MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipidsq Structured version   Visualization version   GIF version

Theorem ipidsq 28973
Description: The inner product of a vector with itself is the square of the vector's norm. Equation I4 of [Ponnusamy] p. 362. (Contributed by NM, 1-Feb-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
ipid.1 𝑋 = (BaseSet‘𝑈)
ipid.6 𝑁 = (normCV𝑈)
ipid.7 𝑃 = (·𝑖OLD𝑈)
Assertion
Ref Expression
ipidsq ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴𝑃𝐴) = ((𝑁𝐴)↑2))

Proof of Theorem ipidsq
StepHypRef Expression
1 ipid.1 . . . 4 𝑋 = (BaseSet‘𝑈)
2 eqid 2738 . . . 4 ( +𝑣𝑈) = ( +𝑣𝑈)
3 eqid 2738 . . . 4 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
4 ipid.6 . . . 4 𝑁 = (normCV𝑈)
5 ipid.7 . . . 4 𝑃 = (·𝑖OLD𝑈)
61, 2, 3, 4, 5ipval2 28970 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐴𝑋) → (𝐴𝑃𝐴) = (((((𝑁‘(𝐴( +𝑣𝑈)𝐴))↑2) − ((𝑁‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴)))↑2)) + (i · (((𝑁‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2) − ((𝑁‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))↑2)))) / 4))
763anidm23 1419 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴𝑃𝐴) = (((((𝑁‘(𝐴( +𝑣𝑈)𝐴))↑2) − ((𝑁‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴)))↑2)) + (i · (((𝑁‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2) − ((𝑁‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))↑2)))) / 4))
81, 2, 3nv2 28895 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴( +𝑣𝑈)𝐴) = (2( ·𝑠OLD𝑈)𝐴))
98fveq2d 6760 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁‘(𝐴( +𝑣𝑈)𝐴)) = (𝑁‘(2( ·𝑠OLD𝑈)𝐴)))
10 2re 11977 . . . . . . . . . . . 12 2 ∈ ℝ
11 0le2 12005 . . . . . . . . . . . 12 0 ≤ 2
1210, 11pm3.2i 470 . . . . . . . . . . 11 (2 ∈ ℝ ∧ 0 ≤ 2)
131, 3, 4nvsge0 28927 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ (2 ∈ ℝ ∧ 0 ≤ 2) ∧ 𝐴𝑋) → (𝑁‘(2( ·𝑠OLD𝑈)𝐴)) = (2 · (𝑁𝐴)))
1412, 13mp3an2 1447 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁‘(2( ·𝑠OLD𝑈)𝐴)) = (2 · (𝑁𝐴)))
159, 14eqtrd 2778 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁‘(𝐴( +𝑣𝑈)𝐴)) = (2 · (𝑁𝐴)))
1615oveq1d 7270 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((𝑁‘(𝐴( +𝑣𝑈)𝐴))↑2) = ((2 · (𝑁𝐴))↑2))
171, 4nvcl 28924 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁𝐴) ∈ ℝ)
1817recnd 10934 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁𝐴) ∈ ℂ)
19 2cn 11978 . . . . . . . . . . 11 2 ∈ ℂ
20 2nn0 12180 . . . . . . . . . . 11 2 ∈ ℕ0
21 mulexp 13750 . . . . . . . . . . 11 ((2 ∈ ℂ ∧ (𝑁𝐴) ∈ ℂ ∧ 2 ∈ ℕ0) → ((2 · (𝑁𝐴))↑2) = ((2↑2) · ((𝑁𝐴)↑2)))
2219, 20, 21mp3an13 1450 . . . . . . . . . 10 ((𝑁𝐴) ∈ ℂ → ((2 · (𝑁𝐴))↑2) = ((2↑2) · ((𝑁𝐴)↑2)))
2318, 22syl 17 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((2 · (𝑁𝐴))↑2) = ((2↑2) · ((𝑁𝐴)↑2)))
24 sq2 13842 . . . . . . . . . 10 (2↑2) = 4
2524oveq1i 7265 . . . . . . . . 9 ((2↑2) · ((𝑁𝐴)↑2)) = (4 · ((𝑁𝐴)↑2))
2623, 25eqtrdi 2795 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((2 · (𝑁𝐴))↑2) = (4 · ((𝑁𝐴)↑2)))
2716, 26eqtrd 2778 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((𝑁‘(𝐴( +𝑣𝑈)𝐴))↑2) = (4 · ((𝑁𝐴)↑2)))
28 eqid 2738 . . . . . . . . . . 11 (0vec𝑈) = (0vec𝑈)
291, 2, 3, 28nvrinv 28914 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴)) = (0vec𝑈))
3029fveq2d 6760 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴))) = (𝑁‘(0vec𝑈)))
3128, 4nvz0 28931 . . . . . . . . . 10 (𝑈 ∈ NrmCVec → (𝑁‘(0vec𝑈)) = 0)
3231adantr 480 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁‘(0vec𝑈)) = 0)
3330, 32eqtrd 2778 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴))) = 0)
3433sq0id 13839 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((𝑁‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴)))↑2) = 0)
3527, 34oveq12d 7273 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (((𝑁‘(𝐴( +𝑣𝑈)𝐴))↑2) − ((𝑁‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴)))↑2)) = ((4 · ((𝑁𝐴)↑2)) − 0))
36 4cn 11988 . . . . . . . 8 4 ∈ ℂ
3718sqcld 13790 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((𝑁𝐴)↑2) ∈ ℂ)
38 mulcl 10886 . . . . . . . 8 ((4 ∈ ℂ ∧ ((𝑁𝐴)↑2) ∈ ℂ) → (4 · ((𝑁𝐴)↑2)) ∈ ℂ)
3936, 37, 38sylancr 586 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (4 · ((𝑁𝐴)↑2)) ∈ ℂ)
4039subid1d 11251 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((4 · ((𝑁𝐴)↑2)) − 0) = (4 · ((𝑁𝐴)↑2)))
4135, 40eqtrd 2778 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (((𝑁‘(𝐴( +𝑣𝑈)𝐴))↑2) − ((𝑁‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴)))↑2)) = (4 · ((𝑁𝐴)↑2)))
42 1re 10906 . . . . . . . . . . . . . . . 16 1 ∈ ℝ
43 neg1rr 12018 . . . . . . . . . . . . . . . 16 -1 ∈ ℝ
44 absreim 14933 . . . . . . . . . . . . . . . 16 ((1 ∈ ℝ ∧ -1 ∈ ℝ) → (abs‘(1 + (i · -1))) = (√‘((1↑2) + (-1↑2))))
4542, 43, 44mp2an 688 . . . . . . . . . . . . . . 15 (abs‘(1 + (i · -1))) = (√‘((1↑2) + (-1↑2)))
46 ax-icn 10861 . . . . . . . . . . . . . . . . . . 19 i ∈ ℂ
47 ax-1cn 10860 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℂ
4846, 47mulneg2i 11352 . . . . . . . . . . . . . . . . . 18 (i · -1) = -(i · 1)
4946mulid1i 10910 . . . . . . . . . . . . . . . . . . 19 (i · 1) = i
5049negeqi 11144 . . . . . . . . . . . . . . . . . 18 -(i · 1) = -i
5148, 50eqtri 2766 . . . . . . . . . . . . . . . . 17 (i · -1) = -i
5251oveq2i 7266 . . . . . . . . . . . . . . . 16 (1 + (i · -1)) = (1 + -i)
5352fveq2i 6759 . . . . . . . . . . . . . . 15 (abs‘(1 + (i · -1))) = (abs‘(1 + -i))
54 sqneg 13764 . . . . . . . . . . . . . . . . . 18 (1 ∈ ℂ → (-1↑2) = (1↑2))
5547, 54ax-mp 5 . . . . . . . . . . . . . . . . 17 (-1↑2) = (1↑2)
5655oveq2i 7266 . . . . . . . . . . . . . . . 16 ((1↑2) + (-1↑2)) = ((1↑2) + (1↑2))
5756fveq2i 6759 . . . . . . . . . . . . . . 15 (√‘((1↑2) + (-1↑2))) = (√‘((1↑2) + (1↑2)))
5845, 53, 573eqtr3i 2774 . . . . . . . . . . . . . 14 (abs‘(1 + -i)) = (√‘((1↑2) + (1↑2)))
59 absreim 14933 . . . . . . . . . . . . . . 15 ((1 ∈ ℝ ∧ 1 ∈ ℝ) → (abs‘(1 + (i · 1))) = (√‘((1↑2) + (1↑2))))
6042, 42, 59mp2an 688 . . . . . . . . . . . . . 14 (abs‘(1 + (i · 1))) = (√‘((1↑2) + (1↑2)))
6149oveq2i 7266 . . . . . . . . . . . . . . 15 (1 + (i · 1)) = (1 + i)
6261fveq2i 6759 . . . . . . . . . . . . . 14 (abs‘(1 + (i · 1))) = (abs‘(1 + i))
6358, 60, 623eqtr2i 2772 . . . . . . . . . . . . 13 (abs‘(1 + -i)) = (abs‘(1 + i))
6463oveq1i 7265 . . . . . . . . . . . 12 ((abs‘(1 + -i)) · (𝑁𝐴)) = ((abs‘(1 + i)) · (𝑁𝐴))
65 negicn 11152 . . . . . . . . . . . . . 14 -i ∈ ℂ
6647, 65addcli 10912 . . . . . . . . . . . . 13 (1 + -i) ∈ ℂ
671, 3, 4nvs 28926 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ (1 + -i) ∈ ℂ ∧ 𝐴𝑋) → (𝑁‘((1 + -i)( ·𝑠OLD𝑈)𝐴)) = ((abs‘(1 + -i)) · (𝑁𝐴)))
6866, 67mp3an2 1447 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁‘((1 + -i)( ·𝑠OLD𝑈)𝐴)) = ((abs‘(1 + -i)) · (𝑁𝐴)))
6947, 46addcli 10912 . . . . . . . . . . . . 13 (1 + i) ∈ ℂ
701, 3, 4nvs 28926 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ (1 + i) ∈ ℂ ∧ 𝐴𝑋) → (𝑁‘((1 + i)( ·𝑠OLD𝑈)𝐴)) = ((abs‘(1 + i)) · (𝑁𝐴)))
7169, 70mp3an2 1447 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁‘((1 + i)( ·𝑠OLD𝑈)𝐴)) = ((abs‘(1 + i)) · (𝑁𝐴)))
7264, 68, 713eqtr4a 2805 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁‘((1 + -i)( ·𝑠OLD𝑈)𝐴)) = (𝑁‘((1 + i)( ·𝑠OLD𝑈)𝐴)))
731, 2, 3nvdir 28894 . . . . . . . . . . . . . . 15 ((𝑈 ∈ NrmCVec ∧ (1 ∈ ℂ ∧ -i ∈ ℂ ∧ 𝐴𝑋)) → ((1 + -i)( ·𝑠OLD𝑈)𝐴) = ((1( ·𝑠OLD𝑈)𝐴)( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))
7447, 73mp3anr1 1456 . . . . . . . . . . . . . 14 ((𝑈 ∈ NrmCVec ∧ (-i ∈ ℂ ∧ 𝐴𝑋)) → ((1 + -i)( ·𝑠OLD𝑈)𝐴) = ((1( ·𝑠OLD𝑈)𝐴)( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))
7565, 74mpanr1 699 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((1 + -i)( ·𝑠OLD𝑈)𝐴) = ((1( ·𝑠OLD𝑈)𝐴)( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))
761, 3nvsid 28890 . . . . . . . . . . . . . 14 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (1( ·𝑠OLD𝑈)𝐴) = 𝐴)
7776oveq1d 7270 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((1( ·𝑠OLD𝑈)𝐴)( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)) = (𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))
7875, 77eqtrd 2778 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((1 + -i)( ·𝑠OLD𝑈)𝐴) = (𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))
7978fveq2d 6760 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁‘((1 + -i)( ·𝑠OLD𝑈)𝐴)) = (𝑁‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴))))
801, 2, 3nvdir 28894 . . . . . . . . . . . . . . 15 ((𝑈 ∈ NrmCVec ∧ (1 ∈ ℂ ∧ i ∈ ℂ ∧ 𝐴𝑋)) → ((1 + i)( ·𝑠OLD𝑈)𝐴) = ((1( ·𝑠OLD𝑈)𝐴)( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))
8147, 80mp3anr1 1456 . . . . . . . . . . . . . 14 ((𝑈 ∈ NrmCVec ∧ (i ∈ ℂ ∧ 𝐴𝑋)) → ((1 + i)( ·𝑠OLD𝑈)𝐴) = ((1( ·𝑠OLD𝑈)𝐴)( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))
8246, 81mpanr1 699 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((1 + i)( ·𝑠OLD𝑈)𝐴) = ((1( ·𝑠OLD𝑈)𝐴)( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))
8376oveq1d 7270 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((1( ·𝑠OLD𝑈)𝐴)( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)) = (𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))
8482, 83eqtrd 2778 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((1 + i)( ·𝑠OLD𝑈)𝐴) = (𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))
8584fveq2d 6760 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁‘((1 + i)( ·𝑠OLD𝑈)𝐴)) = (𝑁‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴))))
8672, 79, 853eqtr3d 2786 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴))) = (𝑁‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴))))
8786oveq1d 7270 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((𝑁‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))↑2) = ((𝑁‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2))
8887oveq2d 7271 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (((𝑁‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2) − ((𝑁‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))↑2)) = (((𝑁‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2) − ((𝑁‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2)))
891, 2, 3, 4, 5ipval2lem4 28969 . . . . . . . . . . 11 (((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐴𝑋) ∧ i ∈ ℂ) → ((𝑁‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2) ∈ ℂ)
9046, 89mpan2 687 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐴𝑋) → ((𝑁‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2) ∈ ℂ)
91903anidm23 1419 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((𝑁‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2) ∈ ℂ)
9291subidd 11250 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (((𝑁‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2) − ((𝑁‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2)) = 0)
9388, 92eqtrd 2778 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (((𝑁‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2) − ((𝑁‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))↑2)) = 0)
9493oveq2d 7271 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (i · (((𝑁‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2) − ((𝑁‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))↑2))) = (i · 0))
95 it0e0 12125 . . . . . 6 (i · 0) = 0
9694, 95eqtrdi 2795 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (i · (((𝑁‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2) − ((𝑁‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))↑2))) = 0)
9741, 96oveq12d 7273 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((((𝑁‘(𝐴( +𝑣𝑈)𝐴))↑2) − ((𝑁‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴)))↑2)) + (i · (((𝑁‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2) − ((𝑁‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))↑2)))) = ((4 · ((𝑁𝐴)↑2)) + 0))
9839addid1d 11105 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((4 · ((𝑁𝐴)↑2)) + 0) = (4 · ((𝑁𝐴)↑2)))
9997, 98eqtr2d 2779 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (4 · ((𝑁𝐴)↑2)) = ((((𝑁‘(𝐴( +𝑣𝑈)𝐴))↑2) − ((𝑁‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴)))↑2)) + (i · (((𝑁‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2) − ((𝑁‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))↑2)))))
10099oveq1d 7270 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((4 · ((𝑁𝐴)↑2)) / 4) = (((((𝑁‘(𝐴( +𝑣𝑈)𝐴))↑2) − ((𝑁‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴)))↑2)) + (i · (((𝑁‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2) − ((𝑁‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))↑2)))) / 4))
101 4ne0 12011 . . . 4 4 ≠ 0
102 divcan3 11589 . . . 4 ((((𝑁𝐴)↑2) ∈ ℂ ∧ 4 ∈ ℂ ∧ 4 ≠ 0) → ((4 · ((𝑁𝐴)↑2)) / 4) = ((𝑁𝐴)↑2))
10336, 101, 102mp3an23 1451 . . 3 (((𝑁𝐴)↑2) ∈ ℂ → ((4 · ((𝑁𝐴)↑2)) / 4) = ((𝑁𝐴)↑2))
10437, 103syl 17 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((4 · ((𝑁𝐴)↑2)) / 4) = ((𝑁𝐴)↑2))
1057, 100, 1043eqtr2d 2784 1 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴𝑃𝐴) = ((𝑁𝐴)↑2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942   class class class wbr 5070  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802  1c1 10803  ici 10804   + caddc 10805   · cmul 10807  cle 10941  cmin 11135  -cneg 11136   / cdiv 11562  2c2 11958  4c4 11960  0cn0 12163  cexp 13710  csqrt 14872  abscabs 14873  NrmCVeccnv 28847   +𝑣 cpv 28848  BaseSetcba 28849   ·𝑠OLD cns 28850  0veccn0v 28851  normCVcnmcv 28853  ·𝑖OLDcdip 28963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169  df-fzo 13312  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-sum 15326  df-grpo 28756  df-gid 28757  df-ginv 28758  df-ablo 28808  df-vc 28822  df-nv 28855  df-va 28858  df-ba 28859  df-sm 28860  df-0v 28861  df-nmcv 28863  df-dip 28964
This theorem is referenced by:  ipnm  28974  ipz  28982  pythi  29113  siilem1  29114  hlipgt0  29177  htthlem  29180
  Copyright terms: Public domain W3C validator