Proof of Theorem esumrnmpt2
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | nfrab1 3456 | . . . . 5
⊢
Ⅎ𝑘{𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} | 
| 2 |  | esumrnmpt2.1 | . . . . 5
⊢ (𝑦 = 𝐵 → 𝐶 = 𝐷) | 
| 3 |  | esumrnmpt2.2 | . . . . . 6
⊢ (𝜑 → 𝐴 ∈ 𝑉) | 
| 4 |  | ssrab2 4079 | . . . . . . 7
⊢ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ⊆ 𝐴 | 
| 5 | 4 | a1i 11 | . . . . . 6
⊢ (𝜑 → {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ⊆ 𝐴) | 
| 6 | 3, 5 | ssexd 5323 | . . . . 5
⊢ (𝜑 → {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ∈ V) | 
| 7 | 5 | sselda 3982 | . . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}) → 𝑘 ∈ 𝐴) | 
| 8 |  | esumrnmpt2.3 | . . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐷 ∈ (0[,]+∞)) | 
| 9 | 7, 8 | syldan 591 | . . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}) → 𝐷 ∈ (0[,]+∞)) | 
| 10 |  | esumrnmpt2.4 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝑊) | 
| 11 | 7, 10 | syldan 591 | . . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}) → 𝐵 ∈ 𝑊) | 
| 12 |  | rabid 3457 | . . . . . . . . 9
⊢ (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↔ (𝑘 ∈ 𝐴 ∧ ¬ 𝐵 = ∅)) | 
| 13 | 12 | simprbi 496 | . . . . . . . 8
⊢ (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} → ¬ 𝐵 = ∅) | 
| 14 | 13 | adantl 481 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}) → ¬ 𝐵 = ∅) | 
| 15 |  | elsng 4639 | . . . . . . . 8
⊢ (𝐵 ∈ 𝑊 → (𝐵 ∈ {∅} ↔ 𝐵 = ∅)) | 
| 16 | 11, 15 | syl 17 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}) → (𝐵 ∈ {∅} ↔ 𝐵 = ∅)) | 
| 17 | 14, 16 | mtbird 325 | . . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}) → ¬ 𝐵 ∈ {∅}) | 
| 18 | 11, 17 | eldifd 3961 | . . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}) → 𝐵 ∈ (𝑊 ∖ {∅})) | 
| 19 |  | esumrnmpt2.6 | . . . . . 6
⊢ (𝜑 → Disj 𝑘 ∈ 𝐴 𝐵) | 
| 20 |  | nfcv 2904 | . . . . . . 7
⊢
Ⅎ𝑘𝐴 | 
| 21 | 1, 20 | disjss1f 32586 | . . . . . 6
⊢ ({𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ⊆ 𝐴 → (Disj 𝑘 ∈ 𝐴 𝐵 → Disj 𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}𝐵)) | 
| 22 | 5, 19, 21 | sylc 65 | . . . . 5
⊢ (𝜑 → Disj 𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}𝐵) | 
| 23 | 1, 2, 6, 9, 18, 22 | esumrnmpt 34054 | . . . 4
⊢ (𝜑 → Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)𝐶 = Σ*𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}𝐷) | 
| 24 |  | nfv 1913 | . . . . . . . . . . 11
⊢
Ⅎ𝑦(𝜑 ∧ ∃𝑘 ∈ 𝐴 𝐵 = ∅) | 
| 25 |  | snex 5435 | . . . . . . . . . . . 12
⊢ {∅}
∈ V | 
| 26 | 25 | a1i 11 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ ∃𝑘 ∈ 𝐴 𝐵 = ∅) → {∅} ∈
V) | 
| 27 |  | velsn 4641 | . . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ {∅} ↔ 𝑦 = ∅) | 
| 28 | 27 | biimpi 216 | . . . . . . . . . . . . . 14
⊢ (𝑦 ∈ {∅} → 𝑦 = ∅) | 
| 29 | 28 | adantl 481 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ∃𝑘 ∈ 𝐴 𝐵 = ∅) ∧ 𝑦 ∈ {∅}) → 𝑦 = ∅) | 
| 30 |  | nfv 1913 | . . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑘𝜑 | 
| 31 |  | nfre1 3284 | . . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑘∃𝑘 ∈ 𝐴 𝐵 = ∅ | 
| 32 | 30, 31 | nfan 1898 | . . . . . . . . . . . . . . 15
⊢
Ⅎ𝑘(𝜑 ∧ ∃𝑘 ∈ 𝐴 𝐵 = ∅) | 
| 33 |  | nfv 1913 | . . . . . . . . . . . . . . 15
⊢
Ⅎ𝑘 𝑦 = ∅ | 
| 34 | 32, 33 | nfan 1898 | . . . . . . . . . . . . . 14
⊢
Ⅎ𝑘((𝜑 ∧ ∃𝑘 ∈ 𝐴 𝐵 = ∅) ∧ 𝑦 = ∅) | 
| 35 |  | nfv 1913 | . . . . . . . . . . . . . 14
⊢
Ⅎ𝑘 𝐶 = 0 | 
| 36 |  | simpllr 775 | . . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧
∃𝑘 ∈ 𝐴 𝐵 = ∅) ∧ 𝑦 = ∅) ∧ 𝑘 ∈ 𝐴) ∧ 𝐵 = ∅) → 𝑦 = ∅) | 
| 37 |  | simpr 484 | . . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧
∃𝑘 ∈ 𝐴 𝐵 = ∅) ∧ 𝑦 = ∅) ∧ 𝑘 ∈ 𝐴) ∧ 𝐵 = ∅) → 𝐵 = ∅) | 
| 38 | 36, 37 | eqtr4d 2779 | . . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧
∃𝑘 ∈ 𝐴 𝐵 = ∅) ∧ 𝑦 = ∅) ∧ 𝑘 ∈ 𝐴) ∧ 𝐵 = ∅) → 𝑦 = 𝐵) | 
| 39 | 38, 2 | syl 17 | . . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧
∃𝑘 ∈ 𝐴 𝐵 = ∅) ∧ 𝑦 = ∅) ∧ 𝑘 ∈ 𝐴) ∧ 𝐵 = ∅) → 𝐶 = 𝐷) | 
| 40 |  | simp-4l 782 | . . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧
∃𝑘 ∈ 𝐴 𝐵 = ∅) ∧ 𝑦 = ∅) ∧ 𝑘 ∈ 𝐴) ∧ 𝐵 = ∅) → 𝜑) | 
| 41 |  | simplr 768 | . . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧
∃𝑘 ∈ 𝐴 𝐵 = ∅) ∧ 𝑦 = ∅) ∧ 𝑘 ∈ 𝐴) ∧ 𝐵 = ∅) → 𝑘 ∈ 𝐴) | 
| 42 |  | esumrnmpt2.5 | . . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ 𝐵 = ∅) → 𝐷 = 0) | 
| 43 | 40, 41, 37, 42 | syl21anc 837 | . . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧
∃𝑘 ∈ 𝐴 𝐵 = ∅) ∧ 𝑦 = ∅) ∧ 𝑘 ∈ 𝐴) ∧ 𝐵 = ∅) → 𝐷 = 0) | 
| 44 | 39, 43 | eqtrd 2776 | . . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧
∃𝑘 ∈ 𝐴 𝐵 = ∅) ∧ 𝑦 = ∅) ∧ 𝑘 ∈ 𝐴) ∧ 𝐵 = ∅) → 𝐶 = 0) | 
| 45 |  | simplr 768 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ ∃𝑘 ∈ 𝐴 𝐵 = ∅) ∧ 𝑦 = ∅) → ∃𝑘 ∈ 𝐴 𝐵 = ∅) | 
| 46 | 34, 35, 44, 45 | r19.29af2 3266 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ∃𝑘 ∈ 𝐴 𝐵 = ∅) ∧ 𝑦 = ∅) → 𝐶 = 0) | 
| 47 | 29, 46 | syldan 591 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ ∃𝑘 ∈ 𝐴 𝐵 = ∅) ∧ 𝑦 ∈ {∅}) → 𝐶 = 0) | 
| 48 |  | 0e0iccpnf 13500 | . . . . . . . . . . . 12
⊢ 0 ∈
(0[,]+∞) | 
| 49 | 47, 48 | eqeltrdi 2848 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ ∃𝑘 ∈ 𝐴 𝐵 = ∅) ∧ 𝑦 ∈ {∅}) → 𝐶 ∈ (0[,]+∞)) | 
| 50 |  | nfcv 2904 | . . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑘𝑦 | 
| 51 |  | nfmpt1 5249 | . . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑘(𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵) | 
| 52 | 51 | nfrn 5962 | . . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑘ran
(𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵) | 
| 53 | 50, 52 | nfel 2919 | . . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑘 𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵) | 
| 54 | 30, 53 | nfan 1898 | . . . . . . . . . . . . . . 15
⊢
Ⅎ𝑘(𝜑 ∧ 𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)) | 
| 55 |  | simpr 484 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)) ∧ 𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅}) ∧ 𝑦 = 𝐵) → 𝑦 = 𝐵) | 
| 56 |  | rabid 3457 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↔ (𝑘 ∈ 𝐴 ∧ 𝐵 = ∅)) | 
| 57 | 56 | simprbi 496 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} → 𝐵 = ∅) | 
| 58 | 57 | ad2antlr 727 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)) ∧ 𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅}) ∧ 𝑦 = 𝐵) → 𝐵 = ∅) | 
| 59 | 55, 58 | eqtrd 2776 | . . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)) ∧ 𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅}) ∧ 𝑦 = 𝐵) → 𝑦 = ∅) | 
| 60 | 59, 27 | sylibr 234 | . . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)) ∧ 𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅}) ∧ 𝑦 = 𝐵) → 𝑦 ∈ {∅}) | 
| 61 |  | vex 3483 | . . . . . . . . . . . . . . . . . 18
⊢ 𝑦 ∈ V | 
| 62 |  | eqid 2736 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵) = (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵) | 
| 63 | 62 | elrnmpt 5968 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ∈ V → (𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵) ↔ ∃𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅}𝑦 = 𝐵)) | 
| 64 | 61, 63 | ax-mp 5 | . . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵) ↔ ∃𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅}𝑦 = 𝐵) | 
| 65 | 64 | biimpi 216 | . . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵) → ∃𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅}𝑦 = 𝐵) | 
| 66 | 65 | adantl 481 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)) → ∃𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅}𝑦 = 𝐵) | 
| 67 | 54, 60, 66 | r19.29af 3267 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)) → 𝑦 ∈ {∅}) | 
| 68 | 67 | ex 412 | . . . . . . . . . . . . 13
⊢ (𝜑 → (𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵) → 𝑦 ∈ {∅})) | 
| 69 | 68 | ssrdv 3988 | . . . . . . . . . . . 12
⊢ (𝜑 → ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵) ⊆ {∅}) | 
| 70 | 69 | adantr 480 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ ∃𝑘 ∈ 𝐴 𝐵 = ∅) → ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵) ⊆ {∅}) | 
| 71 | 24, 26, 49, 70 | esummono 34056 | . . . . . . . . . 10
⊢ ((𝜑 ∧ ∃𝑘 ∈ 𝐴 𝐵 = ∅) → Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)𝐶 ≤ Σ*𝑦 ∈ {∅}𝐶) | 
| 72 |  | 0ex 5306 | . . . . . . . . . . . 12
⊢ ∅
∈ V | 
| 73 | 72 | a1i 11 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ ∃𝑘 ∈ 𝐴 𝐵 = ∅) → ∅ ∈
V) | 
| 74 | 48 | a1i 11 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ ∃𝑘 ∈ 𝐴 𝐵 = ∅) → 0 ∈
(0[,]+∞)) | 
| 75 | 46, 73, 74 | esumsn 34067 | . . . . . . . . . 10
⊢ ((𝜑 ∧ ∃𝑘 ∈ 𝐴 𝐵 = ∅) → Σ*𝑦 ∈ {∅}𝐶 = 0) | 
| 76 | 71, 75 | breqtrd 5168 | . . . . . . . . 9
⊢ ((𝜑 ∧ ∃𝑘 ∈ 𝐴 𝐵 = ∅) → Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)𝐶 ≤ 0) | 
| 77 |  | simpr 484 | . . . . . . . . . 10
⊢ ((𝜑 ∧ ¬ ∃𝑘 ∈ 𝐴 𝐵 = ∅) → ¬ ∃𝑘 ∈ 𝐴 𝐵 = ∅) | 
| 78 |  | nfv 1913 | . . . . . . . . . . . . 13
⊢
Ⅎ𝑦 ¬
∃𝑘 ∈ 𝐴 𝐵 = ∅ | 
| 79 | 31 | nfn 1856 | . . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑘 ¬
∃𝑘 ∈ 𝐴 𝐵 = ∅ | 
| 80 |  | rabn0 4388 | . . . . . . . . . . . . . . . . . . 19
⊢ ({𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ≠ ∅ ↔ ∃𝑘 ∈ 𝐴 𝐵 = ∅) | 
| 81 | 80 | biimpi 216 | . . . . . . . . . . . . . . . . . 18
⊢ ({𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ≠ ∅ → ∃𝑘 ∈ 𝐴 𝐵 = ∅) | 
| 82 | 81 | necon1bi 2968 | . . . . . . . . . . . . . . . . 17
⊢ (¬
∃𝑘 ∈ 𝐴 𝐵 = ∅ → {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} = ∅) | 
| 83 |  | eqid 2736 | . . . . . . . . . . . . . . . . . 18
⊢ 𝐵 = 𝐵 | 
| 84 | 83 | a1i 11 | . . . . . . . . . . . . . . . . 17
⊢ (¬
∃𝑘 ∈ 𝐴 𝐵 = ∅ → 𝐵 = 𝐵) | 
| 85 | 79, 82, 84 | mpteq12df 5227 | . . . . . . . . . . . . . . . 16
⊢ (¬
∃𝑘 ∈ 𝐴 𝐵 = ∅ → (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵) = (𝑘 ∈ ∅ ↦ 𝐵)) | 
| 86 |  | mpt0 6709 | . . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ ∅ ↦ 𝐵) = ∅ | 
| 87 | 85, 86 | eqtrdi 2792 | . . . . . . . . . . . . . . 15
⊢ (¬
∃𝑘 ∈ 𝐴 𝐵 = ∅ → (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵) = ∅) | 
| 88 | 87 | rneqd 5948 | . . . . . . . . . . . . . 14
⊢ (¬
∃𝑘 ∈ 𝐴 𝐵 = ∅ → ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵) = ran ∅) | 
| 89 |  | rn0 5935 | . . . . . . . . . . . . . 14
⊢ ran
∅ = ∅ | 
| 90 | 88, 89 | eqtrdi 2792 | . . . . . . . . . . . . 13
⊢ (¬
∃𝑘 ∈ 𝐴 𝐵 = ∅ → ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵) = ∅) | 
| 91 | 78, 90 | esumeq1d 34037 | . . . . . . . . . . . 12
⊢ (¬
∃𝑘 ∈ 𝐴 𝐵 = ∅ → Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)𝐶 = Σ*𝑦 ∈ ∅𝐶) | 
| 92 |  | esumnul 34050 | . . . . . . . . . . . 12
⊢
Σ*𝑦
∈ ∅𝐶 =
0 | 
| 93 | 91, 92 | eqtrdi 2792 | . . . . . . . . . . 11
⊢ (¬
∃𝑘 ∈ 𝐴 𝐵 = ∅ → Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)𝐶 = 0) | 
| 94 |  | 0le0 12368 | . . . . . . . . . . 11
⊢ 0 ≤
0 | 
| 95 | 93, 94 | eqbrtrdi 5181 | . . . . . . . . . 10
⊢ (¬
