MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipidsq Structured version   Visualization version   GIF version

Theorem ipidsq 30612
Description: The inner product of a vector with itself is the square of the vector's norm. Equation I4 of [Ponnusamy] p. 362. (Contributed by NM, 1-Feb-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
ipid.1 𝑋 = (BaseSet‘𝑈)
ipid.6 𝑁 = (normCV𝑈)
ipid.7 𝑃 = (·𝑖OLD𝑈)
Assertion
Ref Expression
ipidsq ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴𝑃𝐴) = ((𝑁𝐴)↑2))

Proof of Theorem ipidsq
StepHypRef Expression
1 ipid.1 . . . 4 𝑋 = (BaseSet‘𝑈)
2 eqid 2729 . . . 4 ( +𝑣𝑈) = ( +𝑣𝑈)
3 eqid 2729 . . . 4 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
4 ipid.6 . . . 4 𝑁 = (normCV𝑈)
5 ipid.7 . . . 4 𝑃 = (·𝑖OLD𝑈)
61, 2, 3, 4, 5ipval2 30609 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐴𝑋) → (𝐴𝑃𝐴) = (((((𝑁‘(𝐴( +𝑣𝑈)𝐴))↑2) − ((𝑁‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴)))↑2)) + (i · (((𝑁‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2) − ((𝑁‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))↑2)))) / 4))
763anidm23 1423 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴𝑃𝐴) = (((((𝑁‘(𝐴( +𝑣𝑈)𝐴))↑2) − ((𝑁‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴)))↑2)) + (i · (((𝑁‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2) − ((𝑁‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))↑2)))) / 4))
81, 2, 3nv2 30534 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴( +𝑣𝑈)𝐴) = (2( ·𝑠OLD𝑈)𝐴))
98fveq2d 6844 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁‘(𝐴( +𝑣𝑈)𝐴)) = (𝑁‘(2( ·𝑠OLD𝑈)𝐴)))
10 2re 12236 . . . . . . . . . . . 12 2 ∈ ℝ
11 0le2 12264 . . . . . . . . . . . 12 0 ≤ 2
1210, 11pm3.2i 470 . . . . . . . . . . 11 (2 ∈ ℝ ∧ 0 ≤ 2)
131, 3, 4nvsge0 30566 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ (2 ∈ ℝ ∧ 0 ≤ 2) ∧ 𝐴𝑋) → (𝑁‘(2( ·𝑠OLD𝑈)𝐴)) = (2 · (𝑁𝐴)))
1412, 13mp3an2 1451 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁‘(2( ·𝑠OLD𝑈)𝐴)) = (2 · (𝑁𝐴)))
159, 14eqtrd 2764 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁‘(𝐴( +𝑣𝑈)𝐴)) = (2 · (𝑁𝐴)))
1615oveq1d 7384 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((𝑁‘(𝐴( +𝑣𝑈)𝐴))↑2) = ((2 · (𝑁𝐴))↑2))
171, 4nvcl 30563 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁𝐴) ∈ ℝ)
1817recnd 11178 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁𝐴) ∈ ℂ)
19 2cn 12237 . . . . . . . . . . 11 2 ∈ ℂ
20 2nn0 12435 . . . . . . . . . . 11 2 ∈ ℕ0
21 mulexp 14042 . . . . . . . . . . 11 ((2 ∈ ℂ ∧ (𝑁𝐴) ∈ ℂ ∧ 2 ∈ ℕ0) → ((2 · (𝑁𝐴))↑2) = ((2↑2) · ((𝑁𝐴)↑2)))
2219, 20, 21mp3an13 1454 . . . . . . . . . 10 ((𝑁𝐴) ∈ ℂ → ((2 · (𝑁𝐴))↑2) = ((2↑2) · ((𝑁𝐴)↑2)))
2318, 22syl 17 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((2 · (𝑁𝐴))↑2) = ((2↑2) · ((𝑁𝐴)↑2)))
24 sq2 14138 . . . . . . . . . 10 (2↑2) = 4
2524oveq1i 7379 . . . . . . . . 9 ((2↑2) · ((𝑁𝐴)↑2)) = (4 · ((𝑁𝐴)↑2))
2623, 25eqtrdi 2780 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((2 · (𝑁𝐴))↑2) = (4 · ((𝑁𝐴)↑2)))
2716, 26eqtrd 2764 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((𝑁‘(𝐴( +𝑣𝑈)𝐴))↑2) = (4 · ((𝑁𝐴)↑2)))
28 eqid 2729 . . . . . . . . . . 11 (0vec𝑈) = (0vec𝑈)
291, 2, 3, 28nvrinv 30553 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴)) = (0vec𝑈))
3029fveq2d 6844 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴))) = (𝑁‘(0vec𝑈)))
3128, 4nvz0 30570 . . . . . . . . . 10 (𝑈 ∈ NrmCVec → (𝑁‘(0vec𝑈)) = 0)
3231adantr 480 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁‘(0vec𝑈)) = 0)
3330, 32eqtrd 2764 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴))) = 0)
3433sq0id 14135 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((𝑁‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴)))↑2) = 0)
3527, 34oveq12d 7387 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (((𝑁‘(𝐴( +𝑣𝑈)𝐴))↑2) − ((𝑁‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴)))↑2)) = ((4 · ((𝑁𝐴)↑2)) − 0))
36 4cn 12247 . . . . . . . 8 4 ∈ ℂ
3718sqcld 14085 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((𝑁𝐴)↑2) ∈ ℂ)
38 mulcl 11128 . . . . . . . 8 ((4 ∈ ℂ ∧ ((𝑁𝐴)↑2) ∈ ℂ) → (4 · ((𝑁𝐴)↑2)) ∈ ℂ)
3936, 37, 38sylancr 587 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (4 · ((𝑁𝐴)↑2)) ∈ ℂ)
4039subid1d 11498 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((4 · ((𝑁𝐴)↑2)) − 0) = (4 · ((𝑁𝐴)↑2)))
4135, 40eqtrd 2764 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (((𝑁‘(𝐴( +𝑣𝑈)𝐴))↑2) − ((𝑁‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴)))↑2)) = (4 · ((𝑁𝐴)↑2)))
42 1re 11150 . . . . . . . . . . . . . . . 16 1 ∈ ℝ
43 neg1rr 12148 . . . . . . . . . . . . . . . 16 -1 ∈ ℝ
44 absreim 15235 . . . . . . . . . . . . . . . 16 ((1 ∈ ℝ ∧ -1 ∈ ℝ) → (abs‘(1 + (i · -1))) = (√‘((1↑2) + (-1↑2))))
4542, 43, 44mp2an 692 . . . . . . . . . . . . . . 15 (abs‘(1 + (i · -1))) = (√‘((1↑2) + (-1↑2)))
46 ax-icn 11103 . . . . . . . . . . . . . . . . . . 19 i ∈ ℂ
47 ax-1cn 11102 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℂ
4846, 47mulneg2i 11601 . . . . . . . . . . . . . . . . . 18 (i · -1) = -(i · 1)
4946mulridi 11154 . . . . . . . . . . . . . . . . . . 19 (i · 1) = i
5049negeqi 11390 . . . . . . . . . . . . . . . . . 18 -(i · 1) = -i
5148, 50eqtri 2752 . . . . . . . . . . . . . . . . 17 (i · -1) = -i
5251oveq2i 7380 . . . . . . . . . . . . . . . 16 (1 + (i · -1)) = (1 + -i)
5352fveq2i 6843 . . . . . . . . . . . . . . 15 (abs‘(1 + (i · -1))) = (abs‘(1 + -i))
54 sqneg 14056 . . . . . . . . . . . . . . . . . 18 (1 ∈ ℂ → (-1↑2) = (1↑2))
5547, 54ax-mp 5 . . . . . . . . . . . . . . . . 17 (-1↑2) = (1↑2)
5655oveq2i 7380 . . . . . . . . . . . . . . . 16 ((1↑2) + (-1↑2)) = ((1↑2) + (1↑2))
5756fveq2i 6843 . . . . . . . . . . . . . . 15 (√‘((1↑2) + (-1↑2))) = (√‘((1↑2) + (1↑2)))
5845, 53, 573eqtr3i 2760 . . . . . . . . . . . . . 14 (abs‘(1 + -i)) = (√‘((1↑2) + (1↑2)))
59 absreim 15235 . . . . . . . . . . . . . . 15 ((1 ∈ ℝ ∧ 1 ∈ ℝ) → (abs‘(1 + (i · 1))) = (√‘((1↑2) + (1↑2))))
6042, 42, 59mp2an 692 . . . . . . . . . . . . . 14 (abs‘(1 + (i · 1))) = (√‘((1↑2) + (1↑2)))
6149oveq2i 7380 . . . . . . . . . . . . . . 15 (1 + (i · 1)) = (1 + i)
6261fveq2i 6843 . . . . . . . . . . . . . 14 (abs‘(1 + (i · 1))) = (abs‘(1 + i))
6358, 60, 623eqtr2i 2758 . . . . . . . . . . . . 13 (abs‘(1 + -i)) = (abs‘(1 + i))
6463oveq1i 7379 . . . . . . . . . . . 12 ((abs‘(1 + -i)) · (𝑁𝐴)) = ((abs‘(1 + i)) · (𝑁𝐴))
65 negicn 11398 . . . . . . . . . . . . . 14 -i ∈ ℂ
6647, 65addcli 11156 . . . . . . . . . . . . 13 (1 + -i) ∈ ℂ
671, 3, 4nvs 30565 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ (1 + -i) ∈ ℂ ∧ 𝐴𝑋) → (𝑁‘((1 + -i)( ·𝑠OLD𝑈)𝐴)) = ((abs‘(1 + -i)) · (𝑁𝐴)))
6866, 67mp3an2 1451 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁‘((1 + -i)( ·𝑠OLD𝑈)𝐴)) = ((abs‘(1 + -i)) · (𝑁𝐴)))
6947, 46addcli 11156 . . . . . . . . . . . . 13 (1 + i) ∈ ℂ
701, 3, 4nvs 30565 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ (1 + i) ∈ ℂ ∧ 𝐴𝑋) → (𝑁‘((1 + i)( ·𝑠OLD𝑈)𝐴)) = ((abs‘(1 + i)) · (𝑁𝐴)))
7169, 70mp3an2 1451 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁‘((1 + i)( ·𝑠OLD𝑈)𝐴)) = ((abs‘(1 + i)) · (𝑁𝐴)))
7264, 68, 713eqtr4a 2790 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁‘((1 + -i)( ·𝑠OLD𝑈)𝐴)) = (𝑁‘((1 + i)( ·𝑠OLD𝑈)𝐴)))
731, 2, 3nvdir 30533 . . . . . . . . . . . . . . 15 ((𝑈 ∈ NrmCVec ∧ (1 ∈ ℂ ∧ -i ∈ ℂ ∧ 𝐴𝑋)) → ((1 + -i)( ·𝑠OLD𝑈)𝐴) = ((1( ·𝑠OLD𝑈)𝐴)( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))
7447, 73mp3anr1 1460 . . . . . . . . . . . . . 14 ((𝑈 ∈ NrmCVec ∧ (-i ∈ ℂ ∧ 𝐴𝑋)) → ((1 + -i)( ·𝑠OLD𝑈)𝐴) = ((1( ·𝑠OLD𝑈)𝐴)( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))
7565, 74mpanr1 703 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((1 + -i)( ·𝑠OLD𝑈)𝐴) = ((1( ·𝑠OLD𝑈)𝐴)( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))
761, 3nvsid 30529 . . . . . . . . . . . . . 14 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (1( ·𝑠OLD𝑈)𝐴) = 𝐴)
7776oveq1d 7384 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((1( ·𝑠OLD𝑈)𝐴)( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)) = (𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))
7875, 77eqtrd 2764 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((1 + -i)( ·𝑠OLD𝑈)𝐴) = (𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))
7978fveq2d 6844 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁‘((1 + -i)( ·𝑠OLD𝑈)𝐴)) = (𝑁‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴))))
801, 2, 3nvdir 30533 . . . . . . . . . . . . . . 15 ((𝑈 ∈ NrmCVec ∧ (1 ∈ ℂ ∧ i ∈ ℂ ∧ 𝐴𝑋)) → ((1 + i)( ·𝑠OLD𝑈)𝐴) = ((1( ·𝑠OLD𝑈)𝐴)( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))
8147, 80mp3anr1 1460 . . . . . . . . . . . . . 14 ((𝑈 ∈ NrmCVec ∧ (i ∈ ℂ ∧ 𝐴𝑋)) → ((1 + i)( ·𝑠OLD𝑈)𝐴) = ((1( ·𝑠OLD𝑈)𝐴)( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))
8246, 81mpanr1 703 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((1 + i)( ·𝑠OLD𝑈)𝐴) = ((1( ·𝑠OLD𝑈)𝐴)( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))
8376oveq1d 7384 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((1( ·𝑠OLD𝑈)𝐴)( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)) = (𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))
8482, 83eqtrd 2764 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((1 + i)( ·𝑠OLD𝑈)𝐴) = (𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))
8584fveq2d 6844 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁‘((1 + i)( ·𝑠OLD𝑈)𝐴)) = (𝑁‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴))))
8672, 79, 853eqtr3d 2772 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴))) = (𝑁‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴))))
8786oveq1d 7384 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((𝑁‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))↑2) = ((𝑁‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2))
8887oveq2d 7385 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (((𝑁‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2) − ((𝑁‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))↑2)) = (((𝑁‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2) − ((𝑁‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2)))
891, 2, 3, 4, 5ipval2lem4 30608 . . . . . . . . . . 11 (((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐴𝑋) ∧ i ∈ ℂ) → ((𝑁‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2) ∈ ℂ)
9046, 89mpan2 691 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐴𝑋) → ((𝑁‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2) ∈ ℂ)
91903anidm23 1423 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((𝑁‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2) ∈ ℂ)
9291subidd 11497 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (((𝑁‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2) − ((𝑁‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2)) = 0)
9388, 92eqtrd 2764 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (((𝑁‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2) − ((𝑁‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))↑2)) = 0)
9493oveq2d 7385 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (i · (((𝑁‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2) − ((𝑁‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))↑2))) = (i · 0))
95 it0e0 12381 . . . . . 6 (i · 0) = 0
9694, 95eqtrdi 2780 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (i · (((𝑁‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2) − ((𝑁‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))↑2))) = 0)
9741, 96oveq12d 7387 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((((𝑁‘(𝐴( +𝑣𝑈)𝐴))↑2) − ((𝑁‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴)))↑2)) + (i · (((𝑁‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2) − ((𝑁‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))↑2)))) = ((4 · ((𝑁𝐴)↑2)) + 0))
9839addridd 11350 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((4 · ((𝑁𝐴)↑2)) + 0) = (4 · ((𝑁𝐴)↑2)))
9997, 98eqtr2d 2765 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (4 · ((𝑁𝐴)↑2)) = ((((𝑁‘(𝐴( +𝑣𝑈)𝐴))↑2) − ((𝑁‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴)))↑2)) + (i · (((𝑁‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2) − ((𝑁‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))↑2)))))
10099oveq1d 7384 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((4 · ((𝑁𝐴)↑2)) / 4) = (((((𝑁‘(𝐴( +𝑣𝑈)𝐴))↑2) − ((𝑁‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴)))↑2)) + (i · (((𝑁‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2) − ((𝑁‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))↑2)))) / 4))
101 4ne0 12270 . . . 4 4 ≠ 0
102 divcan3 11839 . . . 4 ((((𝑁𝐴)↑2) ∈ ℂ ∧ 4 ∈ ℂ ∧ 4 ≠ 0) → ((4 · ((𝑁𝐴)↑2)) / 4) = ((𝑁𝐴)↑2))
10336, 101, 102mp3an23 1455 . . 3 (((𝑁𝐴)↑2) ∈ ℂ → ((4 · ((𝑁𝐴)↑2)) / 4) = ((𝑁𝐴)↑2))
10437, 103syl 17 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((4 · ((𝑁𝐴)↑2)) / 4) = ((𝑁𝐴)↑2))
1057, 100, 1043eqtr2d 2770 1 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴𝑃𝐴) = ((𝑁𝐴)↑2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5102  cfv 6499  (class class class)co 7369  cc 11042  cr 11043  0cc0 11044  1c1 11045  ici 11046   + caddc 11047   · cmul 11049  cle 11185  cmin 11381  -cneg 11382   / cdiv 11811  2c2 12217  4c4 12219  0cn0 12418  cexp 14002  csqrt 15175  abscabs 15176  NrmCVeccnv 30486   +𝑣 cpv 30487  BaseSetcba 30488   ·𝑠OLD cns 30489  0veccn0v 30490  normCVcnmcv 30492  ·𝑖OLDcdip 30602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-fz 13445  df-fzo 13592  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-sum 15629  df-grpo 30395  df-gid 30396  df-ginv 30397  df-ablo 30447  df-vc 30461  df-nv 30494  df-va 30497  df-ba 30498  df-sm 30499  df-0v 30500  df-nmcv 30502  df-dip 30603
This theorem is referenced by:  ipnm  30613  ipz  30621  pythi  30752  siilem1  30753  hlipgt0  30816  htthlem  30819
  Copyright terms: Public domain W3C validator