MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lnoadd Structured version   Visualization version   GIF version

Theorem lnoadd 30694
Description: Addition property of a linear operator. (Contributed by NM, 7-Dec-2007.) (Revised by Mario Carneiro, 19-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
lnoadd.1 𝑋 = (BaseSet‘𝑈)
lnoadd.5 𝐺 = ( +𝑣𝑈)
lnoadd.6 𝐻 = ( +𝑣𝑊)
lnoadd.7 𝐿 = (𝑈 LnOp 𝑊)
Assertion
Ref Expression
lnoadd (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴𝑋𝐵𝑋)) → (𝑇‘(𝐴𝐺𝐵)) = ((𝑇𝐴)𝐻(𝑇𝐵)))

Proof of Theorem lnoadd
StepHypRef Expression
1 ax-1cn 11133 . . 3 1 ∈ ℂ
2 lnoadd.1 . . . 4 𝑋 = (BaseSet‘𝑈)
3 eqid 2730 . . . 4 (BaseSet‘𝑊) = (BaseSet‘𝑊)
4 lnoadd.5 . . . 4 𝐺 = ( +𝑣𝑈)
5 lnoadd.6 . . . 4 𝐻 = ( +𝑣𝑊)
6 eqid 2730 . . . 4 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
7 eqid 2730 . . . 4 ( ·𝑠OLD𝑊) = ( ·𝑠OLD𝑊)
8 lnoadd.7 . . . 4 𝐿 = (𝑈 LnOp 𝑊)
92, 3, 4, 5, 6, 7, 8lnolin 30690 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (1 ∈ ℂ ∧ 𝐴𝑋𝐵𝑋)) → (𝑇‘((1( ·𝑠OLD𝑈)𝐴)𝐺𝐵)) = ((1( ·𝑠OLD𝑊)(𝑇𝐴))𝐻(𝑇𝐵)))
101, 9mp3anr1 1460 . 2 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴𝑋𝐵𝑋)) → (𝑇‘((1( ·𝑠OLD𝑈)𝐴)𝐺𝐵)) = ((1( ·𝑠OLD𝑊)(𝑇𝐴))𝐻(𝑇𝐵)))
11 simp1 1136 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → 𝑈 ∈ NrmCVec)
12 simpl 482 . . . 4 ((𝐴𝑋𝐵𝑋) → 𝐴𝑋)
132, 6nvsid 30563 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (1( ·𝑠OLD𝑈)𝐴) = 𝐴)
1411, 12, 13syl2an 596 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴𝑋𝐵𝑋)) → (1( ·𝑠OLD𝑈)𝐴) = 𝐴)
1514fvoveq1d 7412 . 2 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴𝑋𝐵𝑋)) → (𝑇‘((1( ·𝑠OLD𝑈)𝐴)𝐺𝐵)) = (𝑇‘(𝐴𝐺𝐵)))
16 simpl2 1193 . . . 4 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴𝑋𝐵𝑋)) → 𝑊 ∈ NrmCVec)
172, 3, 8lnof 30691 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → 𝑇:𝑋⟶(BaseSet‘𝑊))
18 ffvelcdm 7056 . . . . 5 ((𝑇:𝑋⟶(BaseSet‘𝑊) ∧ 𝐴𝑋) → (𝑇𝐴) ∈ (BaseSet‘𝑊))
1917, 12, 18syl2an 596 . . . 4 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴𝑋𝐵𝑋)) → (𝑇𝐴) ∈ (BaseSet‘𝑊))
203, 7nvsid 30563 . . . 4 ((𝑊 ∈ NrmCVec ∧ (𝑇𝐴) ∈ (BaseSet‘𝑊)) → (1( ·𝑠OLD𝑊)(𝑇𝐴)) = (𝑇𝐴))
2116, 19, 20syl2anc 584 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴𝑋𝐵𝑋)) → (1( ·𝑠OLD𝑊)(𝑇𝐴)) = (𝑇𝐴))
2221oveq1d 7405 . 2 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴𝑋𝐵𝑋)) → ((1( ·𝑠OLD𝑊)(𝑇𝐴))𝐻(𝑇𝐵)) = ((𝑇𝐴)𝐻(𝑇𝐵)))
2310, 15, 223eqtr3d 2773 1 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴𝑋𝐵𝑋)) → (𝑇‘(𝐴𝐺𝐵)) = ((𝑇𝐴)𝐻(𝑇𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wf 6510  cfv 6514  (class class class)co 7390  cc 11073  1c1 11076  NrmCVeccnv 30520   +𝑣 cpv 30521  BaseSetcba 30522   ·𝑠OLD cns 30523   LnOp clno 30676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-1cn 11133
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-map 8804  df-vc 30495  df-nv 30528  df-va 30531  df-ba 30532  df-sm 30533  df-0v 30534  df-nmcv 30536  df-lno 30680
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator