Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  exrecfnlem Structured version   Visualization version   GIF version

Theorem exrecfnlem 35069
Description: Lemma for exrecfn 35070. (Contributed by ML, 30-Mar-2022.)
Hypothesis
Ref Expression
exrecfnlem.1 𝐹 = (𝑧 ∈ V ↦ (𝑧 ∪ ran (𝑦𝑧𝐵)))
Assertion
Ref Expression
exrecfnlem ((𝐴𝑉 ∧ ∀𝑦 𝐵𝑊) → ∃𝑥(𝐴𝑥 ∧ ∀𝑦𝑥 𝐵𝑥))
Distinct variable groups:   𝑦,𝐴,𝑧,𝑥   𝑥,𝐵,𝑧   𝑥,𝐹   𝑦,𝑊
Allowed substitution hints:   𝐵(𝑦)   𝐹(𝑦,𝑧)   𝑉(𝑥,𝑦,𝑧)   𝑊(𝑥,𝑧)

Proof of Theorem exrecfnlem
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 rdg0g 8074 . . 3 (𝐴𝑉 → (rec(𝐹, 𝐴)‘∅) = 𝐴)
2 peano1 7601 . . . 4 ∅ ∈ ω
3 omelon 9135 . . . . 5 ω ∈ On
4 limom 7595 . . . . 5 Lim ω
5 rdglimss 35067 . . . . 5 (((ω ∈ On ∧ Lim ω) ∧ ∅ ∈ ω) → (rec(𝐹, 𝐴)‘∅) ⊆ (rec(𝐹, 𝐴)‘ω))
63, 4, 5mpanl12 702 . . . 4 (∅ ∈ ω → (rec(𝐹, 𝐴)‘∅) ⊆ (rec(𝐹, 𝐴)‘ω))
72, 6ax-mp 5 . . 3 (rec(𝐹, 𝐴)‘∅) ⊆ (rec(𝐹, 𝐴)‘ω)
81, 7eqsstrrdi 3948 . 2 (𝐴𝑉𝐴 ⊆ (rec(𝐹, 𝐴)‘ω))
9 rdglim2a 8080 . . . . . . . 8 ((ω ∈ On ∧ Lim ω) → (rec(𝐹, 𝐴)‘ω) = 𝑢 ∈ ω (rec(𝐹, 𝐴)‘𝑢))
103, 4, 9mp2an 692 . . . . . . 7 (rec(𝐹, 𝐴)‘ω) = 𝑢 ∈ ω (rec(𝐹, 𝐴)‘𝑢)
1110eleq2i 2844 . . . . . 6 (𝑦 ∈ (rec(𝐹, 𝐴)‘ω) ↔ 𝑦 𝑢 ∈ ω (rec(𝐹, 𝐴)‘𝑢))
12 eliun 4888 . . . . . 6 (𝑦 𝑢 ∈ ω (rec(𝐹, 𝐴)‘𝑢) ↔ ∃𝑢 ∈ ω 𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢))
1311, 12bitri 278 . . . . 5 (𝑦 ∈ (rec(𝐹, 𝐴)‘ω) ↔ ∃𝑢 ∈ ω 𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢))
14 peano2 7602 . . . . . . . . 9 (𝑢 ∈ ω → suc 𝑢 ∈ ω)
15 nnon 7586 . . . . . . . . . 10 (𝑢 ∈ ω → 𝑢 ∈ On)
16 eqid 2759 . . . . . . . . . . . . 13 (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵) = (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵)
1716elrnmpt1 5800 . . . . . . . . . . . 12 ((𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ∧ 𝐵𝑊) → 𝐵 ∈ ran (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵))
18 elun2 4083 . . . . . . . . . . . 12 (𝐵 ∈ ran (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵) → 𝐵 ∈ ((rec(𝐹, 𝐴)‘𝑢) ∪ ran (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵)))
1917, 18syl 17 . . . . . . . . . . 11 ((𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ∧ 𝐵𝑊) → 𝐵 ∈ ((rec(𝐹, 𝐴)‘𝑢) ∪ ran (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵)))
20 fvex 6672 . . . . . . . . . . . . . 14 (rec(𝐹, 𝐴)‘𝑢) ∈ V
21 exrecfnlem.1 . . . . . . . . . . . . . . . . . . . 20 𝐹 = (𝑧 ∈ V ↦ (𝑧 ∪ ran (𝑦𝑧𝐵)))
22 nfcv 2920 . . . . . . . . . . . . . . . . . . . . 21 𝑦V
23 nfcv 2920 . . . . . . . . . . . . . . . . . . . . . 22 𝑦𝑧
24 nfmpt1 5131 . . . . . . . . . . . . . . . . . . . . . . 23 𝑦(𝑦𝑧𝐵)
2524nfrn 5794 . . . . . . . . . . . . . . . . . . . . . 22 𝑦ran (𝑦𝑧𝐵)
2623, 25nfun 4071 . . . . . . . . . . . . . . . . . . . . 21 𝑦(𝑧 ∪ ran (𝑦𝑧𝐵))
2722, 26nfmpt 5130 . . . . . . . . . . . . . . . . . . . 20 𝑦(𝑧 ∈ V ↦ (𝑧 ∪ ran (𝑦𝑧𝐵)))
2821, 27nfcxfr 2918 . . . . . . . . . . . . . . . . . . 19 𝑦𝐹
29 nfcv 2920 . . . . . . . . . . . . . . . . . . 19 𝑦𝐴
3028, 29nfrdg 8061 . . . . . . . . . . . . . . . . . 18 𝑦rec(𝐹, 𝐴)
31 nfcv 2920 . . . . . . . . . . . . . . . . . 18 𝑦𝑢
3230, 31nffv 6669 . . . . . . . . . . . . . . . . 17 𝑦(rec(𝐹, 𝐴)‘𝑢)
3332mptexgf 6977 . . . . . . . . . . . . . . . 16 ((rec(𝐹, 𝐴)‘𝑢) ∈ V → (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵) ∈ V)
3420, 33ax-mp 5 . . . . . . . . . . . . . . 15 (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵) ∈ V
3534rnex 7623 . . . . . . . . . . . . . 14 ran (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵) ∈ V
3620, 35unex 7468 . . . . . . . . . . . . 13 ((rec(𝐹, 𝐴)‘𝑢) ∪ ran (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵)) ∈ V
37 nfcv 2920 . . . . . . . . . . . . . 14 𝑧𝐴
38 nfcv 2920 . . . . . . . . . . . . . 14 𝑧𝑢
39 nfmpt1 5131 . . . . . . . . . . . . . . . . . 18 𝑧(𝑧 ∈ V ↦ (𝑧 ∪ ran (𝑦𝑧𝐵)))
4021, 39nfcxfr 2918 . . . . . . . . . . . . . . . . 17 𝑧𝐹
4140, 37nfrdg 8061 . . . . . . . . . . . . . . . 16 𝑧rec(𝐹, 𝐴)
4241, 38nffv 6669 . . . . . . . . . . . . . . 15 𝑧(rec(𝐹, 𝐴)‘𝑢)
43 nfcv 2920 . . . . . . . . . . . . . . . . 17 𝑧𝐵
4442, 43nfmpt 5130 . . . . . . . . . . . . . . . 16 𝑧(𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵)
4544nfrn 5794 . . . . . . . . . . . . . . 15 𝑧ran (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵)
4642, 45nfun 4071 . . . . . . . . . . . . . 14 𝑧((rec(𝐹, 𝐴)‘𝑢) ∪ ran (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵))
47 rdgeq1 8058 . . . . . . . . . . . . . . 15 (𝐹 = (𝑧 ∈ V ↦ (𝑧 ∪ ran (𝑦𝑧𝐵))) → rec(𝐹, 𝐴) = rec((𝑧 ∈ V ↦ (𝑧 ∪ ran (𝑦𝑧𝐵))), 𝐴))
4821, 47ax-mp 5 . . . . . . . . . . . . . 14 rec(𝐹, 𝐴) = rec((𝑧 ∈ V ↦ (𝑧 ∪ ran (𝑦𝑧𝐵))), 𝐴)
49 id 22 . . . . . . . . . . . . . . 15 (𝑧 = (rec(𝐹, 𝐴)‘𝑢) → 𝑧 = (rec(𝐹, 𝐴)‘𝑢))
5032nfeq2 2937 . . . . . . . . . . . . . . . . 17 𝑦 𝑧 = (rec(𝐹, 𝐴)‘𝑢)
51 eqidd 2760 . . . . . . . . . . . . . . . . 17 (𝑧 = (rec(𝐹, 𝐴)‘𝑢) → 𝐵 = 𝐵)
5250, 49, 51mpteq12df 5115 . . . . . . . . . . . . . . . 16 (𝑧 = (rec(𝐹, 𝐴)‘𝑢) → (𝑦𝑧𝐵) = (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵))
5352rneqd 5780 . . . . . . . . . . . . . . 15 (𝑧 = (rec(𝐹, 𝐴)‘𝑢) → ran (𝑦𝑧𝐵) = ran (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵))
5449, 53uneq12d 4070 . . . . . . . . . . . . . 14 (𝑧 = (rec(𝐹, 𝐴)‘𝑢) → (𝑧 ∪ ran (𝑦𝑧𝐵)) = ((rec(𝐹, 𝐴)‘𝑢) ∪ ran (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵)))
5537, 38, 46, 48, 54rdgsucmptf 8075 . . . . . . . . . . . . 13 ((𝑢 ∈ On ∧ ((rec(𝐹, 𝐴)‘𝑢) ∪ ran (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵)) ∈ V) → (rec(𝐹, 𝐴)‘suc 𝑢) = ((rec(𝐹, 𝐴)‘𝑢) ∪ ran (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵)))
5636, 55mpan2 691 . . . . . . . . . . . 12 (𝑢 ∈ On → (rec(𝐹, 𝐴)‘suc 𝑢) = ((rec(𝐹, 𝐴)‘𝑢) ∪ ran (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵)))
5756eleq2d 2838 . . . . . . . . . . 11 (𝑢 ∈ On → (𝐵 ∈ (rec(𝐹, 𝐴)‘suc 𝑢) ↔ 𝐵 ∈ ((rec(𝐹, 𝐴)‘𝑢) ∪ ran (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵))))
5819, 57syl5ibr 249 . . . . . . . . . 10 (𝑢 ∈ On → ((𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ∧ 𝐵𝑊) → 𝐵 ∈ (rec(𝐹, 𝐴)‘suc 𝑢)))
5915, 58syl 17 . . . . . . . . 9 (𝑢 ∈ ω → ((𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ∧ 𝐵𝑊) → 𝐵 ∈ (rec(𝐹, 𝐴)‘suc 𝑢)))
60 rdgellim 35066 . . . . . . . . . 10 (((ω ∈ On ∧ Lim ω) ∧ suc 𝑢 ∈ ω) → (𝐵 ∈ (rec(𝐹, 𝐴)‘suc 𝑢) → 𝐵 ∈ (rec(𝐹, 𝐴)‘ω)))
613, 4, 60mpanl12 702 . . . . . . . . 9 (suc 𝑢 ∈ ω → (𝐵 ∈ (rec(𝐹, 𝐴)‘suc 𝑢) → 𝐵 ∈ (rec(𝐹, 𝐴)‘ω)))
6214, 59, 61sylsyld 61 . . . . . . . 8 (𝑢 ∈ ω → ((𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ∧ 𝐵𝑊) → 𝐵 ∈ (rec(𝐹, 𝐴)‘ω)))
6362expd 420 . . . . . . 7 (𝑢 ∈ ω → (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) → (𝐵𝑊𝐵 ∈ (rec(𝐹, 𝐴)‘ω))))
6463com3r 87 . . . . . 6 (𝐵𝑊 → (𝑢 ∈ ω → (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) → 𝐵 ∈ (rec(𝐹, 𝐴)‘ω))))
6564rexlimdv 3208 . . . . 5 (𝐵𝑊 → (∃𝑢 ∈ ω 𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) → 𝐵 ∈ (rec(𝐹, 𝐴)‘ω)))
6613, 65syl5bi 245 . . . 4 (𝐵𝑊 → (𝑦 ∈ (rec(𝐹, 𝐴)‘ω) → 𝐵 ∈ (rec(𝐹, 𝐴)‘ω)))
6766alimi 1814 . . 3 (∀𝑦 𝐵𝑊 → ∀𝑦(𝑦 ∈ (rec(𝐹, 𝐴)‘ω) → 𝐵 ∈ (rec(𝐹, 𝐴)‘ω)))
68 df-ral 3076 . . 3 (∀𝑦 ∈ (rec(𝐹, 𝐴)‘ω)𝐵 ∈ (rec(𝐹, 𝐴)‘ω) ↔ ∀𝑦(𝑦 ∈ (rec(𝐹, 𝐴)‘ω) → 𝐵 ∈ (rec(𝐹, 𝐴)‘ω)))
6967, 68sylibr 237 . 2 (∀𝑦 𝐵𝑊 → ∀𝑦 ∈ (rec(𝐹, 𝐴)‘ω)𝐵 ∈ (rec(𝐹, 𝐴)‘ω))
70 fvex 6672 . . 3 (rec(𝐹, 𝐴)‘ω) ∈ V
71 sseq2 3919 . . . 4 (𝑥 = (rec(𝐹, 𝐴)‘ω) → (𝐴𝑥𝐴 ⊆ (rec(𝐹, 𝐴)‘ω)))
72 nfcv 2920 . . . . . . . 8 𝑦ω
7330, 72nffv 6669 . . . . . . 7 𝑦(rec(𝐹, 𝐴)‘ω)
7473nfeq2 2937 . . . . . 6 𝑦 𝑥 = (rec(𝐹, 𝐴)‘ω)
75 eleq2 2841 . . . . . . 7 (𝑥 = (rec(𝐹, 𝐴)‘ω) → (𝑦𝑥𝑦 ∈ (rec(𝐹, 𝐴)‘ω)))
76 eleq2 2841 . . . . . . 7 (𝑥 = (rec(𝐹, 𝐴)‘ω) → (𝐵𝑥𝐵 ∈ (rec(𝐹, 𝐴)‘ω)))
7775, 76imbi12d 349 . . . . . 6 (𝑥 = (rec(𝐹, 𝐴)‘ω) → ((𝑦𝑥𝐵𝑥) ↔ (𝑦 ∈ (rec(𝐹, 𝐴)‘ω) → 𝐵 ∈ (rec(𝐹, 𝐴)‘ω))))
7874, 77albid 2223 . . . . 5 (𝑥 = (rec(𝐹, 𝐴)‘ω) → (∀𝑦(𝑦𝑥𝐵𝑥) ↔ ∀𝑦(𝑦 ∈ (rec(𝐹, 𝐴)‘ω) → 𝐵 ∈ (rec(𝐹, 𝐴)‘ω))))
79 df-ral 3076 . . . . 5 (∀𝑦𝑥 𝐵𝑥 ↔ ∀𝑦(𝑦𝑥𝐵𝑥))
8078, 79, 683bitr4g 318 . . . 4 (𝑥 = (rec(𝐹, 𝐴)‘ω) → (∀𝑦𝑥 𝐵𝑥 ↔ ∀𝑦 ∈ (rec(𝐹, 𝐴)‘ω)𝐵 ∈ (rec(𝐹, 𝐴)‘ω)))
8171, 80anbi12d 634 . . 3 (𝑥 = (rec(𝐹, 𝐴)‘ω) → ((𝐴𝑥 ∧ ∀𝑦𝑥 𝐵𝑥) ↔ (𝐴 ⊆ (rec(𝐹, 𝐴)‘ω) ∧ ∀𝑦 ∈ (rec(𝐹, 𝐴)‘ω)𝐵 ∈ (rec(𝐹, 𝐴)‘ω))))
8270, 81spcev 3526 . 2 ((𝐴 ⊆ (rec(𝐹, 𝐴)‘ω) ∧ ∀𝑦 ∈ (rec(𝐹, 𝐴)‘ω)𝐵 ∈ (rec(𝐹, 𝐴)‘ω)) → ∃𝑥(𝐴𝑥 ∧ ∀𝑦𝑥 𝐵𝑥))
838, 69, 82syl2an 599 1 ((𝐴𝑉 ∧ ∀𝑦 𝐵𝑊) → ∃𝑥(𝐴𝑥 ∧ ∀𝑦𝑥 𝐵𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 400  wal 1537   = wceq 1539  wex 1782  wcel 2112  wral 3071  wrex 3072  Vcvv 3410  cun 3857  wss 3859  c0 4226   ciun 4884  cmpt 5113  ran crn 5526  Oncon0 6170  Lim wlim 6171  suc csuc 6172  cfv 6336  ωcom 7580  reccrdg 8056
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pr 5299  ax-un 7460  ax-inf2 9130
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-ral 3076  df-rex 3077  df-reu 3078  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-pss 3878  df-nul 4227  df-if 4422  df-pw 4497  df-sn 4524  df-pr 4526  df-tp 4528  df-op 4530  df-uni 4800  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5431  df-eprel 5436  df-po 5444  df-so 5445  df-fr 5484  df-we 5486  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6127  df-ord 6173  df-on 6174  df-lim 6175  df-suc 6176  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-om 7581  df-wrecs 7958  df-recs 8019  df-rdg 8057
This theorem is referenced by:  exrecfn  35070
  Copyright terms: Public domain W3C validator