| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lnoadd | Structured version Visualization version GIF version | ||
| Description: Addition property of a linear operator. (Contributed by NM, 7-Dec-2007.) (Revised by Mario Carneiro, 19-Nov-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| lnoadd.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
| lnoadd.5 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
| lnoadd.6 | ⊢ 𝐻 = ( +𝑣 ‘𝑊) |
| lnoadd.7 | ⊢ 𝐿 = (𝑈 LnOp 𝑊) |
| Ref | Expression |
|---|---|
| lnoadd | ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝑇‘(𝐴𝐺𝐵)) = ((𝑇‘𝐴)𝐻(𝑇‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn 11213 | . . 3 ⊢ 1 ∈ ℂ | |
| 2 | lnoadd.1 | . . . 4 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 3 | eqid 2737 | . . . 4 ⊢ (BaseSet‘𝑊) = (BaseSet‘𝑊) | |
| 4 | lnoadd.5 | . . . 4 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
| 5 | lnoadd.6 | . . . 4 ⊢ 𝐻 = ( +𝑣 ‘𝑊) | |
| 6 | eqid 2737 | . . . 4 ⊢ ( ·𝑠OLD ‘𝑈) = ( ·𝑠OLD ‘𝑈) | |
| 7 | eqid 2737 | . . . 4 ⊢ ( ·𝑠OLD ‘𝑊) = ( ·𝑠OLD ‘𝑊) | |
| 8 | lnoadd.7 | . . . 4 ⊢ 𝐿 = (𝑈 LnOp 𝑊) | |
| 9 | 2, 3, 4, 5, 6, 7, 8 | lnolin 30773 | . . 3 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (1 ∈ ℂ ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝑇‘((1( ·𝑠OLD ‘𝑈)𝐴)𝐺𝐵)) = ((1( ·𝑠OLD ‘𝑊)(𝑇‘𝐴))𝐻(𝑇‘𝐵))) |
| 10 | 1, 9 | mp3anr1 1460 | . 2 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝑇‘((1( ·𝑠OLD ‘𝑈)𝐴)𝐺𝐵)) = ((1( ·𝑠OLD ‘𝑊)(𝑇‘𝐴))𝐻(𝑇‘𝐵))) |
| 11 | simp1 1137 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → 𝑈 ∈ NrmCVec) | |
| 12 | simpl 482 | . . . 4 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝐴 ∈ 𝑋) | |
| 13 | 2, 6 | nvsid 30646 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (1( ·𝑠OLD ‘𝑈)𝐴) = 𝐴) |
| 14 | 11, 12, 13 | syl2an 596 | . . 3 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (1( ·𝑠OLD ‘𝑈)𝐴) = 𝐴) |
| 15 | 14 | fvoveq1d 7453 | . 2 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝑇‘((1( ·𝑠OLD ‘𝑈)𝐴)𝐺𝐵)) = (𝑇‘(𝐴𝐺𝐵))) |
| 16 | simpl2 1193 | . . . 4 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → 𝑊 ∈ NrmCVec) | |
| 17 | 2, 3, 8 | lnof 30774 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → 𝑇:𝑋⟶(BaseSet‘𝑊)) |
| 18 | ffvelcdm 7101 | . . . . 5 ⊢ ((𝑇:𝑋⟶(BaseSet‘𝑊) ∧ 𝐴 ∈ 𝑋) → (𝑇‘𝐴) ∈ (BaseSet‘𝑊)) | |
| 19 | 17, 12, 18 | syl2an 596 | . . . 4 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝑇‘𝐴) ∈ (BaseSet‘𝑊)) |
| 20 | 3, 7 | nvsid 30646 | . . . 4 ⊢ ((𝑊 ∈ NrmCVec ∧ (𝑇‘𝐴) ∈ (BaseSet‘𝑊)) → (1( ·𝑠OLD ‘𝑊)(𝑇‘𝐴)) = (𝑇‘𝐴)) |
| 21 | 16, 19, 20 | syl2anc 584 | . . 3 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (1( ·𝑠OLD ‘𝑊)(𝑇‘𝐴)) = (𝑇‘𝐴)) |
| 22 | 21 | oveq1d 7446 | . 2 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → ((1( ·𝑠OLD ‘𝑊)(𝑇‘𝐴))𝐻(𝑇‘𝐵)) = ((𝑇‘𝐴)𝐻(𝑇‘𝐵))) |
| 23 | 10, 15, 22 | 3eqtr3d 2785 | 1 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝑇‘(𝐴𝐺𝐵)) = ((𝑇‘𝐴)𝐻(𝑇‘𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ⟶wf 6557 ‘cfv 6561 (class class class)co 7431 ℂcc 11153 1c1 11156 NrmCVeccnv 30603 +𝑣 cpv 30604 BaseSetcba 30605 ·𝑠OLD cns 30606 LnOp clno 30759 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-1cn 11213 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8014 df-2nd 8015 df-map 8868 df-vc 30578 df-nv 30611 df-va 30614 df-ba 30615 df-sm 30616 df-0v 30617 df-nmcv 30619 df-lno 30763 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |