Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  exrecfnlem Structured version   Visualization version   GIF version

Theorem exrecfnlem 37353
Description: Lemma for exrecfn 37354. (Contributed by ML, 30-Mar-2022.)
Hypothesis
Ref Expression
exrecfnlem.1 𝐹 = (𝑧 ∈ V ↦ (𝑧 ∪ ran (𝑦𝑧𝐵)))
Assertion
Ref Expression
exrecfnlem ((𝐴𝑉 ∧ ∀𝑦 𝐵𝑊) → ∃𝑥(𝐴𝑥 ∧ ∀𝑦𝑥 𝐵𝑥))
Distinct variable groups:   𝑦,𝐴,𝑧,𝑥   𝑥,𝐵,𝑧   𝑥,𝐹   𝑦,𝑊
Allowed substitution hints:   𝐵(𝑦)   𝐹(𝑦,𝑧)   𝑉(𝑥,𝑦,𝑧)   𝑊(𝑥,𝑧)

Proof of Theorem exrecfnlem
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 rdg0g 8349 . . 3 (𝐴𝑉 → (rec(𝐹, 𝐴)‘∅) = 𝐴)
2 peano1 7822 . . . 4 ∅ ∈ ω
3 omelon 9542 . . . . 5 ω ∈ On
4 limom 7815 . . . . 5 Lim ω
5 rdglimss 37351 . . . . 5 (((ω ∈ On ∧ Lim ω) ∧ ∅ ∈ ω) → (rec(𝐹, 𝐴)‘∅) ⊆ (rec(𝐹, 𝐴)‘ω))
63, 4, 5mpanl12 702 . . . 4 (∅ ∈ ω → (rec(𝐹, 𝐴)‘∅) ⊆ (rec(𝐹, 𝐴)‘ω))
72, 6ax-mp 5 . . 3 (rec(𝐹, 𝐴)‘∅) ⊆ (rec(𝐹, 𝐴)‘ω)
81, 7eqsstrrdi 3981 . 2 (𝐴𝑉𝐴 ⊆ (rec(𝐹, 𝐴)‘ω))
9 rdglim2a 8355 . . . . . . . 8 ((ω ∈ On ∧ Lim ω) → (rec(𝐹, 𝐴)‘ω) = 𝑢 ∈ ω (rec(𝐹, 𝐴)‘𝑢))
103, 4, 9mp2an 692 . . . . . . 7 (rec(𝐹, 𝐴)‘ω) = 𝑢 ∈ ω (rec(𝐹, 𝐴)‘𝑢)
1110eleq2i 2820 . . . . . 6 (𝑦 ∈ (rec(𝐹, 𝐴)‘ω) ↔ 𝑦 𝑢 ∈ ω (rec(𝐹, 𝐴)‘𝑢))
12 eliun 4945 . . . . . 6 (𝑦 𝑢 ∈ ω (rec(𝐹, 𝐴)‘𝑢) ↔ ∃𝑢 ∈ ω 𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢))
1311, 12bitri 275 . . . . 5 (𝑦 ∈ (rec(𝐹, 𝐴)‘ω) ↔ ∃𝑢 ∈ ω 𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢))
14 peano2 7823 . . . . . . . . 9 (𝑢 ∈ ω → suc 𝑢 ∈ ω)
15 nnon 7805 . . . . . . . . . 10 (𝑢 ∈ ω → 𝑢 ∈ On)
16 eqid 2729 . . . . . . . . . . . . 13 (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵) = (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵)
1716elrnmpt1 5902 . . . . . . . . . . . 12 ((𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ∧ 𝐵𝑊) → 𝐵 ∈ ran (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵))
18 elun2 4134 . . . . . . . . . . . 12 (𝐵 ∈ ran (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵) → 𝐵 ∈ ((rec(𝐹, 𝐴)‘𝑢) ∪ ran (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵)))
1917, 18syl 17 . . . . . . . . . . 11 ((𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ∧ 𝐵𝑊) → 𝐵 ∈ ((rec(𝐹, 𝐴)‘𝑢) ∪ ran (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵)))
20 fvex 6835 . . . . . . . . . . . . . 14 (rec(𝐹, 𝐴)‘𝑢) ∈ V
21 exrecfnlem.1 . . . . . . . . . . . . . . . . . . . 20 𝐹 = (𝑧 ∈ V ↦ (𝑧 ∪ ran (𝑦𝑧𝐵)))
22 nfcv 2891 . . . . . . . . . . . . . . . . . . . . 21 𝑦V
23 nfcv 2891 . . . . . . . . . . . . . . . . . . . . . 22 𝑦𝑧
24 nfmpt1 5191 . . . . . . . . . . . . . . . . . . . . . . 23 𝑦(𝑦𝑧𝐵)
2524nfrn 5894 . . . . . . . . . . . . . . . . . . . . . 22 𝑦ran (𝑦𝑧𝐵)
2623, 25nfun 4121 . . . . . . . . . . . . . . . . . . . . 21 𝑦(𝑧 ∪ ran (𝑦𝑧𝐵))
2722, 26nfmpt 5190 . . . . . . . . . . . . . . . . . . . 20 𝑦(𝑧 ∈ V ↦ (𝑧 ∪ ran (𝑦𝑧𝐵)))
2821, 27nfcxfr 2889 . . . . . . . . . . . . . . . . . . 19 𝑦𝐹
29 nfcv 2891 . . . . . . . . . . . . . . . . . . 19 𝑦𝐴
3028, 29nfrdg 8336 . . . . . . . . . . . . . . . . . 18 𝑦rec(𝐹, 𝐴)
31 nfcv 2891 . . . . . . . . . . . . . . . . . 18 𝑦𝑢
3230, 31nffv 6832 . . . . . . . . . . . . . . . . 17 𝑦(rec(𝐹, 𝐴)‘𝑢)
3332mptexgf 7158 . . . . . . . . . . . . . . . 16 ((rec(𝐹, 𝐴)‘𝑢) ∈ V → (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵) ∈ V)
3420, 33ax-mp 5 . . . . . . . . . . . . . . 15 (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵) ∈ V
3534rnex 7843 . . . . . . . . . . . . . 14 ran (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵) ∈ V
3620, 35unex 7680 . . . . . . . . . . . . 13 ((rec(𝐹, 𝐴)‘𝑢) ∪ ran (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵)) ∈ V
37 nfcv 2891 . . . . . . . . . . . . . 14 𝑧𝐴
38 nfcv 2891 . . . . . . . . . . . . . 14 𝑧𝑢
39 nfmpt1 5191 . . . . . . . . . . . . . . . . . 18 𝑧(𝑧 ∈ V ↦ (𝑧 ∪ ran (𝑦𝑧𝐵)))
4021, 39nfcxfr 2889 . . . . . . . . . . . . . . . . 17 𝑧𝐹
4140, 37nfrdg 8336 . . . . . . . . . . . . . . . 16 𝑧rec(𝐹, 𝐴)
4241, 38nffv 6832 . . . . . . . . . . . . . . 15 𝑧(rec(𝐹, 𝐴)‘𝑢)
43 nfcv 2891 . . . . . . . . . . . . . . . . 17 𝑧𝐵
4442, 43nfmpt 5190 . . . . . . . . . . . . . . . 16 𝑧(𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵)
4544nfrn 5894 . . . . . . . . . . . . . . 15 𝑧ran (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵)
4642, 45nfun 4121 . . . . . . . . . . . . . 14 𝑧((rec(𝐹, 𝐴)‘𝑢) ∪ ran (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵))
47 rdgeq1 8333 . . . . . . . . . . . . . . 15 (𝐹 = (𝑧 ∈ V ↦ (𝑧 ∪ ran (𝑦𝑧𝐵))) → rec(𝐹, 𝐴) = rec((𝑧 ∈ V ↦ (𝑧 ∪ ran (𝑦𝑧𝐵))), 𝐴))
4821, 47ax-mp 5 . . . . . . . . . . . . . 14 rec(𝐹, 𝐴) = rec((𝑧 ∈ V ↦ (𝑧 ∪ ran (𝑦𝑧𝐵))), 𝐴)
49 id 22 . . . . . . . . . . . . . . 15 (𝑧 = (rec(𝐹, 𝐴)‘𝑢) → 𝑧 = (rec(𝐹, 𝐴)‘𝑢))
5032nfeq2 2909 . . . . . . . . . . . . . . . . 17 𝑦 𝑧 = (rec(𝐹, 𝐴)‘𝑢)
51 eqidd 2730 . . . . . . . . . . . . . . . . 17 (𝑧 = (rec(𝐹, 𝐴)‘𝑢) → 𝐵 = 𝐵)
5250, 49, 51mpteq12df 5176 . . . . . . . . . . . . . . . 16 (𝑧 = (rec(𝐹, 𝐴)‘𝑢) → (𝑦𝑧𝐵) = (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵))
5352rneqd 5880 . . . . . . . . . . . . . . 15 (𝑧 = (rec(𝐹, 𝐴)‘𝑢) → ran (𝑦𝑧𝐵) = ran (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵))
5449, 53uneq12d 4120 . . . . . . . . . . . . . 14 (𝑧 = (rec(𝐹, 𝐴)‘𝑢) → (𝑧 ∪ ran (𝑦𝑧𝐵)) = ((rec(𝐹, 𝐴)‘𝑢) ∪ ran (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵)))
5537, 38, 46, 48, 54rdgsucmptf 8350 . . . . . . . . . . . . 13 ((𝑢 ∈ On ∧ ((rec(𝐹, 𝐴)‘𝑢) ∪ ran (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵)) ∈ V) → (rec(𝐹, 𝐴)‘suc 𝑢) = ((rec(𝐹, 𝐴)‘𝑢) ∪ ran (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵)))
5636, 55mpan2 691 . . . . . . . . . . . 12 (𝑢 ∈ On → (rec(𝐹, 𝐴)‘suc 𝑢) = ((rec(𝐹, 𝐴)‘𝑢) ∪ ran (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵)))
5756eleq2d 2814 . . . . . . . . . . 11 (𝑢 ∈ On → (𝐵 ∈ (rec(𝐹, 𝐴)‘suc 𝑢) ↔ 𝐵 ∈ ((rec(𝐹, 𝐴)‘𝑢) ∪ ran (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵))))
5819, 57imbitrrid 246 . . . . . . . . . 10 (𝑢 ∈ On → ((𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ∧ 𝐵𝑊) → 𝐵 ∈ (rec(𝐹, 𝐴)‘suc 𝑢)))
5915, 58syl 17 . . . . . . . . 9 (𝑢 ∈ ω → ((𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ∧ 𝐵𝑊) → 𝐵 ∈ (rec(𝐹, 𝐴)‘suc 𝑢)))
60 rdgellim 37350 . . . . . . . . . 10 (((ω ∈ On ∧ Lim ω) ∧ suc 𝑢 ∈ ω) → (𝐵 ∈ (rec(𝐹, 𝐴)‘suc 𝑢) → 𝐵 ∈ (rec(𝐹, 𝐴)‘ω)))
613, 4, 60mpanl12 702 . . . . . . . . 9 (suc 𝑢 ∈ ω → (𝐵 ∈ (rec(𝐹, 𝐴)‘suc 𝑢) → 𝐵 ∈ (rec(𝐹, 𝐴)‘ω)))
6214, 59, 61sylsyld 61 . . . . . . . 8 (𝑢 ∈ ω → ((𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ∧ 𝐵𝑊) → 𝐵 ∈ (rec(𝐹, 𝐴)‘ω)))
