MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lnoadd Structured version   Visualization version   GIF version

Theorem lnoadd 29120
Description: Addition property of a linear operator. (Contributed by NM, 7-Dec-2007.) (Revised by Mario Carneiro, 19-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
lnoadd.1 𝑋 = (BaseSet‘𝑈)
lnoadd.5 𝐺 = ( +𝑣𝑈)
lnoadd.6 𝐻 = ( +𝑣𝑊)
lnoadd.7 𝐿 = (𝑈 LnOp 𝑊)
Assertion
Ref Expression
lnoadd (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴𝑋𝐵𝑋)) → (𝑇‘(𝐴𝐺𝐵)) = ((𝑇𝐴)𝐻(𝑇𝐵)))

Proof of Theorem lnoadd
StepHypRef Expression
1 ax-1cn 10929 . . 3 1 ∈ ℂ
2 lnoadd.1 . . . 4 𝑋 = (BaseSet‘𝑈)
3 eqid 2738 . . . 4 (BaseSet‘𝑊) = (BaseSet‘𝑊)
4 lnoadd.5 . . . 4 𝐺 = ( +𝑣𝑈)
5 lnoadd.6 . . . 4 𝐻 = ( +𝑣𝑊)
6 eqid 2738 . . . 4 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
7 eqid 2738 . . . 4 ( ·𝑠OLD𝑊) = ( ·𝑠OLD𝑊)
8 lnoadd.7 . . . 4 𝐿 = (𝑈 LnOp 𝑊)
92, 3, 4, 5, 6, 7, 8lnolin 29116 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (1 ∈ ℂ ∧ 𝐴𝑋𝐵𝑋)) → (𝑇‘((1( ·𝑠OLD𝑈)𝐴)𝐺𝐵)) = ((1( ·𝑠OLD𝑊)(𝑇𝐴))𝐻(𝑇𝐵)))
101, 9mp3anr1 1457 . 2 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴𝑋𝐵𝑋)) → (𝑇‘((1( ·𝑠OLD𝑈)𝐴)𝐺𝐵)) = ((1( ·𝑠OLD𝑊)(𝑇𝐴))𝐻(𝑇𝐵)))
11 simp1 1135 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → 𝑈 ∈ NrmCVec)
12 simpl 483 . . . 4 ((𝐴𝑋𝐵𝑋) → 𝐴𝑋)
132, 6nvsid 28989 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (1( ·𝑠OLD𝑈)𝐴) = 𝐴)
1411, 12, 13syl2an 596 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴𝑋𝐵𝑋)) → (1( ·𝑠OLD𝑈)𝐴) = 𝐴)
1514fvoveq1d 7297 . 2 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴𝑋𝐵𝑋)) → (𝑇‘((1( ·𝑠OLD𝑈)𝐴)𝐺𝐵)) = (𝑇‘(𝐴𝐺𝐵)))
16 simpl2 1191 . . . 4 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴𝑋𝐵𝑋)) → 𝑊 ∈ NrmCVec)
172, 3, 8lnof 29117 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → 𝑇:𝑋⟶(BaseSet‘𝑊))
18 ffvelrn 6959 . . . . 5 ((𝑇:𝑋⟶(BaseSet‘𝑊) ∧ 𝐴𝑋) → (𝑇𝐴) ∈ (BaseSet‘𝑊))
1917, 12, 18syl2an 596 . . . 4 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴𝑋𝐵𝑋)) → (𝑇𝐴) ∈ (BaseSet‘𝑊))
203, 7nvsid 28989 . . . 4 ((𝑊 ∈ NrmCVec ∧ (𝑇𝐴) ∈ (BaseSet‘𝑊)) → (1( ·𝑠OLD𝑊)(𝑇𝐴)) = (𝑇𝐴))
2116, 19, 20syl2anc 584 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴𝑋𝐵𝑋)) → (1( ·𝑠OLD𝑊)(𝑇𝐴)) = (𝑇𝐴))
2221oveq1d 7290 . 2 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴𝑋𝐵𝑋)) → ((1( ·𝑠OLD𝑊)(𝑇𝐴))𝐻(𝑇𝐵)) = ((𝑇𝐴)𝐻(𝑇𝐵)))
2310, 15, 223eqtr3d 2786 1 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴𝑋𝐵𝑋)) → (𝑇‘(𝐴𝐺𝐵)) = ((𝑇𝐴)𝐻(𝑇𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wf 6429  cfv 6433  (class class class)co 7275  cc 10869  1c1 10872  NrmCVeccnv 28946   +𝑣 cpv 28947  BaseSetcba 28948   ·𝑠OLD cns 28949   LnOp clno 29102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-1cn 10929
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-map 8617  df-vc 28921  df-nv 28954  df-va 28957  df-ba 28958  df-sm 28959  df-0v 28960  df-nmcv 28962  df-lno 29106
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator