 4) = ((𝑁𝐴)↑2))
1057, 100, 1043eqtr2d 2782 1 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴𝑃𝐴) = ((𝑁𝐴)↑2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943   class class class wbr 5105  cfv 6496  (class class class)co 7357  cc 11049  cr 11050  0cc0 11051  1c1 11052  ici 11053   + caddc 11054   · cmul 11056  cle 11190  cmin 11385  -cneg 11386   / cdiv 11812  2c2 12208  4c4 12210  0cn0 12413  cexp 13967  csqrt 15118  abscabs 15119  NrmCVeccnv 29526   +𝑣 cpv 29527  BaseSetcba 29528   ·𝑠OLD cns 29529  0veccn0v 29530  normCVcnmcv 29532  ·𝑖OLDcdip 29642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-fz 13425  df-fzo 13568  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-clim 15370  df-sum 15571  df-grpo 29435  df-gid 29436  df-ginv 29437  df-ablo 29487  df-vc 29501  df-nv 29534  df-va 29537  df-ba 29538  df-sm 29539  df-0v 29540  df-nmcv 29542  df-dip 29643
This theorem is referenced by:  ipnm  29653  ipz  29661  pythi  29792  siilem1  29793  hlipgt0  29856  htthlem  29859
  Copyright terms: Public domain W3C validator