Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  exrecfnlem Structured version   Visualization version   GIF version

Theorem exrecfnlem 37340
Description: Lemma for exrecfn 37341. (Contributed by ML, 30-Mar-2022.)
Hypothesis
Ref Expression
exrecfnlem.1 𝐹 = (𝑧 ∈ V ↦ (𝑧 ∪ ran (𝑦𝑧𝐵)))
Assertion
Ref Expression
exrecfnlem ((𝐴𝑉 ∧ ∀𝑦 𝐵𝑊) → ∃𝑥(𝐴𝑥 ∧ ∀𝑦𝑥 𝐵𝑥))
Distinct variable groups:   𝑦,𝐴,𝑧,𝑥   𝑥,𝐵,𝑧   𝑥,𝐹   𝑦,𝑊
Allowed substitution hints:   𝐵(𝑦)   𝐹(𝑦,𝑧)   𝑉(𝑥,𝑦,𝑧)   𝑊(𝑥,𝑧)

Proof of Theorem exrecfnlem
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 rdg0g 8372 . . 3 (𝐴𝑉 → (rec(𝐹, 𝐴)‘∅) = 𝐴)
2 peano1 7845 . . . 4 ∅ ∈ ω
3 omelon 9575 . . . . 5 ω ∈ On
4 limom 7838 . . . . 5 Lim ω
5 rdglimss 37338 . . . . 5 (((ω ∈ On ∧ Lim ω) ∧ ∅ ∈ ω) → (rec(𝐹, 𝐴)‘∅) ⊆ (rec(𝐹, 𝐴)‘ω))
63, 4, 5mpanl12 702 . . . 4 (∅ ∈ ω → (rec(𝐹, 𝐴)‘∅) ⊆ (rec(𝐹, 𝐴)‘ω))
72, 6ax-mp 5 . . 3 (rec(𝐹, 𝐴)‘∅) ⊆ (rec(𝐹, 𝐴)‘ω)
81, 7eqsstrrdi 3989 . 2 (𝐴𝑉𝐴 ⊆ (rec(𝐹, 𝐴)‘ω))
9 rdglim2a 8378 . . . . . . . 8 ((ω ∈ On ∧ Lim ω) → (rec(𝐹, 𝐴)‘ω) = 𝑢 ∈ ω (rec(𝐹, 𝐴)‘𝑢))
103, 4, 9mp2an 692 . . . . . . 7 (rec(𝐹, 𝐴)‘ω) = 𝑢 ∈ ω (rec(𝐹, 𝐴)‘𝑢)
1110eleq2i 2820 . . . . . 6 (𝑦 ∈ (rec(𝐹, 𝐴)‘ω) ↔ 𝑦 𝑢 ∈ ω (rec(𝐹, 𝐴)‘𝑢))
12 eliun 4955 . . . . . 6 (𝑦 𝑢 ∈ ω (rec(𝐹, 𝐴)‘𝑢) ↔ ∃𝑢 ∈ ω 𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢))
1311, 12bitri 275 . . . . 5 (𝑦 ∈ (rec(𝐹, 𝐴)‘ω) ↔ ∃𝑢 ∈ ω 𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢))
14 peano2 7846 . . . . . . . . 9 (𝑢 ∈ ω → suc 𝑢 ∈ ω)
15 nnon 7828 . . . . . . . . . 10 (𝑢 ∈ ω → 𝑢 ∈ On)
16 eqid 2729 . . . . . . . . . . . . 13 (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵) = (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵)
1716elrnmpt1 5913 . . . . . . . . . . . 12 ((𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ∧ 𝐵𝑊) → 𝐵 ∈ ran (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵))
18 elun2 4142 . . . . . . . . . . . 12 (𝐵 ∈ ran (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵) → 𝐵 ∈ ((rec(𝐹, 𝐴)‘𝑢) ∪ ran (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵)))
1917, 18syl 17 . . . . . . . . . . 11 ((𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ∧ 𝐵𝑊) → 𝐵 ∈ ((rec(𝐹, 𝐴)‘𝑢) ∪ ran (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵)))
20 fvex 6853 . . . . . . . . . . . . . 14 (rec(𝐹, 𝐴)‘𝑢) ∈ V
21 exrecfnlem.1 . . . . . . . . . . . . . . . . . . . 20 𝐹 = (𝑧 ∈ V ↦ (𝑧 ∪ ran (𝑦𝑧𝐵)))
22 nfcv 2891 . . . . . . . . . . . . . . . . . . . . 21 𝑦V
23 nfcv 2891 . . . . . . . . . . . . . . . . . . . . . 22 𝑦𝑧
24 nfmpt1 5201 . . . . . . . . . . . . . . . . . . . . . . 23 𝑦(𝑦𝑧𝐵)
2524nfrn 5905 . . . . . . . . . . . . . . . . . . . . . 22 𝑦ran (𝑦𝑧𝐵)
2623, 25nfun 4129 . . . . . . . . . . . . . . . . . . . . 21 𝑦(𝑧 ∪ ran (𝑦𝑧𝐵))
2722, 26nfmpt 5200 . . . . . . . . . . . . . . . . . . . 20 𝑦(𝑧 ∈ V ↦ (𝑧 ∪ ran (𝑦𝑧𝐵)))
2821, 27nfcxfr 2889 . . . . . . . . . . . . . . . . . . 19 𝑦𝐹
29 nfcv 2891 . . . . . . . . . . . . . . . . . . 19 𝑦𝐴
3028, 29nfrdg 8359 . . . . . . . . . . . . . . . . . 18 𝑦rec(𝐹, 𝐴)
31 nfcv 2891 . . . . . . . . . . . . . . . . . 18 𝑦𝑢
3230, 31nffv 6850 . . . . . . . . . . . . . . . . 17 𝑦(rec(𝐹, 𝐴)‘𝑢)
3332mptexgf 7178 . . . . . . . . . . . . . . . 16 ((rec(𝐹, 𝐴)‘𝑢) ∈ V → (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵) ∈ V)
3420, 33ax-mp 5 . . . . . . . . . . . . . . 15 (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵) ∈ V
3534rnex 7866 . . . . . . . . . . . . . 14 ran (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵) ∈ V
3620, 35unex 7700 . . . . . . . . . . . . 13 ((rec(𝐹, 𝐴)‘𝑢) ∪ ran (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵)) ∈ V
37 nfcv 2891 . . . . . . . . . . . . . 14 𝑧𝐴
38 nfcv 2891 . . . . . . . . . . . . . 14 𝑧𝑢
39 nfmpt1 5201 . . . . . . . . . . . . . . . . . 18 𝑧(𝑧 ∈ V ↦ (𝑧 ∪ ran (𝑦𝑧𝐵)))
4021, 39nfcxfr 2889 . . . . . . . . . . . . . . . . 17 𝑧𝐹
4140, 37nfrdg 8359 . . . . . . . . . . . . . . . 16 𝑧rec(𝐹, 𝐴)
4241, 38nffv 6850 . . . . . . . . . . . . . . 15 𝑧(rec(𝐹, 𝐴)‘𝑢)
43 nfcv 2891 . . . . . . . . . . . . . . . . 17 𝑧𝐵
4442, 43nfmpt 5200 . . . . . . . . . . . . . . . 16 𝑧(𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵)
4544nfrn 5905 . . . . . . . . . . . . . . 15 𝑧ran (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵)
4642, 45nfun 4129 . . . . . . . . . . . . . 14 𝑧((rec(𝐹, 𝐴)‘𝑢) ∪ ran (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵))
47 rdgeq1 8356 . . . . . . . . . . . . . . 15 (𝐹 = (𝑧 ∈ V ↦ (𝑧 ∪ ran (𝑦𝑧𝐵))) → rec(𝐹, 𝐴) = rec((𝑧 ∈ V ↦ (𝑧 ∪ ran (𝑦𝑧𝐵))), 𝐴))
4821, 47ax-mp 5 . . . . . . . . . . . . . 14 rec(𝐹, 𝐴) = rec((𝑧 ∈ V ↦ (𝑧 ∪ ran (𝑦𝑧𝐵))), 𝐴)
49 id 22 . . . . . . . . . . . . . . 15 (𝑧 = (rec(𝐹, 𝐴)‘𝑢) → 𝑧 = (rec(𝐹, 𝐴)‘𝑢))
5032nfeq2 2909 . . . . . . . . . . . . . . . . 17 𝑦 𝑧 = (rec(𝐹, 𝐴)‘𝑢)
51 eqidd 2730 . . . . . . . . . . . . . . . . 17 (𝑧 = (rec(𝐹, 𝐴)‘𝑢) → 𝐵 = 𝐵)
5250, 49, 51mpteq12df 5186 . . . . . . . . . . . . . . . 16 (𝑧 = (rec(𝐹, 𝐴)‘𝑢) → (𝑦𝑧𝐵) = (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵))
5352rneqd 5891 . . . . . . . . . . . . . . 15 (𝑧 = (rec(𝐹, 𝐴)‘𝑢) → ran (𝑦𝑧𝐵) = ran (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵))
5449, 53uneq12d 4128 . . . . . . . . . . . . . 14 (𝑧 = (rec(𝐹, 𝐴)‘𝑢) → (𝑧 ∪ ran (𝑦𝑧𝐵)) = ((rec(𝐹, 𝐴)‘𝑢) ∪ ran (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵)))
5537, 38, 46, 48, 54rdgsucmptf 8373 . . . . . . . . . . . . 13 ((𝑢 ∈ On ∧ ((rec(𝐹, 𝐴)‘𝑢) ∪ ran (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵)) ∈ V) → (rec(𝐹, 𝐴)‘suc 𝑢) = ((rec(𝐹, 𝐴)‘𝑢) ∪ ran (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵)))
5636, 55mpan2 691 . . . . . . . . . . . 12 (𝑢 ∈ On → (rec(𝐹, 𝐴)‘suc 𝑢) = ((rec(𝐹, 𝐴)‘𝑢) ∪ ran (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵)))
5756eleq2d 2814 . . . . . . . . . . 11 (𝑢 ∈ On → (𝐵 ∈ (rec(𝐹, 𝐴)‘suc 𝑢) ↔ 𝐵 ∈ ((rec(𝐹, 𝐴)‘𝑢) ∪ ran (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵))))
5819, 57imbitrrid 246 . . . . . . . . . 10 (𝑢 ∈ On → ((𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ∧ 𝐵𝑊) → 𝐵 ∈ (rec(𝐹, 𝐴)‘suc 𝑢)))
5915, 58syl 17 . . . . . . . . 9 (𝑢 ∈ ω → ((𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ∧ 𝐵𝑊) → 𝐵 ∈ (rec(𝐹, 𝐴)‘suc 𝑢)))
60 rdgellim 37337 . . . . . . . . . 10 (((ω ∈ On ∧ Lim ω) ∧ suc 𝑢 ∈ ω) → (𝐵 ∈ (rec(𝐹, 𝐴)‘suc 𝑢) → 𝐵 ∈ (rec(𝐹, 𝐴)‘ω)))
613, 4, 60mpanl12 702 . . . . . . . . 9 (suc 𝑢 ∈ ω → (𝐵 ∈ (rec(𝐹, 𝐴)‘suc 𝑢) → 𝐵 ∈ (rec(𝐹, 𝐴)‘ω)))
6214, 59, 61sylsyld 61 . . . . . . . 8 (𝑢 ∈ ω → ((𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ∧ 𝐵𝑊) → 𝐵 ∈ (rec(𝐹, 𝐴)‘ω)))
6362expd 415 . . . . . . 7 (𝑢 ∈ ω → (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) → (𝐵𝑊𝐵 ∈ (rec(𝐹, 𝐴)‘ω))))
6463com3r 87 . . . . . 6 (𝐵𝑊 → (𝑢 ∈ ω → (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) → 𝐵 ∈ (rec(𝐹, 𝐴)‘ω))))
6564rexlimdv 3132 . . . . 5 (𝐵𝑊 → (∃𝑢 ∈ ω 𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) → 𝐵 ∈ (rec(𝐹, 𝐴)‘ω)))
6613, 65biimtrid 242 . . . 4 (𝐵𝑊 → (𝑦 ∈ (rec(𝐹, 𝐴)‘ω) → 𝐵 ∈ (rec(𝐹, 𝐴)‘ω)))
6766alimi 1811 . . 3 (∀𝑦 𝐵𝑊 → ∀𝑦(𝑦 ∈ (rec(𝐹, 𝐴)‘ω) → 𝐵 ∈ (rec(𝐹, 𝐴)‘ω)))
68 df-ral 3045 . . 3 (∀𝑦 ∈ (rec(𝐹, 𝐴)‘ω)𝐵 ∈ (rec(𝐹, 𝐴)‘ω) ↔ ∀𝑦(𝑦 ∈ (rec(𝐹, 𝐴)‘ω) → 𝐵 ∈ (rec(𝐹, 𝐴)‘ω)))
6967, 68sylibr 234 . 2 (∀𝑦 𝐵𝑊 → ∀𝑦 ∈ (rec(𝐹, 𝐴)‘ω)𝐵 ∈ (rec(𝐹, 𝐴)‘ω))
70 fvex 6853 . . 3 (rec(𝐹, 𝐴)‘ω) ∈ V
71 sseq2 3970 . . . 4 (𝑥 = (rec(𝐹, 𝐴)‘ω) → (𝐴𝑥𝐴 ⊆ (rec(𝐹, 𝐴)‘ω)))
72 nfcv 2891 . . . . . . . 8 𝑦ω
7330, 72nffv 6850 . . . . . . 7 𝑦(rec(𝐹, 𝐴)‘ω)
7473nfeq2 2909 . . . . . 6 𝑦 𝑥 = (rec(𝐹, 𝐴)‘ω)
75 eleq2 2817 . . . . . . 7 (𝑥 = (rec(𝐹, 𝐴)‘ω) → (𝑦𝑥𝑦 ∈ (rec(𝐹, 𝐴)‘ω)))
76 eleq2 2817 . . . . . . 7 (𝑥 = (rec(𝐹, 𝐴)‘ω) → (𝐵𝑥𝐵 ∈ (rec(𝐹, 𝐴)‘ω)))
7775, 76imbi12d 344 . . . . . 6 (𝑥 = (rec(𝐹, 𝐴)‘ω) → ((𝑦𝑥𝐵𝑥) ↔ (𝑦 ∈ (rec(𝐹, 𝐴)‘ω) → 𝐵 ∈ (rec(𝐹, 𝐴)‘ω))))
7874, 77albid 2223 . . . . 5 (𝑥 = (rec(𝐹, 𝐴)‘ω) → (∀𝑦(𝑦𝑥𝐵𝑥) ↔ ∀𝑦(𝑦 ∈ (rec(𝐹, 𝐴)‘ω) → 𝐵 ∈ (rec(𝐹, 𝐴)‘ω))))
79 df-ral 3045 . . . . 5 (∀𝑦𝑥 𝐵𝑥 ↔ ∀𝑦(𝑦𝑥𝐵𝑥))
8078, 79, 683bitr4g 314 . . . 4 (𝑥 = (rec(𝐹, 𝐴)‘ω) → (∀𝑦𝑥 𝐵𝑥 ↔ ∀𝑦 ∈ (rec(𝐹, 𝐴)‘ω)𝐵 ∈ (rec(𝐹, 𝐴)‘ω)))
8171, 80anbi12d 632 . . 3 (𝑥 = (rec(𝐹, 𝐴)‘ω) → ((𝐴𝑥 ∧ ∀𝑦𝑥 𝐵𝑥) ↔ (𝐴 ⊆ (rec(𝐹, 𝐴)‘ω) ∧ ∀𝑦 ∈ (rec(𝐹, 𝐴)‘ω)𝐵 ∈ (rec(𝐹, 𝐴)‘ω))))
8270, 81spcev 3569 . 2 ((𝐴 ⊆ (rec(𝐹, 𝐴)‘ω) ∧ ∀𝑦 ∈ (rec(𝐹, 𝐴)‘ω)𝐵 ∈ (rec(𝐹, 𝐴)‘ω)) → ∃𝑥(𝐴𝑥 ∧ ∀𝑦𝑥 𝐵𝑥))
838, 69, 82syl2an 596 1 ((𝐴𝑉 ∧ ∀𝑦 𝐵𝑊) → ∃𝑥(𝐴𝑥 ∧ ∀𝑦𝑥 𝐵𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1538   = wceq 1540  wex 1779  wcel 2109  wral 3044  wrex 3053  Vcvv 3444  cun 3909  wss 3911  c0 4292   ciun 4951  cmpt 5183  ran crn 5632  Oncon0 6320  Lim wlim 6321  suc csuc 6322  cfv 6499  ωcom 7822  reccrdg 8354
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691  ax-inf2 9570
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355
This theorem is referenced by:  exrecfn  37341
  Copyright terms: Public domain W3C validator