MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipidsq Structured version   Visualization version   GIF version

Theorem ipidsq 30738
Description: The inner product of a vector with itself is the square of the vector's norm. Equation I4 of [Ponnusamy] p. 362. (Contributed by NM, 1-Feb-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
ipid.1 𝑋 = (BaseSet‘𝑈)
ipid.6 𝑁 = (normCV𝑈)
ipid.7 𝑃 = (·𝑖OLD𝑈)
Assertion
Ref Expression
ipidsq ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴𝑃𝐴) = ((𝑁𝐴)↑2))

Proof of Theorem ipidsq
StepHypRef Expression
1 ipid.1 . . . 4 𝑋 = (BaseSet‘𝑈)
2 eqid 2734 . . . 4 ( +𝑣𝑈) = ( +𝑣𝑈)
3 eqid 2734 . . . 4 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
4 ipid.6 . . . 4 𝑁 = (normCV𝑈)
5 ipid.7 . . . 4 𝑃 = (·𝑖OLD𝑈)
61, 2, 3, 4, 5ipval2 30735 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐴𝑋) → (𝐴𝑃𝐴) = (((((𝑁‘(𝐴( +𝑣𝑈)𝐴))↑2) − ((𝑁‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴)))↑2)) + (i · (((𝑁‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2) − ((𝑁‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))↑2)))) / 4))
763anidm23 1420 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴𝑃𝐴) = (((((𝑁‘(𝐴( +𝑣𝑈)𝐴))↑2) − ((𝑁‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴)))↑2)) + (i · (((𝑁‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2) − ((𝑁‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))↑2)))) / 4))
81, 2, 3nv2 30660 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴( +𝑣𝑈)𝐴) = (2( ·𝑠OLD𝑈)𝐴))
98fveq2d 6910 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁‘(𝐴( +𝑣𝑈)𝐴)) = (𝑁‘(2( ·𝑠OLD𝑈)𝐴)))
10 2re 12337 . . . . . . . . . . . 12 2 ∈ ℝ
11 0le2 12365 . . . . . . . . . . . 12 0 ≤ 2
1210, 11pm3.2i 470 . . . . . . . . . . 11 (2 ∈ ℝ ∧ 0 ≤ 2)
131, 3, 4nvsge0 30692 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ (2 ∈ ℝ ∧ 0 ≤ 2) ∧ 𝐴𝑋) → (𝑁‘(2( ·𝑠OLD𝑈)𝐴)) = (2 · (𝑁𝐴)))
1412, 13mp3an2 1448 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁‘(2( ·𝑠OLD𝑈)𝐴)) = (2 · (𝑁𝐴)))
159, 14eqtrd 2774 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁‘(𝐴( +𝑣𝑈)𝐴)) = (2 · (𝑁𝐴)))
1615oveq1d 7445 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((𝑁‘(𝐴( +𝑣𝑈)𝐴))↑2) = ((2 · (𝑁𝐴))↑2))
171, 4nvcl 30689 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁𝐴) ∈ ℝ)
1817recnd 11286 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁𝐴) ∈ ℂ)
19 2cn 12338 . . . . . . . . . . 11 2 ∈ ℂ
20 2nn0 12540 . . . . . . . . . . 11 2 ∈ ℕ0
21 mulexp 14138 . . . . . . . . . . 11 ((2 ∈ ℂ ∧ (𝑁𝐴) ∈ ℂ ∧ 2 ∈ ℕ0) → ((2 · (𝑁𝐴))↑2) = ((2↑2) · ((𝑁𝐴)↑2)))
2219, 20, 21mp3an13 1451 . . . . . . . . . 10 ((𝑁𝐴) ∈ ℂ → ((2 · (𝑁𝐴))↑2) = ((2↑2) · ((𝑁𝐴)↑2)))
2318, 22syl 17 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((2 · (𝑁𝐴))↑2) = ((2↑2) · ((𝑁𝐴)↑2)))
24 sq2 14232 . . . . . . . . . 10 (2↑2) = 4
2524oveq1i 7440 . . . . . . . . 9 ((2↑2) · ((𝑁𝐴)↑2)) = (4 · ((𝑁𝐴)↑2))
2623, 25eqtrdi 2790 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((2 · (𝑁𝐴))↑2) = (4 · ((𝑁𝐴)↑2)))
2716, 26eqtrd 2774 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((𝑁‘(𝐴( +𝑣𝑈)𝐴))↑2) = (4 · ((𝑁𝐴)↑2)))
28 eqid 2734 . . . . . . . . . . 11 (0vec𝑈) = (0vec𝑈)
291, 2, 3, 28nvrinv 30679 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴)) = (0vec𝑈))
3029fveq2d 6910 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴))) = (𝑁‘(0vec𝑈)))
3128, 4nvz0 30696 . . . . . . . . . 10 (𝑈 ∈ NrmCVec → (𝑁‘(0vec𝑈)) = 0)
3231adantr 480 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁‘(0vec𝑈)) = 0)
3330, 32eqtrd 2774 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴))) = 0)
3433sq0id 14229 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((𝑁‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴)))↑2) = 0)
3527, 34oveq12d 7448 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (((𝑁‘(𝐴( +𝑣𝑈)𝐴))↑2) − ((𝑁‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴)))↑2)) = ((4 · ((𝑁𝐴)↑2)) − 0))
36 4cn 12348 . . . . . . . 8 4 ∈ ℂ
3718sqcld 14180 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((𝑁𝐴)↑2) ∈ ℂ)
38 mulcl 11236 . . . . . . . 8 ((4 ∈ ℂ ∧ ((𝑁𝐴)↑2) ∈ ℂ) → (4 · ((𝑁𝐴)↑2)) ∈ ℂ)
3936, 37, 38sylancr 587 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (4 · ((𝑁𝐴)↑2)) ∈ ℂ)
4039subid1d 11606 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((4 · ((𝑁𝐴)↑2)) − 0) = (4 · ((𝑁𝐴)↑2)))
4135, 40eqtrd 2774 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (((𝑁‘(𝐴( +𝑣𝑈)𝐴))↑2) − ((𝑁‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴)))↑2)) = (4 · ((𝑁𝐴)↑2)))
42 1re 11258 . . . . . . . . . . . . . . . 16 1 ∈ ℝ
43 neg1rr 12378 . . . . . . . . . . . . . . . 16 -1 ∈ ℝ
44 absreim 15328 . . . . . . . . . . . . . . . 16 ((1 ∈ ℝ ∧ -1 ∈ ℝ) → (abs‘(1 + (i · -1))) = (√‘((1↑2) + (-1↑2))))
4542, 43, 44mp2an 692 . . . . . . . . . . . . . . 15 (abs‘(1 + (i · -1))) = (√‘((1↑2) + (-1↑2)))
46 ax-icn 11211 . . . . . . . . . . . . . . . . . . 19 i ∈ ℂ
47 ax-1cn 11210 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℂ
4846, 47mulneg2i 11707 . . . . . . . . . . . . . . . . . 18 (i · -1) = -(i · 1)
4946mulridi 11262 . . . . . . . . . . . . . . . . . . 19 (i · 1) = i
5049negeqi 11498 . . . . . . . . . . . . . . . . . 18 -(i · 1) = -i
5148, 50eqtri 2762 . . . . . . . . . . . . . . . . 17 (i · -1) = -i
5251oveq2i 7441 . . . . . . . . . . . . . . . 16 (1 + (i · -1)) = (1 + -i)
5352fveq2i 6909 . . . . . . . . . . . . . . 15 (abs‘(1 + (i · -1))) = (abs‘(1 + -i))
54 sqneg 14152 . . . . . . . . . . . . . . . . . 18 (1 ∈ ℂ → (-1↑2) = (1↑2))
5547, 54ax-mp 5 . . . . . . . . . . . . . . . . 17 (-1↑2) = (1↑2)
5655oveq2i 7441 . . . . . . . . . . . . . . . 16 ((1↑2) + (-1↑2)) = ((1↑2) + (1↑2))
5756fveq2i 6909 . . . . . . . . . . . . . . 15 (√‘((1↑2) + (-1↑2))) = (√‘((1↑2) + (1↑2)))
5845, 53, 573eqtr3i 2770 . . . . . . . . . . . . . 14 (abs‘(1 + -i)) = (√‘((1↑2) + (1↑2)))
59 absreim 15328 . . . . . . . . . . . . . . 15 ((1 ∈ ℝ ∧ 1 ∈ ℝ) → (abs‘(1 + (i · 1))) = (√‘((1↑2) + (1↑2))))
6042, 42, 59mp2an 692 . . . . . . . . . . . . . 14 (abs‘(1 + (i · 1))) = (√‘((1↑2) + (1↑2)))
6149oveq2i 7441 . . . . . . . . . . . . . . 15 (1 + (i · 1)) = (1 + i)
6261fveq2i 6909 . . . . . . . . . . . . . 14 (abs‘(1 + (i · 1))) = (abs‘(1 + i))
6358, 60, 623eqtr2i 2768 . . . . . . . . . . . . 13 (abs‘(1 + -i)) = (abs‘(1 + i))
6463oveq1i 7440 . . . . . . . . . . . 12 ((abs‘(1 + -i)) · (𝑁𝐴)) = ((abs‘(1 + i)) · (𝑁𝐴))
65 negicn 11506 . . . . . . . . . . . . . 14 -i ∈ ℂ
6647, 65addcli 11264 . . . . . . . . . . . . 13 (1 + -i) ∈ ℂ
671, 3, 4nvs 30691 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ (1 + -i) ∈ ℂ ∧ 𝐴𝑋) → (𝑁‘((1 + -i)( ·𝑠OLD𝑈)𝐴)) = ((abs‘(1 + -i)) · (𝑁𝐴)))
6866, 67mp3an2 1448 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁‘((1 + -i)( ·𝑠OLD𝑈)𝐴)) = ((abs‘(1 + -i)) · (𝑁𝐴)))
6947, 46addcli 11264 . . . . . . . . . . . . 13 (1 + i) ∈ ℂ
701, 3, 4nvs 30691 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ (1 + i) ∈ ℂ ∧ 𝐴𝑋) → (𝑁‘((1 + i)( ·𝑠OLD𝑈)𝐴)) = ((abs‘(1 + i)) · (𝑁𝐴)))
7169, 70mp3an2 1448 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁‘((1 + i)( ·𝑠OLD𝑈)𝐴)) = ((abs‘(1 + i)) · (𝑁𝐴)))
7264, 68, 713eqtr4a 2800 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁‘((1 + -i)( ·𝑠OLD𝑈)𝐴)) = (𝑁‘((1 + i)( ·𝑠OLD𝑈)𝐴)))
731, 2, 3nvdir 30659 . . . . . . . . . . . . . . 15 ((𝑈 ∈ NrmCVec ∧ (1 ∈ ℂ ∧ -i ∈ ℂ ∧ 𝐴𝑋)) → ((1 + -i)( ·𝑠OLD𝑈)𝐴) = ((1( ·𝑠OLD𝑈)𝐴)( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))
7447, 73mp3anr1 1457 . . . . . . . . . . . . . 14 ((𝑈 ∈ NrmCVec ∧ (-i ∈ ℂ ∧ 𝐴𝑋)) → ((1 + -i)( ·𝑠OLD𝑈)𝐴) = ((1( ·𝑠OLD𝑈)𝐴)( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))
7565, 74mpanr1 703 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((1 + -i)( ·𝑠OLD𝑈)𝐴) = ((1( ·𝑠OLD𝑈)𝐴)( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))
761, 3nvsid 30655 . . . . . . . . . . . . . 14 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (1( ·𝑠OLD𝑈)𝐴) = 𝐴)
7776oveq1d 7445 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((1( ·𝑠OLD𝑈)𝐴)( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)) = (𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))
7875, 77eqtrd 2774 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((1 + -i)( ·𝑠OLD𝑈)𝐴) = (𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))
7978fveq2d 6910 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁‘((1 + -i)( ·𝑠OLD𝑈)𝐴)) = (𝑁‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴))))
801, 2, 3nvdir 30659 . . . . . . . . . . . . . . 15 ((𝑈 ∈ NrmCVec ∧ (1 ∈ ℂ ∧ i ∈ ℂ ∧ 𝐴𝑋)) → ((1 + i)( ·𝑠OLD𝑈)𝐴) = ((1( ·𝑠OLD𝑈)𝐴)( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))
8147, 80mp3anr1 1457 . . . . . . . . . . . . . 14 ((𝑈 ∈ NrmCVec ∧ (i ∈ ℂ ∧ 𝐴𝑋)) → ((1 + i)( ·𝑠OLD𝑈)𝐴) = ((1( ·𝑠OLD𝑈)𝐴)( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))
8246, 81mpanr1 703 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((1 + i)( ·𝑠OLD𝑈)𝐴) = ((1( ·𝑠OLD𝑈)𝐴)( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))
8376oveq1d 7445 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((1( ·𝑠OLD𝑈)𝐴)( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)) = (𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))
8482, 83eqtrd 2774 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((1 + i)( ·𝑠OLD𝑈)𝐴) = (𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))
8584fveq2d 6910 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁‘((1 + i)( ·𝑠OLD𝑈)𝐴)) = (𝑁‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴))))
8672, 79, 853eqtr3d 2782 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴))) = (𝑁‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴))))
8786oveq1d 7445 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((𝑁‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))↑2) = ((𝑁‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2))
8887oveq2d 7446 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (((𝑁‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2) − ((𝑁‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))↑2)) = (((𝑁‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2) − ((𝑁‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2)))
891, 2, 3, 4, 5ipval2lem4 30734 . . . . . . . . . . 11 (((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐴𝑋) ∧ i ∈ ℂ) → ((𝑁‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2) ∈ ℂ)
9046, 89mpan2 691 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐴𝑋) → ((𝑁‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2) ∈ ℂ)
91903anidm23 1420 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((𝑁‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2) ∈ ℂ)
9291subidd 11605 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (((𝑁‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2) − ((𝑁‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2)) = 0)
9388, 92eqtrd 2774 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (((𝑁‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2) − ((𝑁‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))↑2)) = 0)
9493oveq2d 7446 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (i · (((𝑁‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2) − ((𝑁‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))↑2))) = (i · 0))
95 it0e0 12485 . . . . . 6 (i · 0) = 0
9694, 95eqtrdi 2790 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (i · (((𝑁‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2) − ((𝑁‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))↑2))) = 0)
9741, 96oveq12d 7448 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((((𝑁‘(𝐴( +𝑣𝑈)𝐴))↑2) − ((𝑁‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴)))↑2)) + (i · (((𝑁‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2) − ((𝑁‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))↑2)))) = ((4 · ((𝑁𝐴)↑2)) + 0))
9839addridd 11458 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((4 · ((𝑁𝐴)↑2)) + 0) = (4 · ((𝑁𝐴)↑2)))
9997, 98eqtr2d 2775 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (4 · ((𝑁𝐴)↑2)) = ((((𝑁‘(𝐴( +𝑣𝑈)𝐴))↑2) − ((𝑁‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴)))↑2)) + (i · (((𝑁‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2) − ((𝑁‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))↑2)))))
10099oveq1d 7445 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((4 · ((𝑁𝐴)↑2)) / 4) = (((((𝑁‘(𝐴( +𝑣𝑈)𝐴))↑2) − ((𝑁‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝐴)))↑2)) + (i · (((𝑁‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝐴)))↑2) − ((𝑁‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝐴)))↑2)))) / 4))
101 4ne0 12371 . . . 4 4 ≠ 0
102 divcan3 11945 . . . 4 ((((𝑁𝐴)↑2) ∈ ℂ ∧ 4 ∈ ℂ ∧ 4 ≠ 0) → ((4 · ((𝑁𝐴)↑2)) / 4) = ((𝑁𝐴)↑2))
10336, 101, 102mp3an23 1452 . . 3 (((𝑁𝐴)↑2) ∈ ℂ → ((4 · ((𝑁𝐴)↑2)) / 4) = ((𝑁𝐴)↑2))
10437, 103syl 17 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((4 · ((𝑁𝐴)↑2)) / 4) = ((𝑁𝐴)↑2))
1057, 100, 1043eqtr2d 2780 1 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴𝑃𝐴) = ((𝑁𝐴)↑2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1536  wcel 2105  wne 2937   class class class wbr 5147  cfv 6562  (class class class)co 7430  cc 11150  cr 11151  0cc0 11152  1c1 11153  ici 11154   + caddc 11155   · cmul 11157  cle 11293  cmin 11489  -cneg 11490   / cdiv 11917  2c2 12318  4c4 12320  0cn0 12523  cexp 14098  csqrt 15268  abscabs 15269  NrmCVeccnv 30612   +𝑣 cpv 30613  BaseSetcba 30614   ·𝑠OLD cns 30615  0veccn0v 30616  normCVcnmcv 30618  ·𝑖OLDcdip 30728
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-sup 9479  df-oi 9547  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-n0 12524  df-z 12611  df-uz 12876  df-rp 13032  df-fz 13544  df-fzo 13691  df-seq 14039  df-exp 14099  df-hash 14366  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-clim 15520  df-sum 15719  df-grpo 30521  df-gid 30522  df-ginv 30523  df-ablo 30573  df-vc 30587  df-nv 30620  df-va 30623  df-ba 30624  df-sm 30625  df-0v 30626  df-nmcv 30628  df-dip 30729
This theorem is referenced by:  ipnm  30739  ipz  30747  pythi  30878  siilem1  30879  hlipgt0  30942  htthlem  30945
  Copyright terms: Public domain W3C validator