∃𝑘 ∈ 𝐴 𝐵 = ∅ → Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)𝐶 ≤ 0) | 
| 96 | 77, 95 | syl 17 | . . . . . . . . 9
⊢ ((𝜑 ∧ ¬ ∃𝑘 ∈ 𝐴 𝐵 = ∅) → Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)𝐶 ≤ 0) | 
| 97 | 76, 96 | pm2.61dan 812 | . . . . . . . 8
⊢ (𝜑 → Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)𝐶 ≤ 0) | 
| 98 |  | ssrab2 4079 | . . . . . . . . . . . . 13
⊢ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ⊆ 𝐴 | 
| 99 | 98 | a1i 11 | . . . . . . . . . . . 12
⊢ (𝜑 → {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ⊆ 𝐴) | 
| 100 | 3, 99 | ssexd 5323 | . . . . . . . . . . 11
⊢ (𝜑 → {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ∈ V) | 
| 101 |  | nfrab1 3456 | . . . . . . . . . . . 12
⊢
Ⅎ𝑘{𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} | 
| 102 | 101 | mptexgf 7243 | . . . . . . . . . . 11
⊢ ({𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ∈ V → (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵) ∈ V) | 
| 103 |  | rnexg 7925 | . . . . . . . . . . 11
⊢ ((𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵) ∈ V → ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵) ∈ V) | 
| 104 | 100, 102,
103 | 3syl 18 | . . . . . . . . . 10
⊢ (𝜑 → ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵) ∈ V) | 
| 105 | 2 | adantl 481 | . . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)) ∧ 𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅}) ∧ 𝑦 = 𝐵) → 𝐶 = 𝐷) | 
| 106 |  | simplll 774 | . . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)) ∧ 𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅}) ∧ 𝑦 = 𝐵) → 𝜑) | 
| 107 | 99 | sselda 3982 | . . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅}) → 𝑘 ∈ 𝐴) | 
| 108 | 107 | adantlr 715 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)) ∧ 𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅}) → 𝑘 ∈ 𝐴) | 
| 109 | 108 | adantr 480 | . . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)) ∧ 𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅}) ∧ 𝑦 = 𝐵) → 𝑘 ∈ 𝐴) | 
| 110 | 106, 109,
8 | syl2anc 584 | . . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)) ∧ 𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅}) ∧ 𝑦 = 𝐵) → 𝐷 ∈ (0[,]+∞)) | 
| 111 | 105, 110 | eqeltrd 2840 | . . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)) ∧ 𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅}) ∧ 𝑦 = 𝐵) → 𝐶 ∈ (0[,]+∞)) | 
| 112 | 54, 111, 66 | r19.29af 3267 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)) → 𝐶 ∈ (0[,]+∞)) | 
| 113 | 112 | ralrimiva 3145 | . . . . . . . . . 10
⊢ (𝜑 → ∀𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)𝐶 ∈ (0[,]+∞)) | 
| 114 |  | nfcv 2904 | . . . . . . . . . . 11
⊢
Ⅎ𝑦ran
(𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵) | 
| 115 | 114 | esumcl 34032 | . . . . . . . . . 10
⊢ ((ran
(𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵) ∈ V ∧ ∀𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)𝐶 ∈ (0[,]+∞)) →
Σ*𝑦 ∈
ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)𝐶 ∈ (0[,]+∞)) | 
| 116 | 104, 113,
115 | syl2anc 584 | . . . . . . . . 9
⊢ (𝜑 → Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)𝐶 ∈ (0[,]+∞)) | 
| 117 |  | elxrge0 13498 | . . . . . . . . . 10
⊢
(Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)𝐶 ∈ (0[,]+∞) ↔
(Σ*𝑦
∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)𝐶 ∈ ℝ* ∧ 0 ≤
Σ*𝑦 ∈
ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)𝐶)) | 
| 118 | 117 | simprbi 496 | . . . . . . . . 9
⊢
(Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)𝐶 ∈ (0[,]+∞) → 0 ≤
Σ*𝑦 ∈
ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)𝐶) | 
| 119 | 116, 118 | syl 17 | . . . . . . . 8
⊢ (𝜑 → 0 ≤
Σ*𝑦 ∈
ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)𝐶) | 
| 120 | 97, 119 | jca 511 | . . . . . . 7
⊢ (𝜑 → (Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)𝐶 ≤ 0 ∧ 0 ≤
Σ*𝑦 ∈
ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)𝐶)) | 
| 121 |  | iccssxr 13471 | . . . . . . . . 9
⊢
(0[,]+∞) ⊆ ℝ* | 
| 122 | 121, 116 | sselid 3980 | . . . . . . . 8
⊢ (𝜑 → Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)𝐶 ∈
ℝ*) | 
| 123 | 121, 48 | sselii 3979 | . . . . . . . . 9
⊢ 0 ∈
ℝ* | 
| 124 | 123 | a1i 11 | . . . . . . . 8
⊢ (𝜑 → 0 ∈
ℝ*) | 
| 125 |  | xrletri3 13197 | . . . . . . . 8
⊢
((Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)𝐶 ∈ ℝ* ∧ 0 ∈
ℝ*) → (Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)𝐶 = 0 ↔ (Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)𝐶 ≤ 0 ∧ 0 ≤
Σ*𝑦 ∈
ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)𝐶))) | 
| 126 | 122, 124,
125 | syl2anc 584 | . . . . . . 7
⊢ (𝜑 → (Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)𝐶 = 0 ↔ (Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)𝐶 ≤ 0 ∧ 0 ≤
Σ*𝑦 ∈
ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)𝐶))) | 
| 127 | 120, 126 | mpbird 257 | . . . . . 6
⊢ (𝜑 → Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)𝐶 = 0) | 
| 128 | 127 | oveq1d 7447 | . . . . 5
⊢ (𝜑 → (Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)𝐶 +𝑒
Σ*𝑦 ∈
ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)𝐶) = (0 +𝑒
Σ*𝑦 ∈
ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)𝐶)) | 
| 129 | 9 | ralrimiva 3145 | . . . . . . . . 9
⊢ (𝜑 → ∀𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}𝐷 ∈ (0[,]+∞)) | 
| 130 | 1 | esumcl 34032 | . . . . . . . . 9
⊢ (({𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ∈ V ∧ ∀𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}𝐷 ∈ (0[,]+∞)) →
Σ*𝑘 ∈
{𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}𝐷 ∈ (0[,]+∞)) | 
| 131 | 6, 129, 130 | syl2anc 584 | . . . . . . . 8
⊢ (𝜑 → Σ*𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}𝐷 ∈ (0[,]+∞)) | 
| 132 | 121, 131 | sselid 3980 | . . . . . . 7
⊢ (𝜑 → Σ*𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}𝐷 ∈
ℝ*) | 
| 133 | 23, 132 | eqeltrd 2840 | . . . . . 6
⊢ (𝜑 → Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)𝐶 ∈
ℝ*) | 
| 134 |  | xaddlid 13285 | . . . . . 6
⊢
(Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)𝐶 ∈ ℝ* → (0
+𝑒 Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)𝐶) = Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)𝐶) | 
| 135 | 133, 134 | syl 17 | . . . . 5
⊢ (𝜑 → (0 +𝑒
Σ*𝑦 ∈
ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)𝐶) = Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)𝐶) | 
| 136 | 128, 135 | eqtrd 2776 | . . . 4
⊢ (𝜑 → (Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)𝐶 +𝑒
Σ*𝑦 ∈
ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)𝐶) = Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)𝐶) | 
| 137 |  | simpl 482 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅}) → 𝜑) | 
| 138 | 57 | adantl 481 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅}) → 𝐵 = ∅) | 
| 139 | 137, 107,
138, 42 | syl21anc 837 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅}) → 𝐷 = 0) | 
| 140 | 139 | ralrimiva 3145 | . . . . . . . 8
⊢ (𝜑 → ∀𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅}𝐷 = 0) | 
| 141 | 30, 140 | esumeq2d 34039 | . . . . . . 7
⊢ (𝜑 → Σ*𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅}𝐷 = Σ*𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅}0) | 
| 142 | 101 | esum0 34051 | . . . . . . . 8
⊢ ({𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ∈ V →
Σ*𝑘 ∈
{𝑘 ∈ 𝐴 ∣ 𝐵 = ∅}0 = 0) | 
| 143 | 100, 142 | syl 17 | . . . . . . 7
⊢ (𝜑 → Σ*𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅}0 = 0) | 
| 144 | 141, 143 | eqtrd 2776 | . . . . . 6
⊢ (𝜑 → Σ*𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅}𝐷 = 0) | 
| 145 | 144 | oveq1d 7447 | . . . . 5
⊢ (𝜑 → (Σ*𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅}𝐷 +𝑒
Σ*𝑘 ∈
{𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}𝐷) = (0 +𝑒
Σ*𝑘 ∈
{𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}𝐷)) | 
| 146 |  | xaddlid 13285 | . . . . . 6
⊢
(Σ*𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}𝐷 ∈ ℝ* → (0
+𝑒 Σ*𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}𝐷) = Σ*𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}𝐷) | 
| 147 | 132, 146 | syl 17 | . . . . 5
⊢ (𝜑 → (0 +𝑒
Σ*𝑘 ∈
{𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}𝐷) = Σ*𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}𝐷) | 
| 148 | 145, 147 | eqtrd 2776 | . . . 4
⊢ (𝜑 → (Σ*𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅}𝐷 +𝑒
Σ*𝑘 ∈
{𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}𝐷) = Σ*𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}𝐷) | 
| 149 | 23, 136, 148 | 3eqtr4d 2786 | . . 3
⊢ (𝜑 → (Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)𝐶 +𝑒
Σ*𝑦 ∈
ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)𝐶) = (Σ*𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅}𝐷 +𝑒
Σ*𝑘 ∈
{𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}𝐷)) | 
| 150 |  | nfv 1913 | . . . 4
⊢
Ⅎ𝑦𝜑 | 
| 151 |  | nfcv 2904 | . . . 4
⊢
Ⅎ𝑦ran
(𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵) | 
| 152 | 1 | mptexgf 7243 | . . . . 5
⊢ ({𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ∈ V → (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵) ∈ V) | 
| 153 |  | rnexg 7925 | . . . . 5
⊢ ((𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵) ∈ V → ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵) ∈ V) | 
| 154 | 6, 152, 153 | 3syl 18 | . . . 4
⊢ (𝜑 → ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵) ∈ V) | 
| 155 | 69 | ssrind 4243 | . . . . . 6
⊢ (𝜑 → (ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵) ∩ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)) ⊆ ({∅} ∩ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵))) | 
| 156 |  | incom 4208 | . . . . . . 7
⊢ (ran
(𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵) ∩ {∅}) = ({∅} ∩ ran
(𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)) | 
| 157 | 13 | neqned 2946 | . . . . . . . . . . . 12
⊢ (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} → 𝐵 ≠ ∅) | 
| 158 | 157 | necomd 2995 | . . . . . . . . . . 11
⊢ (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} → ∅ ≠ 𝐵) | 
| 159 | 158 | neneqd 2944 | . . . . . . . . . 10
⊢ (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} → ¬ ∅ = 𝐵) | 
| 160 | 159 | nrex 3073 | . . . . . . . . 9
⊢  ¬
∃𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}∅ = 𝐵 | 
| 161 |  | eqid 2736 | . . . . . . . . . . 11
⊢ (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵) = (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵) | 
| 162 | 161 | elrnmpt 5968 | . . . . . . . . . 10
⊢ (∅
∈ V → (∅ ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵) ↔ ∃𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}∅ = 𝐵)) | 
| 163 | 72, 162 | ax-mp 5 | . . . . . . . . 9
⊢ (∅
∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵) ↔ ∃𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}∅ = 𝐵) | 
| 164 | 160, 163 | mtbir 323 | . . . . . . . 8
⊢  ¬
∅ ∈ ran (𝑘
∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵) | 
| 165 |  | disjsn 4710 | . . . . . . . 8
⊢ ((ran
(𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵) ∩ {∅}) = ∅ ↔ ¬
∅ ∈ ran (𝑘
∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)) | 
| 166 | 164, 165 | mpbir 231 | . . . . . . 7
⊢ (ran
(𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵) ∩ {∅}) =
∅ | 
| 167 | 156, 166 | eqtr3i 2766 | . . . . . 6
⊢
({∅} ∩ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)) = ∅ | 
| 168 | 155, 167 | sseqtrdi 4023 | . . . . 5
⊢ (𝜑 → (ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵) ∩ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)) ⊆ ∅) | 
| 169 |  | ss0 4401 | . . . . 5
⊢ ((ran
(𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵) ∩ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)) ⊆ ∅ → (ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵) ∩ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)) = ∅) | 
| 170 | 168, 169 | syl 17 | . . . 4
⊢ (𝜑 → (ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵) ∩ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)) = ∅) | 
| 171 |  | nfmpt1 5249 | . . . . . . . 8
⊢
Ⅎ𝑘(𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵) | 
| 172 | 171 | nfrn 5962 | . . . . . . 7
⊢
Ⅎ𝑘ran
(𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵) | 
| 173 | 50, 172 | nfel 2919 | . . . . . 6
⊢
Ⅎ𝑘 𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵) | 
| 174 | 30, 173 | nfan 1898 | . . . . 5
⊢
Ⅎ𝑘(𝜑 ∧ 𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)) | 
| 175 | 2 | adantl 481 | . . . . . 6
⊢ ((((𝜑 ∧ 𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)) ∧ 𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}) ∧ 𝑦 = 𝐵) → 𝐶 = 𝐷) | 
| 176 |  | simplll 774 | . . . . . . 7
⊢ ((((𝜑 ∧ 𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)) ∧ 𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}) ∧ 𝑦 = 𝐵) → 𝜑) | 
| 177 | 7 | adantlr 715 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)) ∧ 𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}) → 𝑘 ∈ 𝐴) | 
| 178 | 177 | adantr 480 | . . . . . . 7
⊢ ((((𝜑 ∧ 𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)) ∧ 𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}) ∧ 𝑦 = 𝐵) → 𝑘 ∈ 𝐴) | 
| 179 | 176, 178,
8 | syl2anc 584 | . . . . . 6
⊢ ((((𝜑 ∧ 𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)) ∧ 𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}) ∧ 𝑦 = 𝐵) → 𝐷 ∈ (0[,]+∞)) | 
| 180 | 175, 179 | eqeltrd 2840 | . . . . 5
⊢ ((((𝜑 ∧ 𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)) ∧ 𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}) ∧ 𝑦 = 𝐵) → 𝐶 ∈ (0[,]+∞)) | 
| 181 | 161 | elrnmpt 5968 | . . . . . . . 8
⊢ (𝑦 ∈ V → (𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵) ↔ ∃𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}𝑦 = 𝐵)) | 
| 182 | 61, 181 | ax-mp 5 | . . . . . . 7
⊢ (𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵) ↔ ∃𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}𝑦 = 𝐵) | 
| 183 | 182 | biimpi 216 | . . . . . 6
⊢ (𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵) → ∃𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}𝑦 = 𝐵) | 
| 184 | 183 | adantl 481 | . . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)) → ∃𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}𝑦 = 𝐵) | 
| 185 | 174, 180,
184 | r19.29af 3267 | . . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)) → 𝐶 ∈ (0[,]+∞)) | 
| 186 | 150, 114,
151, 104, 154, 170, 112, 185 | esumsplit 34055 | . . 3
⊢ (𝜑 → Σ*𝑦 ∈ (ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵) ∪ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵))𝐶 = (Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)𝐶 +𝑒
Σ*𝑦 ∈
ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)𝐶)) | 
| 187 |  | rabnc 4390 | . . . . 5
⊢ ({𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ∩ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}) = ∅ | 
| 188 | 187 | a1i 11 | . . . 4
⊢ (𝜑 → ({𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ∩ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}) = ∅) | 
| 189 | 107, 8 | syldan 591 | . . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅}) → 𝐷 ∈ (0[,]+∞)) | 
| 190 | 30, 101, 1, 100, 6, 188, 189, 9 | esumsplit 34055 | . . 3
⊢ (𝜑 → Σ*𝑘 ∈ ({𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ∪ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅})𝐷 = (Σ*𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅}𝐷 +𝑒
Σ*𝑘 ∈
{𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}𝐷)) | 
| 191 | 149, 186,
190 | 3eqtr4d 2786 | . 2
⊢ (𝜑 → Σ*𝑦 ∈ (ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵) ∪ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵))𝐶 = Σ*𝑘 ∈ ({𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ∪ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅})𝐷) | 
| 192 |  | rabxm 4389 | . . . . . . . 8
⊢ 𝐴 = ({𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ∪ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}) | 
| 193 | 192, 83 | mpteq12i 5247 | . . . . . . 7
⊢ (𝑘 ∈ 𝐴 ↦ 𝐵) = (𝑘 ∈ ({𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ∪ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}) ↦ 𝐵) | 
| 194 |  | mptun 6713 | . . . . . . 7
⊢ (𝑘 ∈ ({𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ∪ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}) ↦ 𝐵) = ((𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵) ∪ (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)) | 
| 195 | 193, 194 | eqtri 2764 | . . . . . 6
⊢ (𝑘 ∈ 𝐴 ↦ 𝐵) = ((𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵) ∪ (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)) | 
| 196 | 195 | rneqi 5947 | . . . . 5
⊢ ran
(𝑘 ∈ 𝐴 ↦ 𝐵) = ran ((𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵) ∪ (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)) | 
| 197 |  | rnun 6164 | . . . . 5
⊢ ran
((𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵) ∪ (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)) = (ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵) ∪ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)) | 
| 198 | 196, 197 | eqtri 2764 | . . . 4
⊢ ran
(𝑘 ∈ 𝐴 ↦ 𝐵) = (ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵) ∪ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)) | 
| 199 | 198 | a1i 11 | . . 3
⊢ (𝜑 → ran (𝑘 ∈ 𝐴 ↦ 𝐵) = (ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵) ∪ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵))) | 
| 200 | 150, 199 | esumeq1d 34037 | . 2
⊢ (𝜑 → Σ*𝑦 ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)𝐶 = Σ*𝑦 ∈ (ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵) ∪ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵))𝐶) | 
| 201 | 192 | a1i 11 | . . 3
⊢ (𝜑 → 𝐴 = ({𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ∪ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅})) | 
| 202 | 30, 201 | esumeq1d 34037 | . 2
⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐷 = Σ*𝑘 ∈ ({𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ∪ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅})𝐷) | 
| 203 | 191, 200,
202 | 3eqtr4d 2786 | 1
⊢ (𝜑 → Σ*𝑦 ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)𝐶 = Σ*𝑘 ∈ 𝐴𝐷) |