MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lnoadd Structured version   Visualization version   GIF version

Theorem lnoadd 29021
Description: Addition property of a linear operator. (Contributed by NM, 7-Dec-2007.) (Revised by Mario Carneiro, 19-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
lnoadd.1 𝑋 = (BaseSet‘𝑈)
lnoadd.5 𝐺 = ( +𝑣𝑈)
lnoadd.6 𝐻 = ( +𝑣𝑊)
lnoadd.7 𝐿 = (𝑈 LnOp 𝑊)
Assertion
Ref Expression
lnoadd (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴𝑋𝐵𝑋)) → (𝑇‘(𝐴𝐺𝐵)) = ((𝑇𝐴)𝐻(𝑇𝐵)))

Proof of Theorem lnoadd
StepHypRef Expression
1 ax-1cn 10860 . . 3 1 ∈ ℂ
2 lnoadd.1 . . . 4 𝑋 = (BaseSet‘𝑈)
3 eqid 2738 . . . 4 (BaseSet‘𝑊) = (BaseSet‘𝑊)
4 lnoadd.5 . . . 4 𝐺 = ( +𝑣𝑈)
5 lnoadd.6 . . . 4 𝐻 = ( +𝑣𝑊)
6 eqid 2738 . . . 4 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
7 eqid 2738 . . . 4 ( ·𝑠OLD𝑊) = ( ·𝑠OLD𝑊)
8 lnoadd.7 . . . 4 𝐿 = (𝑈 LnOp 𝑊)
92, 3, 4, 5, 6, 7, 8lnolin 29017 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (1 ∈ ℂ ∧ 𝐴𝑋𝐵𝑋)) → (𝑇‘((1( ·𝑠OLD𝑈)𝐴)𝐺𝐵)) = ((1( ·𝑠OLD𝑊)(𝑇𝐴))𝐻(𝑇𝐵)))
101, 9mp3anr1 1456 . 2 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴𝑋𝐵𝑋)) → (𝑇‘((1( ·𝑠OLD𝑈)𝐴)𝐺𝐵)) = ((1( ·𝑠OLD𝑊)(𝑇𝐴))𝐻(𝑇𝐵)))
11 simp1 1134 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → 𝑈 ∈ NrmCVec)
12 simpl 482 . . . 4 ((𝐴𝑋𝐵𝑋) → 𝐴𝑋)
132, 6nvsid 28890 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (1( ·𝑠OLD𝑈)𝐴) = 𝐴)
1411, 12, 13syl2an 595 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴𝑋𝐵𝑋)) → (1( ·𝑠OLD𝑈)𝐴) = 𝐴)
1514fvoveq1d 7277 . 2 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴𝑋𝐵𝑋)) → (𝑇‘((1( ·𝑠OLD𝑈)𝐴)𝐺𝐵)) = (𝑇‘(𝐴𝐺𝐵)))
16 simpl2 1190 . . . 4 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴𝑋𝐵𝑋)) → 𝑊 ∈ NrmCVec)
172, 3, 8lnof 29018 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → 𝑇:𝑋⟶(BaseSet‘𝑊))
18 ffvelrn 6941 . . . . 5 ((𝑇:𝑋⟶(BaseSet‘𝑊) ∧ 𝐴𝑋) → (𝑇𝐴) ∈ (BaseSet‘𝑊))
1917, 12, 18syl2an 595 . . . 4 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴𝑋𝐵𝑋)) → (𝑇𝐴) ∈ (BaseSet‘𝑊))
203, 7nvsid 28890 . . . 4 ((𝑊 ∈ NrmCVec ∧ (𝑇𝐴) ∈ (BaseSet‘𝑊)) → (1( ·𝑠OLD𝑊)(𝑇𝐴)) = (𝑇𝐴))
2116, 19, 20syl2anc 583 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴𝑋𝐵𝑋)) → (1( ·𝑠OLD𝑊)(𝑇𝐴)) = (𝑇𝐴))
2221oveq1d 7270 . 2 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴𝑋𝐵𝑋)) → ((1( ·𝑠OLD𝑊)(𝑇𝐴))𝐻(𝑇𝐵)) = ((𝑇𝐴)𝐻(𝑇𝐵)))
2310, 15, 223eqtr3d 2786 1 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴𝑋𝐵𝑋)) → (𝑇‘(𝐴𝐺𝐵)) = ((𝑇𝐴)𝐻(𝑇𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wf 6414  cfv 6418  (class class class)co 7255  cc 10800  1c1 10803  NrmCVeccnv 28847   +𝑣 cpv 28848  BaseSetcba 28849   ·𝑠OLD cns 28850   LnOp clno 29003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-1cn 10860
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-map 8575  df-vc 28822  df-nv 28855  df-va 28858  df-ba 28859  df-sm 28860  df-0v 28861  df-nmcv 28863  df-lno 29007
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator