| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lnoadd | Structured version Visualization version GIF version | ||
| Description: Addition property of a linear operator. (Contributed by NM, 7-Dec-2007.) (Revised by Mario Carneiro, 19-Nov-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| lnoadd.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
| lnoadd.5 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
| lnoadd.6 | ⊢ 𝐻 = ( +𝑣 ‘𝑊) |
| lnoadd.7 | ⊢ 𝐿 = (𝑈 LnOp 𝑊) |
| Ref | Expression |
|---|---|
| lnoadd | ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝑇‘(𝐴𝐺𝐵)) = ((𝑇‘𝐴)𝐻(𝑇‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn 11126 | . . 3 ⊢ 1 ∈ ℂ | |
| 2 | lnoadd.1 | . . . 4 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 3 | eqid 2729 | . . . 4 ⊢ (BaseSet‘𝑊) = (BaseSet‘𝑊) | |
| 4 | lnoadd.5 | . . . 4 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
| 5 | lnoadd.6 | . . . 4 ⊢ 𝐻 = ( +𝑣 ‘𝑊) | |
| 6 | eqid 2729 | . . . 4 ⊢ ( ·𝑠OLD ‘𝑈) = ( ·𝑠OLD ‘𝑈) | |
| 7 | eqid 2729 | . . . 4 ⊢ ( ·𝑠OLD ‘𝑊) = ( ·𝑠OLD ‘𝑊) | |
| 8 | lnoadd.7 | . . . 4 ⊢ 𝐿 = (𝑈 LnOp 𝑊) | |
| 9 | 2, 3, 4, 5, 6, 7, 8 | lnolin 30683 | . . 3 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (1 ∈ ℂ ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝑇‘((1( ·𝑠OLD ‘𝑈)𝐴)𝐺𝐵)) = ((1( ·𝑠OLD ‘𝑊)(𝑇‘𝐴))𝐻(𝑇‘𝐵))) |
| 10 | 1, 9 | mp3anr1 1460 | . 2 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝑇‘((1( ·𝑠OLD ‘𝑈)𝐴)𝐺𝐵)) = ((1( ·𝑠OLD ‘𝑊)(𝑇‘𝐴))𝐻(𝑇‘𝐵))) |
| 11 | simp1 1136 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → 𝑈 ∈ NrmCVec) | |
| 12 | simpl 482 | . . . 4 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝐴 ∈ 𝑋) | |
| 13 | 2, 6 | nvsid 30556 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (1( ·𝑠OLD ‘𝑈)𝐴) = 𝐴) |
| 14 | 11, 12, 13 | syl2an 596 | . . 3 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (1( ·𝑠OLD ‘𝑈)𝐴) = 𝐴) |
| 15 | 14 | fvoveq1d 7409 | . 2 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝑇‘((1( ·𝑠OLD ‘𝑈)𝐴)𝐺𝐵)) = (𝑇‘(𝐴𝐺𝐵))) |
| 16 | simpl2 1193 | . . . 4 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → 𝑊 ∈ NrmCVec) | |
| 17 | 2, 3, 8 | lnof 30684 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → 𝑇:𝑋⟶(BaseSet‘𝑊)) |
| 18 | ffvelcdm 7053 | . . . . 5 ⊢ ((𝑇:𝑋⟶(BaseSet‘𝑊) ∧ 𝐴 ∈ 𝑋) → (𝑇‘𝐴) ∈ (BaseSet‘𝑊)) | |
| 19 | 17, 12, 18 | syl2an 596 | . . . 4 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝑇‘𝐴) ∈ (BaseSet‘𝑊)) |
| 20 | 3, 7 | nvsid 30556 | . . . 4 ⊢ ((𝑊 ∈ NrmCVec ∧ (𝑇‘𝐴) ∈ (BaseSet‘𝑊)) → (1( ·𝑠OLD ‘𝑊)(𝑇‘𝐴)) = (𝑇‘𝐴)) |
| 21 | 16, 19, 20 | syl2anc 584 | . . 3 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (1( ·𝑠OLD ‘𝑊)(𝑇‘𝐴)) = (𝑇‘𝐴)) |
| 22 | 21 | oveq1d 7402 | . 2 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → ((1( ·𝑠OLD ‘𝑊)(𝑇‘𝐴))𝐻(𝑇‘𝐵)) = ((𝑇‘𝐴)𝐻(𝑇‘𝐵))) |
| 23 | 10, 15, 22 | 3eqtr3d 2772 | 1 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝑇‘(𝐴𝐺𝐵)) = ((𝑇‘𝐴)𝐻(𝑇‘𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 ℂcc 11066 1c1 11069 NrmCVeccnv 30513 +𝑣 cpv 30514 BaseSetcba 30515 ·𝑠OLD cns 30516 LnOp clno 30669 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-1cn 11126 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-map 8801 df-vc 30488 df-nv 30521 df-va 30524 df-ba 30525 df-sm 30526 df-0v 30527 df-nmcv 30529 df-lno 30673 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |