![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lnoadd | Structured version Visualization version GIF version |
Description: Addition property of a linear operator. (Contributed by NM, 7-Dec-2007.) (Revised by Mario Carneiro, 19-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
lnoadd.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
lnoadd.5 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
lnoadd.6 | ⊢ 𝐻 = ( +𝑣 ‘𝑊) |
lnoadd.7 | ⊢ 𝐿 = (𝑈 LnOp 𝑊) |
Ref | Expression |
---|---|
lnoadd | ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝑇‘(𝐴𝐺𝐵)) = ((𝑇‘𝐴)𝐻(𝑇‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 10317 | . . 3 ⊢ 1 ∈ ℂ | |
2 | lnoadd.1 | . . . 4 ⊢ 𝑋 = (BaseSet‘𝑈) | |
3 | eqid 2825 | . . . 4 ⊢ (BaseSet‘𝑊) = (BaseSet‘𝑊) | |
4 | lnoadd.5 | . . . 4 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
5 | lnoadd.6 | . . . 4 ⊢ 𝐻 = ( +𝑣 ‘𝑊) | |
6 | eqid 2825 | . . . 4 ⊢ ( ·𝑠OLD ‘𝑈) = ( ·𝑠OLD ‘𝑈) | |
7 | eqid 2825 | . . . 4 ⊢ ( ·𝑠OLD ‘𝑊) = ( ·𝑠OLD ‘𝑊) | |
8 | lnoadd.7 | . . . 4 ⊢ 𝐿 = (𝑈 LnOp 𝑊) | |
9 | 2, 3, 4, 5, 6, 7, 8 | lnolin 28160 | . . 3 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (1 ∈ ℂ ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝑇‘((1( ·𝑠OLD ‘𝑈)𝐴)𝐺𝐵)) = ((1( ·𝑠OLD ‘𝑊)(𝑇‘𝐴))𝐻(𝑇‘𝐵))) |
10 | 1, 9 | mp3anr1 1586 | . 2 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝑇‘((1( ·𝑠OLD ‘𝑈)𝐴)𝐺𝐵)) = ((1( ·𝑠OLD ‘𝑊)(𝑇‘𝐴))𝐻(𝑇‘𝐵))) |
11 | simp1 1170 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → 𝑈 ∈ NrmCVec) | |
12 | simpl 476 | . . . 4 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝐴 ∈ 𝑋) | |
13 | 2, 6 | nvsid 28033 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (1( ·𝑠OLD ‘𝑈)𝐴) = 𝐴) |
14 | 11, 12, 13 | syl2an 589 | . . 3 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (1( ·𝑠OLD ‘𝑈)𝐴) = 𝐴) |
15 | 14 | fvoveq1d 6932 | . 2 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝑇‘((1( ·𝑠OLD ‘𝑈)𝐴)𝐺𝐵)) = (𝑇‘(𝐴𝐺𝐵))) |
16 | simpl2 1248 | . . . 4 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → 𝑊 ∈ NrmCVec) | |
17 | 2, 3, 8 | lnof 28161 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → 𝑇:𝑋⟶(BaseSet‘𝑊)) |
18 | ffvelrn 6611 | . . . . 5 ⊢ ((𝑇:𝑋⟶(BaseSet‘𝑊) ∧ 𝐴 ∈ 𝑋) → (𝑇‘𝐴) ∈ (BaseSet‘𝑊)) | |
19 | 17, 12, 18 | syl2an 589 | . . . 4 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝑇‘𝐴) ∈ (BaseSet‘𝑊)) |
20 | 3, 7 | nvsid 28033 | . . . 4 ⊢ ((𝑊 ∈ NrmCVec ∧ (𝑇‘𝐴) ∈ (BaseSet‘𝑊)) → (1( ·𝑠OLD ‘𝑊)(𝑇‘𝐴)) = (𝑇‘𝐴)) |
21 | 16, 19, 20 | syl2anc 579 | . . 3 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (1( ·𝑠OLD ‘𝑊)(𝑇‘𝐴)) = (𝑇‘𝐴)) |
22 | 21 | oveq1d 6925 | . 2 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → ((1( ·𝑠OLD ‘𝑊)(𝑇‘𝐴))𝐻(𝑇‘𝐵)) = ((𝑇‘𝐴)𝐻(𝑇‘𝐵))) |
23 | 10, 15, 22 | 3eqtr3d 2869 | 1 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝑇‘(𝐴𝐺𝐵)) = ((𝑇‘𝐴)𝐻(𝑇‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∧ w3a 1111 = wceq 1656 ∈ wcel 2164 ⟶wf 6123 ‘cfv 6127 (class class class)co 6910 ℂcc 10257 1c1 10260 NrmCVeccnv 27990 +𝑣 cpv 27991 BaseSetcba 27992 ·𝑠OLD cns 27993 LnOp clno 28146 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-rep 4996 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 ax-1cn 10317 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-reu 3124 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-op 4406 df-uni 4661 df-iun 4744 df-br 4876 df-opab 4938 df-mpt 4955 df-id 5252 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 df-ov 6913 df-oprab 6914 df-mpt2 6915 df-1st 7433 df-2nd 7434 df-map 8129 df-vc 27965 df-nv 27998 df-va 28001 df-ba 28002 df-sm 28003 df-0v 28004 df-nmcv 28006 df-lno 28150 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |