![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lnoadd | Structured version Visualization version GIF version |
Description: Addition property of a linear operator. (Contributed by NM, 7-Dec-2007.) (Revised by Mario Carneiro, 19-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
lnoadd.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
lnoadd.5 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
lnoadd.6 | ⊢ 𝐻 = ( +𝑣 ‘𝑊) |
lnoadd.7 | ⊢ 𝐿 = (𝑈 LnOp 𝑊) |
Ref | Expression |
---|---|
lnoadd | ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝑇‘(𝐴𝐺𝐵)) = ((𝑇‘𝐴)𝐻(𝑇‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 11204 | . . 3 ⊢ 1 ∈ ℂ | |
2 | lnoadd.1 | . . . 4 ⊢ 𝑋 = (BaseSet‘𝑈) | |
3 | eqid 2728 | . . . 4 ⊢ (BaseSet‘𝑊) = (BaseSet‘𝑊) | |
4 | lnoadd.5 | . . . 4 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
5 | lnoadd.6 | . . . 4 ⊢ 𝐻 = ( +𝑣 ‘𝑊) | |
6 | eqid 2728 | . . . 4 ⊢ ( ·𝑠OLD ‘𝑈) = ( ·𝑠OLD ‘𝑈) | |
7 | eqid 2728 | . . . 4 ⊢ ( ·𝑠OLD ‘𝑊) = ( ·𝑠OLD ‘𝑊) | |
8 | lnoadd.7 | . . . 4 ⊢ 𝐿 = (𝑈 LnOp 𝑊) | |
9 | 2, 3, 4, 5, 6, 7, 8 | lnolin 30584 | . . 3 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (1 ∈ ℂ ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝑇‘((1( ·𝑠OLD ‘𝑈)𝐴)𝐺𝐵)) = ((1( ·𝑠OLD ‘𝑊)(𝑇‘𝐴))𝐻(𝑇‘𝐵))) |
10 | 1, 9 | mp3anr1 1454 | . 2 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝑇‘((1( ·𝑠OLD ‘𝑈)𝐴)𝐺𝐵)) = ((1( ·𝑠OLD ‘𝑊)(𝑇‘𝐴))𝐻(𝑇‘𝐵))) |
11 | simp1 1133 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → 𝑈 ∈ NrmCVec) | |
12 | simpl 481 | . . . 4 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝐴 ∈ 𝑋) | |
13 | 2, 6 | nvsid 30457 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (1( ·𝑠OLD ‘𝑈)𝐴) = 𝐴) |
14 | 11, 12, 13 | syl2an 594 | . . 3 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (1( ·𝑠OLD ‘𝑈)𝐴) = 𝐴) |
15 | 14 | fvoveq1d 7448 | . 2 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝑇‘((1( ·𝑠OLD ‘𝑈)𝐴)𝐺𝐵)) = (𝑇‘(𝐴𝐺𝐵))) |
16 | simpl2 1189 | . . . 4 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → 𝑊 ∈ NrmCVec) | |
17 | 2, 3, 8 | lnof 30585 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → 𝑇:𝑋⟶(BaseSet‘𝑊)) |
18 | ffvelcdm 7096 | . . . . 5 ⊢ ((𝑇:𝑋⟶(BaseSet‘𝑊) ∧ 𝐴 ∈ 𝑋) → (𝑇‘𝐴) ∈ (BaseSet‘𝑊)) | |
19 | 17, 12, 18 | syl2an 594 | . . . 4 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝑇‘𝐴) ∈ (BaseSet‘𝑊)) |
20 | 3, 7 | nvsid 30457 | . . . 4 ⊢ ((𝑊 ∈ NrmCVec ∧ (𝑇‘𝐴) ∈ (BaseSet‘𝑊)) → (1( ·𝑠OLD ‘𝑊)(𝑇‘𝐴)) = (𝑇‘𝐴)) |
21 | 16, 19, 20 | syl2anc 582 | . . 3 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (1( ·𝑠OLD ‘𝑊)(𝑇‘𝐴)) = (𝑇‘𝐴)) |
22 | 21 | oveq1d 7441 | . 2 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → ((1( ·𝑠OLD ‘𝑊)(𝑇‘𝐴))𝐻(𝑇‘𝐵)) = ((𝑇‘𝐴)𝐻(𝑇‘𝐵))) |
23 | 10, 15, 22 | 3eqtr3d 2776 | 1 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝑇‘(𝐴𝐺𝐵)) = ((𝑇‘𝐴)𝐻(𝑇‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ⟶wf 6549 ‘cfv 6553 (class class class)co 7426 ℂcc 11144 1c1 11147 NrmCVeccnv 30414 +𝑣 cpv 30415 BaseSetcba 30416 ·𝑠OLD cns 30417 LnOp clno 30570 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-1cn 11204 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-ov 7429 df-oprab 7430 df-mpo 7431 df-1st 7999 df-2nd 8000 df-map 8853 df-vc 30389 df-nv 30422 df-va 30425 df-ba 30426 df-sm 30427 df-0v 30428 df-nmcv 30430 df-lno 30574 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |