Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  exrecfnlem Structured version   Visualization version   GIF version

Theorem exrecfnlem 35477
Description: Lemma for exrecfn 35478. (Contributed by ML, 30-Mar-2022.)
Hypothesis
Ref Expression
exrecfnlem.1 𝐹 = (𝑧 ∈ V ↦ (𝑧 ∪ ran (𝑦𝑧𝐵)))
Assertion
Ref Expression
exrecfnlem ((𝐴𝑉 ∧ ∀𝑦 𝐵𝑊) → ∃𝑥(𝐴𝑥 ∧ ∀𝑦𝑥 𝐵𝑥))
Distinct variable groups:   𝑦,𝐴,𝑧,𝑥   𝑥,𝐵,𝑧   𝑥,𝐹   𝑦,𝑊
Allowed substitution hints:   𝐵(𝑦)   𝐹(𝑦,𝑧)   𝑉(𝑥,𝑦,𝑧)   𝑊(𝑥,𝑧)

Proof of Theorem exrecfnlem
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 rdg0g 8229 . . 3 (𝐴𝑉 → (rec(𝐹, 𝐴)‘∅) = 𝐴)
2 peano1 7710 . . . 4 ∅ ∈ ω
3 omelon 9334 . . . . 5 ω ∈ On
4 limom 7703 . . . . 5 Lim ω
5 rdglimss 35475 . . . . 5 (((ω ∈ On ∧ Lim ω) ∧ ∅ ∈ ω) → (rec(𝐹, 𝐴)‘∅) ⊆ (rec(𝐹, 𝐴)‘ω))
63, 4, 5mpanl12 698 . . . 4 (∅ ∈ ω → (rec(𝐹, 𝐴)‘∅) ⊆ (rec(𝐹, 𝐴)‘ω))
72, 6ax-mp 5 . . 3 (rec(𝐹, 𝐴)‘∅) ⊆ (rec(𝐹, 𝐴)‘ω)
81, 7eqsstrrdi 3972 . 2 (𝐴𝑉𝐴 ⊆ (rec(𝐹, 𝐴)‘ω))
9 rdglim2a 8235 . . . . . . . 8 ((ω ∈ On ∧ Lim ω) → (rec(𝐹, 𝐴)‘ω) = 𝑢 ∈ ω (rec(𝐹, 𝐴)‘𝑢))
103, 4, 9mp2an 688 . . . . . . 7 (rec(𝐹, 𝐴)‘ω) = 𝑢 ∈ ω (rec(𝐹, 𝐴)‘𝑢)
1110eleq2i 2830 . . . . . 6 (𝑦 ∈ (rec(𝐹, 𝐴)‘ω) ↔ 𝑦 𝑢 ∈ ω (rec(𝐹, 𝐴)‘𝑢))
12 eliun 4925 . . . . . 6 (𝑦 𝑢 ∈ ω (rec(𝐹, 𝐴)‘𝑢) ↔ ∃𝑢 ∈ ω 𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢))
1311, 12bitri 274 . . . . 5 (𝑦 ∈ (rec(𝐹, 𝐴)‘ω) ↔ ∃𝑢 ∈ ω 𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢))
14 peano2 7711 . . . . . . . . 9 (𝑢 ∈ ω → suc 𝑢 ∈ ω)
15 nnon 7693 . . . . . . . . . 10 (𝑢 ∈ ω → 𝑢 ∈ On)
16 eqid 2738 . . . . . . . . . . . . 13 (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵) = (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵)
1716elrnmpt1 5856 . . . . . . . . . . . 12 ((𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ∧ 𝐵𝑊) → 𝐵 ∈ ran (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵))
18 elun2 4107 . . . . . . . . . . . 12 (𝐵 ∈ ran (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵) → 𝐵 ∈ ((rec(𝐹, 𝐴)‘𝑢) ∪ ran (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵)))
1917, 18syl 17 . . . . . . . . . . 11 ((𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ∧ 𝐵𝑊) → 𝐵 ∈ ((rec(𝐹, 𝐴)‘𝑢) ∪ ran (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵)))
20 fvex 6769 . . . . . . . . . . . . . 14 (rec(𝐹, 𝐴)‘𝑢) ∈ V
21 exrecfnlem.1 . . . . . . . . . . . . . . . . . . . 20 𝐹 = (𝑧 ∈ V ↦ (𝑧 ∪ ran (𝑦𝑧𝐵)))
22 nfcv 2906 . . . . . . . . . . . . . . . . . . . . 21 𝑦V
23 nfcv 2906 . . . . . . . . . . . . . . . . . . . . . 22 𝑦𝑧
24 nfmpt1 5178 . . . . . . . . . . . . . . . . . . . . . . 23 𝑦(𝑦𝑧𝐵)
2524nfrn 5850 . . . . . . . . . . . . . . . . . . . . . 22 𝑦ran (𝑦𝑧𝐵)
2623, 25nfun 4095 . . . . . . . . . . . . . . . . . . . . 21 𝑦(𝑧 ∪ ran (𝑦𝑧𝐵))
2722, 26nfmpt 5177 . . . . . . . . . . . . . . . . . . . 20 𝑦(𝑧 ∈ V ↦ (𝑧 ∪ ran (𝑦𝑧𝐵)))
2821, 27nfcxfr 2904 . . . . . . . . . . . . . . . . . . 19 𝑦𝐹
29 nfcv 2906 . . . . . . . . . . . . . . . . . . 19 𝑦𝐴
3028, 29nfrdg 8216 . . . . . . . . . . . . . . . . . 18 𝑦rec(𝐹, 𝐴)
31 nfcv 2906 . . . . . . . . . . . . . . . . . 18 𝑦𝑢
3230, 31nffv 6766 . . . . . . . . . . . . . . . . 17 𝑦(rec(𝐹, 𝐴)‘𝑢)
3332mptexgf 7080 . . . . . . . . . . . . . . . 16 ((rec(𝐹, 𝐴)‘𝑢) ∈ V → (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵) ∈ V)
3420, 33ax-mp 5 . . . . . . . . . . . . . . 15 (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵) ∈ V
3534rnex 7733 . . . . . . . . . . . . . 14 ran (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵) ∈ V
3620, 35unex 7574 . . . . . . . . . . . . 13 ((rec(𝐹, 𝐴)‘𝑢) ∪ ran (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵)) ∈ V
37 nfcv 2906 . . . . . . . . . . . . . 14 𝑧𝐴
38 nfcv 2906 . . . . . . . . . . . . . 14 𝑧𝑢
39 nfmpt1 5178 . . . . . . . . . . . . . . . . . 18 𝑧(𝑧 ∈ V ↦ (𝑧 ∪ ran (𝑦𝑧𝐵)))
4021, 39nfcxfr 2904 . . . . . . . . . . . . . . . . 17 𝑧𝐹
4140, 37nfrdg 8216 . . . . . . . . . . . . . . . 16 𝑧rec(𝐹, 𝐴)
4241, 38nffv 6766 . . . . . . . . . . . . . . 15 𝑧(rec(𝐹, 𝐴)‘𝑢)
43 nfcv 2906 . . . . . . . . . . . . . . . . 17 𝑧𝐵
4442, 43nfmpt 5177 . . . . . . . . . . . . . . . 16 𝑧(𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵)
4544nfrn 5850 . . . . . . . . . . . . . . 15 𝑧ran (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵)
4642, 45nfun 4095 . . . . . . . . . . . . . 14 𝑧((rec(𝐹, 𝐴)‘𝑢) ∪ ran (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵))
47 rdgeq1 8213 . . . . . . . . . . . . . . 15 (𝐹 = (𝑧 ∈ V ↦ (𝑧 ∪ ran (𝑦𝑧𝐵))) → rec(𝐹, 𝐴) = rec((𝑧 ∈ V ↦ (𝑧 ∪ ran (𝑦𝑧𝐵))), 𝐴))
4821, 47ax-mp 5 . . . . . . . . . . . . . 14 rec(𝐹, 𝐴) = rec((𝑧 ∈ V ↦ (𝑧 ∪ ran (𝑦𝑧𝐵))), 𝐴)
49 id 22 . . . . . . . . . . . . . . 15 (𝑧 = (rec(𝐹, 𝐴)‘𝑢) → 𝑧 = (rec(𝐹, 𝐴)‘𝑢))
5032nfeq2 2923 . . . . . . . . . . . . . . . . 17 𝑦 𝑧 = (rec(𝐹, 𝐴)‘𝑢)
51 eqidd 2739 . . . . . . . . . . . . . . . . 17 (𝑧 = (rec(𝐹, 𝐴)‘𝑢) → 𝐵 = 𝐵)
5250, 49, 51mpteq12df 5156 . . . . . . . . . . . . . . . 16 (𝑧 = (rec(𝐹, 𝐴)‘𝑢) → (𝑦𝑧𝐵) = (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵))
5352rneqd 5836 . . . . . . . . . . . . . . 15 (𝑧 = (rec(𝐹, 𝐴)‘𝑢) → ran (𝑦𝑧𝐵) = ran (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵))
5449, 53uneq12d 4094 . . . . . . . . . . . . . 14 (𝑧 = (rec(𝐹, 𝐴)‘𝑢) → (𝑧 ∪ ran (𝑦𝑧𝐵)) = ((rec(𝐹, 𝐴)‘𝑢) ∪ ran (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵)))
5537, 38, 46, 48, 54rdgsucmptf 8230 . . . . . . . . . . . . 13 ((𝑢 ∈ On ∧ ((rec(𝐹, 𝐴)‘𝑢) ∪ ran (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵)) ∈ V) → (rec(𝐹, 𝐴)‘suc 𝑢) = ((rec(𝐹, 𝐴)‘𝑢) ∪ ran (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵)))
5636, 55mpan2 687 . . . . . . . . . . . 12 (𝑢 ∈ On → (rec(𝐹, 𝐴)‘suc 𝑢) = ((rec(𝐹, 𝐴)‘𝑢) ∪ ran (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵)))
5756eleq2d 2824 . . . . . . . . . . 11 (𝑢 ∈ On → (𝐵 ∈ (rec(𝐹, 𝐴)‘suc 𝑢) ↔ 𝐵 ∈ ((rec(𝐹, 𝐴)‘𝑢) ∪ ran (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵))))
5819, 57syl5ibr 245 . . . . . . . . . 10 (𝑢 ∈ On → ((𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ∧ 𝐵𝑊) → 𝐵 ∈ (rec(𝐹, 𝐴)‘suc 𝑢)))
5915, 58syl 17 . . . . . . . . 9 (𝑢 ∈ ω → ((𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ∧ 𝐵𝑊) → 𝐵 ∈ (rec(𝐹, 𝐴)‘suc 𝑢)))
60 rdgellim 35474 . . . . . . . . . 10 (((ω ∈ On ∧ Lim ω) ∧ suc 𝑢 ∈ ω) → (𝐵 ∈ (rec(𝐹, 𝐴)‘suc 𝑢) → 𝐵 ∈ (rec(𝐹, 𝐴)‘ω)))
613, 4, 60mpanl12 698 . . . . . . . . 9 (suc 𝑢 ∈ ω → (𝐵 ∈ (rec(𝐹, 𝐴)‘suc 𝑢) → 𝐵 ∈ (rec(𝐹, 𝐴)‘ω)))
6214, 59, 61sylsyld 61 . . . . . . . 8 (𝑢 ∈ ω → ((𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ∧ 𝐵𝑊) → 𝐵 ∈ (rec(𝐹, 𝐴)‘ω)))
6362expd 415 . . . . . . 7 (𝑢 ∈ ω → (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) → (𝐵𝑊𝐵 ∈ (rec(𝐹, 𝐴)‘ω))))
6463com3r 87 . . . . . 6 (𝐵𝑊 → (𝑢 ∈ ω → (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) → 𝐵 ∈ (rec(𝐹, 𝐴)‘ω))))
6564rexlimdv 3211 . . . . 5 (𝐵𝑊 → (∃𝑢 ∈ ω 𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) → 𝐵 ∈ (rec(𝐹, 𝐴)‘ω)))
6613, 65syl5bi 241 . . . 4 (𝐵𝑊 → (𝑦 ∈ (rec(𝐹, 𝐴)‘ω) → 𝐵 ∈ (rec(𝐹, 𝐴)‘ω)))
6766alimi 1815 . . 3 (∀𝑦 𝐵𝑊 → ∀𝑦(𝑦 ∈ (rec(𝐹, 𝐴)‘ω) → 𝐵 ∈ (rec(𝐹, 𝐴)‘ω)))
68 df-ral 3068 . . 3 (∀𝑦 ∈ (rec(𝐹, 𝐴)‘ω)𝐵 ∈ (rec(𝐹, 𝐴)‘ω) ↔ ∀𝑦(𝑦 ∈ (rec(𝐹, 𝐴)‘ω) → 𝐵 ∈ (rec(𝐹, 𝐴)‘ω)))
6967, 68sylibr 233 . 2 (∀𝑦 𝐵𝑊 → ∀𝑦 ∈ (rec(𝐹, 𝐴)‘ω)𝐵 ∈ (rec(𝐹, 𝐴)‘ω))
70 fvex 6769 . . 3 (rec(𝐹, 𝐴)‘ω) ∈ V
71 sseq2 3943 . . . 4 (𝑥 = (rec(𝐹, 𝐴)‘ω) → (𝐴𝑥𝐴 ⊆ (rec(𝐹, 𝐴)‘ω)))
72 nfcv 2906 . . . . . . . 8 𝑦ω
7330, 72nffv 6766 . . . . . . 7 𝑦(rec(𝐹, 𝐴)‘ω)
7473nfeq2 2923 . . . . . 6 𝑦 𝑥 = (rec(𝐹, 𝐴)‘ω)
75 eleq2 2827 . . . . . . 7 (𝑥 = (rec(𝐹, 𝐴)‘ω) → (𝑦𝑥𝑦 ∈ (rec(𝐹, 𝐴)‘ω)))
76 eleq2 2827 . . . . . . 7 (𝑥 = (rec(𝐹, 𝐴)‘ω) → (𝐵𝑥𝐵 ∈ (rec(𝐹, 𝐴)‘ω)))
7775, 76imbi12d 344 . . . . . 6 (𝑥 = (rec(𝐹, 𝐴)‘ω) → ((𝑦𝑥𝐵𝑥) ↔ (𝑦 ∈ (rec(𝐹, 𝐴)‘ω) → 𝐵 ∈ (rec(𝐹, 𝐴)‘ω))))
7874, 77albid 2218 . . . . 5 (𝑥 = (rec(𝐹, 𝐴)‘ω) → (∀𝑦(𝑦𝑥𝐵𝑥) ↔ ∀𝑦(𝑦 ∈ (rec(𝐹, 𝐴)‘ω) → 𝐵 ∈ (rec(𝐹, 𝐴)‘ω))))
79 df-ral 3068 . . . . 5 (∀𝑦𝑥 𝐵𝑥 ↔ ∀𝑦(𝑦𝑥𝐵𝑥))
8078, 79, 683bitr4g 313 . . . 4 (𝑥 = (rec(𝐹, 𝐴)‘ω) → (∀𝑦𝑥 𝐵𝑥 ↔ ∀𝑦 ∈ (rec(𝐹, 𝐴)‘ω)𝐵 ∈ (rec(𝐹, 𝐴)‘ω)))
8171, 80anbi12d 630 . . 3 (𝑥 = (rec(𝐹, 𝐴)‘ω) → ((𝐴𝑥 ∧ ∀𝑦𝑥 𝐵𝑥) ↔ (𝐴 ⊆ (rec(𝐹, 𝐴)‘ω) ∧ ∀𝑦 ∈ (rec(𝐹, 𝐴)‘ω)𝐵 ∈ (rec(𝐹, 𝐴)‘ω))))
8270, 81spcev 3535 . 2 ((𝐴 ⊆ (rec(𝐹, 𝐴)‘ω) ∧ ∀𝑦 ∈ (rec(𝐹, 𝐴)‘ω)𝐵 ∈ (rec(𝐹, 𝐴)‘ω)) → ∃𝑥(𝐴𝑥 ∧ ∀𝑦𝑥 𝐵𝑥))
838, 69, 82syl2an 595 1 ((𝐴𝑉 ∧ ∀𝑦 𝐵𝑊) → ∃𝑥(𝐴𝑥 ∧ ∀𝑦𝑥 𝐵𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1537   = wceq 1539  wex 1783  wcel 2108  wral 3063  wrex 3064  Vcvv 3422  cun 3881  wss 3883  c0 4253   ciun 4921  cmpt 5153  ran crn 5581  Oncon0 6251  Lim wlim 6252  suc csuc 6253  cfv 6418  ωcom 7687  reccrdg 8211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566  ax-inf2 9329
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212
This theorem is referenced by:  exrecfn  35478
  Copyright terms: Public domain W3C validator