Step | Hyp | Ref
| Expression |
1 | | rdg0g 8229 |
. . 3
⊢ (𝐴 ∈ 𝑉 → (rec(𝐹, 𝐴)‘∅) = 𝐴) |
2 | | peano1 7710 |
. . . 4
⊢ ∅
∈ ω |
3 | | omelon 9334 |
. . . . 5
⊢ ω
∈ On |
4 | | limom 7703 |
. . . . 5
⊢ Lim
ω |
5 | | rdglimss 35475 |
. . . . 5
⊢
(((ω ∈ On ∧ Lim ω) ∧ ∅ ∈ ω)
→ (rec(𝐹, 𝐴)‘∅) ⊆
(rec(𝐹, 𝐴)‘ω)) |
6 | 3, 4, 5 | mpanl12 698 |
. . . 4
⊢ (∅
∈ ω → (rec(𝐹, 𝐴)‘∅) ⊆ (rec(𝐹, 𝐴)‘ω)) |
7 | 2, 6 | ax-mp 5 |
. . 3
⊢
(rec(𝐹, 𝐴)‘∅) ⊆
(rec(𝐹, 𝐴)‘ω) |
8 | 1, 7 | eqsstrrdi 3972 |
. 2
⊢ (𝐴 ∈ 𝑉 → 𝐴 ⊆ (rec(𝐹, 𝐴)‘ω)) |
9 | | rdglim2a 8235 |
. . . . . . . 8
⊢ ((ω
∈ On ∧ Lim ω) → (rec(𝐹, 𝐴)‘ω) = ∪ 𝑢 ∈ ω (rec(𝐹, 𝐴)‘𝑢)) |
10 | 3, 4, 9 | mp2an 688 |
. . . . . . 7
⊢
(rec(𝐹, 𝐴)‘ω) = ∪ 𝑢 ∈ ω (rec(𝐹, 𝐴)‘𝑢) |
11 | 10 | eleq2i 2830 |
. . . . . 6
⊢ (𝑦 ∈ (rec(𝐹, 𝐴)‘ω) ↔ 𝑦 ∈ ∪
𝑢 ∈ ω (rec(𝐹, 𝐴)‘𝑢)) |
12 | | eliun 4925 |
. . . . . 6
⊢ (𝑦 ∈ ∪ 𝑢 ∈ ω (rec(𝐹, 𝐴)‘𝑢) ↔ ∃𝑢 ∈ ω 𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢)) |
13 | 11, 12 | bitri 274 |
. . . . 5
⊢ (𝑦 ∈ (rec(𝐹, 𝐴)‘ω) ↔ ∃𝑢 ∈ ω 𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢)) |
14 | | peano2 7711 |
. . . . . . . . 9
⊢ (𝑢 ∈ ω → suc 𝑢 ∈
ω) |
15 | | nnon 7693 |
. . . . . . . . . 10
⊢ (𝑢 ∈ ω → 𝑢 ∈ On) |
16 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵) = (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵) |
17 | 16 | elrnmpt1 5856 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ∧ 𝐵 ∈ 𝑊) → 𝐵 ∈ ran (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵)) |
18 | | elun2 4107 |
. . . . . . . . . . . 12
⊢ (𝐵 ∈ ran (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵) → 𝐵 ∈ ((rec(𝐹, 𝐴)‘𝑢) ∪ ran (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵))) |
19 | 17, 18 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ∧ 𝐵 ∈ 𝑊) → 𝐵 ∈ ((rec(𝐹, 𝐴)‘𝑢) ∪ ran (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵))) |
20 | | fvex 6769 |
. . . . . . . . . . . . . 14
⊢
(rec(𝐹, 𝐴)‘𝑢) ∈ V |
21 | | exrecfnlem.1 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝐹 = (𝑧 ∈ V ↦ (𝑧 ∪ ran (𝑦 ∈ 𝑧 ↦ 𝐵))) |
22 | | nfcv 2906 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
Ⅎ𝑦V |
23 | | nfcv 2906 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
Ⅎ𝑦𝑧 |
24 | | nfmpt1 5178 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
Ⅎ𝑦(𝑦 ∈ 𝑧 ↦ 𝐵) |
25 | 24 | nfrn 5850 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
Ⅎ𝑦ran
(𝑦 ∈ 𝑧 ↦ 𝐵) |
26 | 23, 25 | nfun 4095 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
Ⅎ𝑦(𝑧 ∪ ran (𝑦 ∈ 𝑧 ↦ 𝐵)) |
27 | 22, 26 | nfmpt 5177 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑦(𝑧 ∈ V ↦ (𝑧 ∪ ran (𝑦 ∈ 𝑧 ↦ 𝐵))) |
28 | 21, 27 | nfcxfr 2904 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑦𝐹 |
29 | | nfcv 2906 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑦𝐴 |
30 | 28, 29 | nfrdg 8216 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑦rec(𝐹, 𝐴) |
31 | | nfcv 2906 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑦𝑢 |
32 | 30, 31 | nffv 6766 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑦(rec(𝐹, 𝐴)‘𝑢) |
33 | 32 | mptexgf 7080 |
. . . . . . . . . . . . . . . 16
⊢
((rec(𝐹, 𝐴)‘𝑢) ∈ V → (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵) ∈ V) |
34 | 20, 33 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵) ∈ V |
35 | 34 | rnex 7733 |
. . . . . . . . . . . . . 14
⊢ ran
(𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵) ∈ V |
36 | 20, 35 | unex 7574 |
. . . . . . . . . . . . 13
⊢
((rec(𝐹, 𝐴)‘𝑢) ∪ ran (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵)) ∈ V |
37 | | nfcv 2906 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑧𝐴 |
38 | | nfcv 2906 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑧𝑢 |
39 | | nfmpt1 5178 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑧(𝑧 ∈ V ↦ (𝑧 ∪ ran (𝑦 ∈ 𝑧 ↦ 𝐵))) |
40 | 21, 39 | nfcxfr 2904 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑧𝐹 |
41 | 40, 37 | nfrdg 8216 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑧rec(𝐹, 𝐴) |
42 | 41, 38 | nffv 6766 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑧(rec(𝐹, 𝐴)‘𝑢) |
43 | | nfcv 2906 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑧𝐵 |
44 | 42, 43 | nfmpt 5177 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑧(𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵) |
45 | 44 | nfrn 5850 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑧ran
(𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵) |
46 | 42, 45 | nfun 4095 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑧((rec(𝐹, 𝐴)‘𝑢) ∪ ran (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵)) |
47 | | rdgeq1 8213 |
. . . . . . . . . . . . . . 15
⊢ (𝐹 = (𝑧 ∈ V ↦ (𝑧 ∪ ran (𝑦 ∈ 𝑧 ↦ 𝐵))) → rec(𝐹, 𝐴) = rec((𝑧 ∈ V ↦ (𝑧 ∪ ran (𝑦 ∈ 𝑧 ↦ 𝐵))), 𝐴)) |
48 | 21, 47 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢ rec(𝐹, 𝐴) = rec((𝑧 ∈ V ↦ (𝑧 ∪ ran (𝑦 ∈ 𝑧 ↦ 𝐵))), 𝐴) |
49 | | id 22 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = (rec(𝐹, 𝐴)‘𝑢) → 𝑧 = (rec(𝐹, 𝐴)‘𝑢)) |
50 | 32 | nfeq2 2923 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑦 𝑧 = (rec(𝐹, 𝐴)‘𝑢) |
51 | | eqidd 2739 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = (rec(𝐹, 𝐴)‘𝑢) → 𝐵 = 𝐵) |
52 | 50, 49, 51 | mpteq12df 5156 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = (rec(𝐹, 𝐴)‘𝑢) → (𝑦 ∈ 𝑧 ↦ 𝐵) = (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵)) |
53 | 52 | rneqd 5836 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = (rec(𝐹, 𝐴)‘𝑢) → ran (𝑦 ∈ 𝑧 ↦ 𝐵) = ran (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵)) |
54 | 49, 53 | uneq12d 4094 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = (rec(𝐹, 𝐴)‘𝑢) → (𝑧 ∪ ran (𝑦 ∈ 𝑧 ↦ 𝐵)) = ((rec(𝐹, 𝐴)‘𝑢) ∪ ran (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵))) |
55 | 37, 38, 46, 48, 54 | rdgsucmptf 8230 |
. . . . . . . . . . . . 13
⊢ ((𝑢 ∈ On ∧ ((rec(𝐹, 𝐴)‘𝑢) ∪ ran (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵)) ∈ V) → (rec(𝐹, 𝐴)‘suc 𝑢) = ((rec(𝐹, 𝐴)‘𝑢) ∪ ran (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵))) |
56 | 36, 55 | mpan2 687 |
. . . . . . . . . . . 12
⊢ (𝑢 ∈ On → (rec(𝐹, 𝐴)‘suc 𝑢) = ((rec(𝐹, 𝐴)‘𝑢) ∪ ran (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵))) |
57 | 56 | eleq2d 2824 |
. . . . . . . . . . 11
⊢ (𝑢 ∈ On → (𝐵 ∈ (rec(𝐹, 𝐴)‘suc 𝑢) ↔ 𝐵 ∈ ((rec(𝐹, 𝐴)‘𝑢) ∪ ran (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵)))) |
58 | 19, 57 | syl5ibr 245 |
. . . . . . . . . 10
⊢ (𝑢 ∈ On → ((𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ∧ 𝐵 ∈ 𝑊) → 𝐵 ∈ (rec(𝐹, 𝐴)‘suc 𝑢))) |
59 | 15, 58 | syl 17 |
. . . . . . . . 9
⊢ (𝑢 ∈ ω → ((𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ∧ 𝐵 ∈ 𝑊) → 𝐵 ∈ (rec(𝐹, 𝐴)‘suc 𝑢))) |
60 | | rdgellim 35474 |
. . . . . . . . . 10
⊢
(((ω ∈ On ∧ Lim ω) ∧ suc 𝑢 ∈ ω) → (𝐵 ∈ (rec(𝐹, 𝐴)‘suc 𝑢) → 𝐵 ∈ (rec(𝐹, 𝐴)‘ω))) |
61 | 3, 4, 60 | mpanl12 698 |
. . . . . . . . 9
⊢ (suc
𝑢 ∈ ω →
(𝐵 ∈ (rec(𝐹, 𝐴)‘suc 𝑢) → 𝐵 ∈ (rec(𝐹, 𝐴)‘ω))) |
62 | 14, 59, 61 | sylsyld 61 |
. . . . . . . 8
⊢ (𝑢 ∈ ω → ((𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ∧ 𝐵 ∈ 𝑊) → 𝐵 ∈ (rec(𝐹, 𝐴)‘ω))) |
63 | 62 | expd 415 |
. . . . . . 7
⊢ (𝑢 ∈ ω → (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) → (𝐵 ∈ 𝑊 → 𝐵 ∈ (rec(𝐹, 𝐴)‘ω)))) |
64 | 63 | com3r 87 |
. . . . . 6
⊢ (𝐵 ∈ 𝑊 → (𝑢 ∈ ω → (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) → 𝐵 ∈ (rec(𝐹, 𝐴)‘ω)))) |
65 | 64 | rexlimdv 3211 |
. . . . 5
⊢ (𝐵 ∈ 𝑊 → (∃𝑢 ∈ ω 𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) → 𝐵 ∈ (rec(𝐹, 𝐴)‘ω))) |
66 | 13, 65 | syl5bi 241 |
. . . 4
⊢ (𝐵 ∈ 𝑊 → (𝑦 ∈ (rec(𝐹, 𝐴)‘ω) → 𝐵 ∈ (rec(𝐹, 𝐴)‘ω))) |
67 | 66 | alimi 1815 |
. . 3
⊢
(∀𝑦 𝐵 ∈ 𝑊 → ∀𝑦(𝑦 ∈ (rec(𝐹, 𝐴)‘ω) → 𝐵 ∈ (rec(𝐹, 𝐴)‘ω))) |
68 | | df-ral 3068 |
. . 3
⊢
(∀𝑦 ∈
(rec(𝐹, 𝐴)‘ω)𝐵 ∈ (rec(𝐹, 𝐴)‘ω) ↔ ∀𝑦(𝑦 ∈ (rec(𝐹, 𝐴)‘ω) → 𝐵 ∈ (rec(𝐹, 𝐴)‘ω))) |
69 | 67, 68 | sylibr 233 |
. 2
⊢
(∀𝑦 𝐵 ∈ 𝑊 → ∀𝑦 ∈ (rec(𝐹, 𝐴)‘ω)𝐵 ∈ (rec(𝐹, 𝐴)‘ω)) |
70 | | fvex 6769 |
. . 3
⊢
(rec(𝐹, 𝐴)‘ω) ∈
V |
71 | | sseq2 3943 |
. . . 4
⊢ (𝑥 = (rec(𝐹, 𝐴)‘ω) → (𝐴 ⊆ 𝑥 ↔ 𝐴 ⊆ (rec(𝐹, 𝐴)‘ω))) |
72 | | nfcv 2906 |
. . . . . . . 8
⊢
Ⅎ𝑦ω |
73 | 30, 72 | nffv 6766 |
. . . . . . 7
⊢
Ⅎ𝑦(rec(𝐹, 𝐴)‘ω) |
74 | 73 | nfeq2 2923 |
. . . . . 6
⊢
Ⅎ𝑦 𝑥 = (rec(𝐹, 𝐴)‘ω) |
75 | | eleq2 2827 |
. . . . . . 7
⊢ (𝑥 = (rec(𝐹, 𝐴)‘ω) → (𝑦 ∈ 𝑥 ↔ 𝑦 ∈ (rec(𝐹, 𝐴)‘ω))) |
76 | | eleq2 2827 |
. . . . . . 7
⊢ (𝑥 = (rec(𝐹, 𝐴)‘ω) → (𝐵 ∈ 𝑥 ↔ 𝐵 ∈ (rec(𝐹, 𝐴)‘ω))) |
77 | 75, 76 | imbi12d 344 |
. . . . . 6
⊢ (𝑥 = (rec(𝐹, 𝐴)‘ω) → ((𝑦 ∈ 𝑥 → 𝐵 ∈ 𝑥) ↔ (𝑦 ∈ (rec(𝐹, 𝐴)‘ω) → 𝐵 ∈ (rec(𝐹, 𝐴)‘ω)))) |
78 | 74, 77 | albid 2218 |
. . . . 5
⊢ (𝑥 = (rec(𝐹, 𝐴)‘ω) → (∀𝑦(𝑦 ∈ 𝑥 → 𝐵 ∈ 𝑥) ↔ ∀𝑦(𝑦 ∈ (rec(𝐹, 𝐴)‘ω) → 𝐵 ∈ (rec(𝐹, 𝐴)‘ω)))) |
79 | | df-ral 3068 |
. . . . 5
⊢
(∀𝑦 ∈
𝑥 𝐵 ∈ 𝑥 ↔ ∀𝑦(𝑦 ∈ 𝑥 → 𝐵 ∈ 𝑥)) |
80 | 78, 79, 68 | 3bitr4g 313 |
. . . 4
⊢ (𝑥 = (rec(𝐹, 𝐴)‘ω) → (∀𝑦 ∈ 𝑥 𝐵 ∈ 𝑥 ↔ ∀𝑦 ∈ (rec(𝐹, 𝐴)‘ω)𝐵 ∈ (rec(𝐹, 𝐴)‘ω))) |
81 | 71, 80 | anbi12d 630 |
. . 3
⊢ (𝑥 = (rec(𝐹, 𝐴)‘ω) → ((𝐴 ⊆ 𝑥 ∧ ∀𝑦 ∈ 𝑥 𝐵 ∈ 𝑥) ↔ (𝐴 ⊆ (rec(𝐹, 𝐴)‘ω) ∧ ∀𝑦 ∈ (rec(𝐹, 𝐴)‘ω)𝐵 ∈ (rec(𝐹, 𝐴)‘ω)))) |
82 | 70, 81 | spcev 3535 |
. 2
⊢ ((𝐴 ⊆ (rec(𝐹, 𝐴)‘ω) ∧ ∀𝑦 ∈ (rec(𝐹, 𝐴)‘ω)𝐵 ∈ (rec(𝐹, 𝐴)‘ω)) → ∃𝑥(𝐴 ⊆ 𝑥 ∧ ∀𝑦 ∈ 𝑥 𝐵 ∈ 𝑥)) |
83 | 8, 69, 82 | syl2an 595 |
1
⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑦 𝐵 ∈ 𝑊) → ∃𝑥(𝐴 ⊆ 𝑥 ∧ ∀𝑦 ∈ 𝑥 𝐵 ∈ 𝑥)) |