6362expd 415 . . . . . . 7 (𝑢 ∈ ω → (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) → (𝐵𝑊𝐵 ∈ (rec(𝐹, 𝐴)‘ω))))
6463com3r 87 . . . . . 6 (𝐵𝑊 → (𝑢 ∈ ω → (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) → 𝐵 ∈ (rec(𝐹, 𝐴)‘ω))))
6564rexlimdv 3128 . . . . 5 (𝐵𝑊 → (∃𝑢 ∈ ω 𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) → 𝐵 ∈ (rec(𝐹, 𝐴)‘ω)))
6613, 65biimtrid 242 . . . 4 (𝐵𝑊 → (𝑦 ∈ (rec(𝐹, 𝐴)‘ω) → 𝐵 ∈ (rec(𝐹, 𝐴)‘ω)))
6766alimi 1811 . . 3 (∀𝑦 𝐵𝑊 → ∀𝑦(𝑦 ∈ (rec(𝐹, 𝐴)‘ω) → 𝐵 ∈ (rec(𝐹, 𝐴)‘ω)))
68 df-ral 3045 . . 3 (∀𝑦 ∈ (rec(𝐹, 𝐴)‘ω)𝐵 ∈ (rec(𝐹, 𝐴)‘ω) ↔ ∀𝑦(𝑦 ∈ (rec(𝐹, 𝐴)‘ω) → 𝐵 ∈ (rec(𝐹, 𝐴)‘ω)))
6967, 68sylibr 234 . 2 (∀𝑦 𝐵𝑊 → ∀𝑦 ∈ (rec(𝐹, 𝐴)‘ω)𝐵 ∈ (rec(𝐹, 𝐴)‘ω))
70 fvex 6835 . . 3 (rec(𝐹, 𝐴)‘ω) ∈ V
71 sseq2 3962 . . . 4 (𝑥 = (rec(𝐹, 𝐴)‘ω) → (𝐴𝑥𝐴 ⊆ (rec(𝐹, 𝐴)‘ω)))
72 nfcv 2891 . . . . . . . 8 𝑦ω
7330, 72nffv 6832 . . . . . . 7 𝑦(rec(𝐹, 𝐴)‘ω)
7473nfeq2 2909 . . . . . 6 𝑦 𝑥 = (rec(𝐹, 𝐴)‘ω)
75 eleq2 2817 . . . . . . 7 (𝑥 = (rec(𝐹, 𝐴)‘ω) → (𝑦𝑥𝑦 ∈ (rec(𝐹, 𝐴)‘ω)))
76 eleq2 2817 . . . . . . 7 (𝑥 = (rec(𝐹, 𝐴)‘ω) → (𝐵𝑥𝐵 ∈ (rec(𝐹, 𝐴)‘ω)))
7775, 76imbi12d 344 . . . . . 6 (𝑥 = (rec(𝐹, 𝐴)‘ω) → ((𝑦𝑥𝐵𝑥) ↔ (𝑦 ∈ (rec(𝐹, 𝐴)‘ω) → 𝐵 ∈ (rec(𝐹, 𝐴)‘ω))))
7874, 77albid 2223 . . . . 5 (𝑥 = (rec(𝐹, 𝐴)‘ω) → (∀𝑦(𝑦𝑥𝐵𝑥) ↔ ∀𝑦(𝑦 ∈ (rec(𝐹, 𝐴)‘ω) → 𝐵 ∈ (rec(𝐹, 𝐴)‘ω))))
79 df-ral 3045 . . . . 5 (∀𝑦𝑥 𝐵𝑥 ↔ ∀𝑦(𝑦𝑥𝐵𝑥))
8078, 79, 683bitr4g 314 . . . 4 (𝑥 = (rec(𝐹, 𝐴)‘ω) → (∀𝑦𝑥 𝐵𝑥 ↔ ∀𝑦 ∈ (rec(𝐹, 𝐴)‘ω)𝐵 ∈ (rec(𝐹, 𝐴)‘ω)))
8171, 80anbi12d 632 . . 3 (𝑥 = (rec(𝐹, 𝐴)‘ω) → ((𝐴𝑥 ∧ ∀𝑦𝑥 𝐵𝑥) ↔ (𝐴 ⊆ (rec(𝐹, 𝐴)‘ω) ∧ ∀𝑦 ∈ (rec(𝐹, 𝐴)‘ω)𝐵 ∈ (rec(𝐹, 𝐴)‘ω))))
8270, 81spcev 3561 . 2 ((𝐴 ⊆ (rec(𝐹, 𝐴)‘ω) ∧ ∀𝑦 ∈ (rec(𝐹, 𝐴)‘ω)𝐵 ∈ (rec(𝐹, 𝐴)‘ω)) → ∃𝑥(𝐴𝑥 ∧ ∀𝑦𝑥 𝐵𝑥))
838, 69, 82syl2an 596 1 ((𝐴𝑉 ∧ ∀𝑦 𝐵𝑊) → ∃𝑥(𝐴𝑥 ∧ ∀𝑦𝑥 𝐵𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1538   = wceq 1540  wex 1779  wcel 2109  wral 3044  wrex 3053  Vcvv 3436  cun 3901  wss 3903  c0 4284   ciun 4941  cmpt 5173  ran crn 5620  Oncon0 6307  Lim wlim 6308  suc csuc 6309  cfv 6482  ωcom 7799  reccrdg 8331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671  ax-inf2 9537
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332
This theorem is referenced by:  exrecfn  37354
  Copyright terms: Public domain W3C validator