Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  exrecfnlem Structured version   Visualization version   GIF version

Theorem exrecfnlem 37374
Description: Lemma for exrecfn 37375. (Contributed by ML, 30-Mar-2022.)
Hypothesis
Ref Expression
exrecfnlem.1 𝐹 = (𝑧 ∈ V ↦ (𝑧 ∪ ran (𝑦𝑧𝐵)))
Assertion
Ref Expression
exrecfnlem ((𝐴𝑉 ∧ ∀𝑦 𝐵𝑊) → ∃𝑥(𝐴𝑥 ∧ ∀𝑦𝑥 𝐵𝑥))
Distinct variable groups:   𝑦,𝐴,𝑧,𝑥   𝑥,𝐵,𝑧   𝑥,𝐹   𝑦,𝑊
Allowed substitution hints:   𝐵(𝑦)   𝐹(𝑦,𝑧)   𝑉(𝑥,𝑦,𝑧)   𝑊(𝑥,𝑧)

Proof of Theorem exrecfnlem
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 rdg0g 8398 . . 3 (𝐴𝑉 → (rec(𝐹, 𝐴)‘∅) = 𝐴)
2 peano1 7868 . . . 4 ∅ ∈ ω
3 omelon 9606 . . . . 5 ω ∈ On
4 limom 7861 . . . . 5 Lim ω
5 rdglimss 37372 . . . . 5 (((ω ∈ On ∧ Lim ω) ∧ ∅ ∈ ω) → (rec(𝐹, 𝐴)‘∅) ⊆ (rec(𝐹, 𝐴)‘ω))
63, 4, 5mpanl12 702 . . . 4 (∅ ∈ ω → (rec(𝐹, 𝐴)‘∅) ⊆ (rec(𝐹, 𝐴)‘ω))
72, 6ax-mp 5 . . 3 (rec(𝐹, 𝐴)‘∅) ⊆ (rec(𝐹, 𝐴)‘ω)
81, 7eqsstrrdi 3995 . 2 (𝐴𝑉𝐴 ⊆ (rec(𝐹, 𝐴)‘ω))
9 rdglim2a 8404 . . . . . . . 8 ((ω ∈ On ∧ Lim ω) → (rec(𝐹, 𝐴)‘ω) = 𝑢 ∈ ω (rec(𝐹, 𝐴)‘𝑢))
103, 4, 9mp2an 692 . . . . . . 7 (rec(𝐹, 𝐴)‘ω) = 𝑢 ∈ ω (rec(𝐹, 𝐴)‘𝑢)
1110eleq2i 2821 . . . . . 6 (𝑦 ∈ (rec(𝐹, 𝐴)‘ω) ↔ 𝑦 𝑢 ∈ ω (rec(𝐹, 𝐴)‘𝑢))
12 eliun 4962 . . . . . 6 (𝑦 𝑢 ∈ ω (rec(𝐹, 𝐴)‘𝑢) ↔ ∃𝑢 ∈ ω 𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢))
1311, 12bitri 275 . . . . 5 (𝑦 ∈ (rec(𝐹, 𝐴)‘ω) ↔ ∃𝑢 ∈ ω 𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢))
14 peano2 7869 . . . . . . . . 9 (𝑢 ∈ ω → suc 𝑢 ∈ ω)
15 nnon 7851 . . . . . . . . . 10 (𝑢 ∈ ω → 𝑢 ∈ On)
16 eqid 2730 . . . . . . . . . . . . 13 (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵) = (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵)
1716elrnmpt1 5927 . . . . . . . . . . . 12 ((𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ∧ 𝐵𝑊) → 𝐵 ∈ ran (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵))
18 elun2 4149 . . . . . . . . . . . 12 (𝐵 ∈ ran (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵) → 𝐵 ∈ ((rec(𝐹, 𝐴)‘𝑢) ∪ ran (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵)))
1917, 18syl 17 . . . . . . . . . . 11 ((𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ∧ 𝐵𝑊) → 𝐵 ∈ ((rec(𝐹, 𝐴)‘𝑢) ∪ ran (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵)))
20 fvex 6874 . . . . . . . . . . . . . 14 (rec(𝐹, 𝐴)‘𝑢) ∈ V
21 exrecfnlem.1 . . . . . . . . . . . . . . . . . . . 20 𝐹 = (𝑧 ∈ V ↦ (𝑧 ∪ ran (𝑦𝑧𝐵)))
22 nfcv 2892 . . . . . . . . . . . . . . . . . . . . 21 𝑦V
23 nfcv 2892 . . . . . . . . . . . . . . . . . . . . . 22 𝑦𝑧
24 nfmpt1 5209 . . . . . . . . . . . . . . . . . . . . . . 23 𝑦(𝑦𝑧𝐵)
2524nfrn 5919 . . . . . . . . . . . . . . . . . . . . . 22 𝑦ran (𝑦𝑧𝐵)
2623, 25nfun 4136 . . . . . . . . . . . . . . . . . . . . 21 𝑦(𝑧 ∪ ran (𝑦𝑧𝐵))
2722, 26nfmpt 5208 . . . . . . . . . . . . . . . . . . . 20 𝑦(𝑧 ∈ V ↦ (𝑧 ∪ ran (𝑦𝑧𝐵)))
2821, 27nfcxfr 2890 . . . . . . . . . . . . . . . . . . 19 𝑦𝐹
29 nfcv 2892 . . . . . . . . . . . . . . . . . . 19 𝑦𝐴
3028, 29nfrdg 8385 . . . . . . . . . . . . . . . . . 18 𝑦rec(𝐹, 𝐴)
31 nfcv 2892 . . . . . . . . . . . . . . . . . 18 𝑦𝑢
3230, 31nffv 6871 . . . . . . . . . . . . . . . . 17 𝑦(rec(𝐹, 𝐴)‘𝑢)
3332mptexgf 7199 . . . . . . . . . . . . . . . 16 ((rec(𝐹, 𝐴)‘𝑢) ∈ V → (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵) ∈ V)
3420, 33ax-mp 5 . . . . . . . . . . . . . . 15 (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵) ∈ V
3534rnex 7889 . . . . . . . . . . . . . 14 ran (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵) ∈ V
3620, 35unex 7723 . . . . . . . . . . . . 13 ((rec(𝐹, 𝐴)‘𝑢) ∪ ran (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵)) ∈ V
37 nfcv 2892 . . . . . . . . . . . . . 14 𝑧𝐴
38 nfcv 2892 . . . . . . . . . . . . . 14 𝑧𝑢
39 nfmpt1 5209 . . . . . . . . . . . . . . . . . 18 𝑧(𝑧 ∈ V ↦ (𝑧 ∪ ran (𝑦𝑧𝐵)))
4021, 39nfcxfr 2890 . . . . . . . . . . . . . . . . 17 𝑧𝐹
4140, 37nfrdg 8385 . . . . . . . . . . . . . . . 16 𝑧rec(𝐹, 𝐴)
4241, 38nffv 6871 . . . . . . . . . . . . . . 15 𝑧(rec(𝐹, 𝐴)‘𝑢)
43 nfcv 2892 . . . . . . . . . . . . . . . . 17 𝑧𝐵
4442, 43nfmpt 5208 . . . . . . . . . . . . . . . 16 𝑧(𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵)
4544nfrn 5919 . . . . . . . . . . . . . . 15 𝑧ran (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵)
4642, 45nfun 4136 . . . . . . . . . . . . . 14 𝑧((rec(𝐹, 𝐴)‘𝑢) ∪ ran (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵))
47 rdgeq1 8382 . . . . . . . . . . . . . . 15 (𝐹 = (𝑧 ∈ V ↦ (𝑧 ∪ ran (𝑦𝑧𝐵))) → rec(𝐹, 𝐴) = rec((𝑧 ∈ V ↦ (𝑧 ∪ ran (𝑦𝑧𝐵))), 𝐴))
4821, 47ax-mp 5 . . . . . . . . . . . . . 14 rec(𝐹, 𝐴) = rec((𝑧 ∈ V ↦ (𝑧 ∪ ran (𝑦𝑧𝐵))), 𝐴)
49 id 22 . . . . . . . . . . . . . . 15 (𝑧 = (rec(𝐹, 𝐴)‘𝑢) → 𝑧 = (rec(𝐹, 𝐴)‘𝑢))
5032nfeq2 2910 . . . . . . . . . . . . . . . . 17 𝑦 𝑧 = (rec(𝐹, 𝐴)‘𝑢)
51 eqidd 2731 . . . . . . . . . . . . . . . . 17 (𝑧 = (rec(𝐹, 𝐴)‘𝑢) → 𝐵 = 𝐵)
5250, 49, 51mpteq12df 5194 . . . . . . . . . . . . . . . 16 (𝑧 = (rec(𝐹, 𝐴)‘𝑢) → (𝑦𝑧𝐵) = (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵))
5352rneqd 5905 . . . . . . . . . . . . . . 15 (𝑧 = (rec(𝐹, 𝐴)‘𝑢) → ran (𝑦𝑧𝐵) = ran (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵))
5449, 53uneq12d 4135 . . . . . . . . . . . . . 14 (𝑧 = (rec(𝐹, 𝐴)‘𝑢) → (𝑧 ∪ ran (𝑦𝑧𝐵)) = ((rec(𝐹, 𝐴)‘𝑢) ∪ ran (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵)))
5537, 38, 46, 48, 54rdgsucmptf 8399 . . . . . . . . . . . . 13 ((𝑢 ∈ On ∧ ((rec(𝐹, 𝐴)‘𝑢) ∪ ran (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵)) ∈ V) → (rec(𝐹, 𝐴)‘suc 𝑢) = ((rec(𝐹, 𝐴)‘𝑢) ∪ ran (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵)))
5636, 55mpan2 691 . . . . . . . . . . . 12 (𝑢 ∈ On → (rec(𝐹, 𝐴)‘suc 𝑢) = ((rec(𝐹, 𝐴)‘𝑢) ∪ ran (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵)))
5756eleq2d 2815 . . . . . . . . . . 11 (𝑢 ∈ On → (𝐵 ∈ (rec(𝐹, 𝐴)‘suc 𝑢) ↔ 𝐵 ∈ ((rec(𝐹, 𝐴)‘𝑢) ∪ ran (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ↦ 𝐵))))
5819, 57imbitrrid 246 . . . . . . . . . 10 (𝑢 ∈ On → ((𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ∧ 𝐵𝑊) → 𝐵 ∈ (rec(𝐹, 𝐴)‘suc 𝑢)))
5915, 58syl 17 . . . . . . . . 9 (𝑢 ∈ ω → ((𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ∧ 𝐵𝑊) → 𝐵 ∈ (rec(𝐹, 𝐴)‘suc 𝑢)))
60 rdgellim 37371 . . . . . . . . . 10 (((ω ∈ On ∧ Lim ω) ∧ suc 𝑢 ∈ ω) → (𝐵 ∈ (rec(𝐹, 𝐴)‘suc 𝑢) → 𝐵 ∈ (rec(𝐹, 𝐴)‘ω)))
613, 4, 60mpanl12 702 . . . . . . . . 9 (suc 𝑢 ∈ ω → (𝐵 ∈ (rec(𝐹, 𝐴)‘suc 𝑢) → 𝐵 ∈ (rec(𝐹, 𝐴)‘ω)))
6214, 59, 61sylsyld 61 . . . . . . . 8 (𝑢 ∈ ω → ((𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) ∧ 𝐵𝑊) → 𝐵 ∈ (rec(𝐹, 𝐴)‘ω)))
6362expd 415 . . . . . . 7 (𝑢 ∈ ω → (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) → (𝐵𝑊𝐵 ∈ (rec(𝐹, 𝐴)‘ω))))
6463com3r 87 . . . . . 6 (𝐵𝑊 → (𝑢 ∈ ω → (𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) → 𝐵 ∈ (rec(𝐹, 𝐴)‘ω))))
6564rexlimdv 3133 . . . . 5 (𝐵𝑊 → (∃𝑢 ∈ ω 𝑦 ∈ (rec(𝐹, 𝐴)‘𝑢) → 𝐵 ∈ (rec(𝐹, 𝐴)‘ω)))
6613, 65biimtrid 242 . . . 4 (𝐵𝑊 → (𝑦 ∈ (rec(𝐹, 𝐴)‘ω) → 𝐵 ∈ (rec(𝐹, 𝐴)‘ω)))
6766alimi 1811 . . 3 (∀𝑦 𝐵𝑊 → ∀𝑦(𝑦 ∈ (rec(𝐹, 𝐴)‘ω) → 𝐵 ∈ (rec(𝐹, 𝐴)‘ω)))
68 df-ral 3046 . . 3 (∀𝑦 ∈ (rec(𝐹, 𝐴)‘ω)𝐵 ∈ (rec(𝐹, 𝐴)‘ω) ↔ ∀𝑦(𝑦 ∈ (rec(𝐹, 𝐴)‘ω) → 𝐵 ∈ (rec(𝐹, 𝐴)‘ω)))
6967, 68sylibr 234 . 2 (∀𝑦 𝐵𝑊 → ∀𝑦 ∈ (rec(𝐹, 𝐴)‘ω)𝐵 ∈ (rec(𝐹, 𝐴)‘ω))
70 fvex 6874 . . 3 (rec(𝐹, 𝐴)‘ω) ∈ V
71 sseq2 3976 . . . 4 (𝑥 = (rec(𝐹, 𝐴)‘ω) → (𝐴𝑥𝐴 ⊆ (rec(𝐹, 𝐴)‘ω)))
72 nfcv 2892 . . . . . . . 8 𝑦ω
7330, 72nffv 6871 . . . . . . 7 𝑦(rec(𝐹, 𝐴)‘ω)
7473nfeq2 2910 . . . . . 6 𝑦 𝑥 = (rec(𝐹, 𝐴)‘ω)
75 eleq2 2818 . . . . . . 7 (𝑥 = (rec(𝐹, 𝐴)‘ω) → (𝑦𝑥𝑦 ∈ (rec(𝐹, 𝐴)‘ω)))
76 eleq2 2818 . . . . . . 7 (𝑥 = (rec(𝐹, 𝐴)‘ω) → (𝐵𝑥𝐵 ∈ (rec(𝐹, 𝐴)‘ω)))
7775, 76imbi12d 344 . . . . . 6 (𝑥 = (rec(𝐹, 𝐴)‘ω) → ((𝑦𝑥𝐵𝑥) ↔ (𝑦 ∈ (rec(𝐹, 𝐴)‘ω) → 𝐵 ∈ (rec(𝐹, 𝐴)‘ω))))
7874, 77albid 2223 . . . . 5 (𝑥 = (rec(𝐹, 𝐴)‘ω) → (∀𝑦(𝑦𝑥𝐵𝑥) ↔ ∀𝑦(𝑦 ∈ (rec(𝐹, 𝐴)‘ω) → 𝐵 ∈ (rec(𝐹, 𝐴)‘ω))))
79 df-ral 3046 . . . . 5 (∀𝑦𝑥 𝐵𝑥 ↔ ∀𝑦(𝑦𝑥𝐵𝑥))
8078, 79, 683bitr4g 314 . . . 4 (𝑥 = (rec(𝐹, 𝐴)‘ω) → (∀𝑦𝑥 𝐵𝑥 ↔ ∀𝑦 ∈ (rec(𝐹, 𝐴)‘ω)𝐵 ∈ (rec(𝐹, 𝐴)‘ω)))
8171, 80anbi12d 632 . . 3 (𝑥 = (rec(𝐹, 𝐴)‘ω) → ((𝐴𝑥 ∧ ∀𝑦𝑥 𝐵𝑥) ↔ (𝐴 ⊆ (rec(𝐹, 𝐴)‘ω) ∧ ∀𝑦 ∈ (rec(𝐹, 𝐴)‘ω)𝐵 ∈ (rec(𝐹, 𝐴)‘ω))))
8270, 81spcev 3575 . 2 ((𝐴 ⊆ (rec(𝐹, 𝐴)‘ω) ∧ ∀𝑦 ∈ (rec(𝐹, 𝐴)‘ω)𝐵 ∈ (rec(𝐹, 𝐴)‘ω)) → ∃𝑥(𝐴𝑥 ∧ ∀𝑦𝑥 𝐵𝑥))
838, 69, 82syl2an 596 1 ((𝐴𝑉 ∧ ∀𝑦 𝐵𝑊) → ∃𝑥(𝐴𝑥 ∧ ∀𝑦𝑥 𝐵𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1538   = wceq 1540  wex 1779  wcel 2109  wral 3045  wrex 3054  Vcvv 3450  cun 3915  wss 3917  c0 4299   ciun 4958  cmpt 5191  ran crn 5642  Oncon0 6335  Lim wlim 6336  suc csuc 6337  cfv 6514  ωcom 7845  reccrdg 8380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714  ax-inf2 9601
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381
This theorem is referenced by:  exrecfn  37375
  Copyright terms: Public domain W3C validator