Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumrnmpt2 Structured version   Visualization version   GIF version

Theorem esumrnmpt2 31437
Description: Rewrite an extended sum into a sum on the range of a mapping function. (Contributed by Thierry Arnoux, 30-May-2020.)
Hypotheses
Ref Expression
esumrnmpt2.1 (𝑦 = 𝐵𝐶 = 𝐷)
esumrnmpt2.2 (𝜑𝐴𝑉)
esumrnmpt2.3 ((𝜑𝑘𝐴) → 𝐷 ∈ (0[,]+∞))
esumrnmpt2.4 ((𝜑𝑘𝐴) → 𝐵𝑊)
esumrnmpt2.5 (((𝜑𝑘𝐴) ∧ 𝐵 = ∅) → 𝐷 = 0)
esumrnmpt2.6 (𝜑Disj 𝑘𝐴 𝐵)
Assertion
Ref Expression
esumrnmpt2 (𝜑 → Σ*𝑦 ∈ ran (𝑘𝐴𝐵)𝐶 = Σ*𝑘𝐴𝐷)
Distinct variable groups:   𝐴,𝑘,𝑦   𝑦,𝐵   𝐶,𝑘   𝑦,𝐷   𝑘,𝑊   𝜑,𝑘,𝑦
Allowed substitution hints:   𝐵(𝑘)   𝐶(𝑦)   𝐷(𝑘)   𝑉(𝑦,𝑘)   𝑊(𝑦)

Proof of Theorem esumrnmpt2
StepHypRef Expression
1 nfrab1 3337 . . . . 5 𝑘{𝑘𝐴 ∣ ¬ 𝐵 = ∅}
2 esumrnmpt2.1 . . . . 5 (𝑦 = 𝐵𝐶 = 𝐷)
3 esumrnmpt2.2 . . . . . 6 (𝜑𝐴𝑉)
4 ssrab2 4007 . . . . . . 7 {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ⊆ 𝐴
54a1i 11 . . . . . 6 (𝜑 → {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ⊆ 𝐴)
63, 5ssexd 5192 . . . . 5 (𝜑 → {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ∈ V)
75sselda 3915 . . . . . 6 ((𝜑𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}) → 𝑘𝐴)
8 esumrnmpt2.3 . . . . . 6 ((𝜑𝑘𝐴) → 𝐷 ∈ (0[,]+∞))
97, 8syldan 594 . . . . 5 ((𝜑𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}) → 𝐷 ∈ (0[,]+∞))
10 esumrnmpt2.4 . . . . . . 7 ((𝜑𝑘𝐴) → 𝐵𝑊)
117, 10syldan 594 . . . . . 6 ((𝜑𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}) → 𝐵𝑊)
12 rabid 3331 . . . . . . . . 9 (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↔ (𝑘𝐴 ∧ ¬ 𝐵 = ∅))
1312simprbi 500 . . . . . . . 8 (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} → ¬ 𝐵 = ∅)
1413adantl 485 . . . . . . 7 ((𝜑𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}) → ¬ 𝐵 = ∅)
15 elsng 4539 . . . . . . . 8 (𝐵𝑊 → (𝐵 ∈ {∅} ↔ 𝐵 = ∅))
1611, 15syl 17 . . . . . . 7 ((𝜑𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}) → (𝐵 ∈ {∅} ↔ 𝐵 = ∅))
1714, 16mtbird 328 . . . . . 6 ((𝜑𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}) → ¬ 𝐵 ∈ {∅})
1811, 17eldifd 3892 . . . . 5 ((𝜑𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}) → 𝐵 ∈ (𝑊 ∖ {∅}))
19 esumrnmpt2.6 . . . . . 6 (𝜑Disj 𝑘𝐴 𝐵)
20 nfcv 2955 . . . . . . 7 𝑘𝐴
211, 20disjss1f 30335 . . . . . 6 ({𝑘𝐴 ∣ ¬ 𝐵 = ∅} ⊆ 𝐴 → (Disj 𝑘𝐴 𝐵Disj 𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}𝐵))
225, 19, 21sylc 65 . . . . 5 (𝜑Disj 𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}𝐵)
231, 2, 6, 9, 18, 22esumrnmpt 31421 . . . 4 (𝜑 → Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)𝐶 = Σ*𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}𝐷)
24 nfv 1915 . . . . . . . . . . 11 𝑦(𝜑 ∧ ∃𝑘𝐴 𝐵 = ∅)
25 snex 5297 . . . . . . . . . . . 12 {∅} ∈ V
2625a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ ∃𝑘𝐴 𝐵 = ∅) → {∅} ∈ V)
27 velsn 4541 . . . . . . . . . . . . . . 15 (𝑦 ∈ {∅} ↔ 𝑦 = ∅)
2827biimpi 219 . . . . . . . . . . . . . 14 (𝑦 ∈ {∅} → 𝑦 = ∅)
2928adantl 485 . . . . . . . . . . . . 13 (((𝜑 ∧ ∃𝑘𝐴 𝐵 = ∅) ∧ 𝑦 ∈ {∅}) → 𝑦 = ∅)
30 nfv 1915 . . . . . . . . . . . . . . . 16 𝑘𝜑
31 nfre1 3265 . . . . . . . . . . . . . . . 16 𝑘𝑘𝐴 𝐵 = ∅
3230, 31nfan 1900 . . . . . . . . . . . . . . 15 𝑘(𝜑 ∧ ∃𝑘𝐴 𝐵 = ∅)
33 nfv 1915 . . . . . . . . . . . . . . 15 𝑘 𝑦 = ∅
3432, 33nfan 1900 . . . . . . . . . . . . . 14 𝑘((𝜑 ∧ ∃𝑘𝐴 𝐵 = ∅) ∧ 𝑦 = ∅)
35 nfv 1915 . . . . . . . . . . . . . 14 𝑘 𝐶 = 0
36 simpllr 775 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ ∃𝑘𝐴 𝐵 = ∅) ∧ 𝑦 = ∅) ∧ 𝑘𝐴) ∧ 𝐵 = ∅) → 𝑦 = ∅)
37 simpr 488 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ ∃𝑘𝐴 𝐵 = ∅) ∧ 𝑦 = ∅) ∧ 𝑘𝐴) ∧ 𝐵 = ∅) → 𝐵 = ∅)
3836, 37eqtr4d 2836 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ ∃𝑘𝐴 𝐵 = ∅) ∧ 𝑦 = ∅) ∧ 𝑘𝐴) ∧ 𝐵 = ∅) → 𝑦 = 𝐵)
3938, 2syl 17 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ ∃𝑘𝐴 𝐵 = ∅) ∧ 𝑦 = ∅) ∧ 𝑘𝐴) ∧ 𝐵 = ∅) → 𝐶 = 𝐷)
40 simp-4l 782 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ ∃𝑘𝐴 𝐵 = ∅) ∧ 𝑦 = ∅) ∧ 𝑘𝐴) ∧ 𝐵 = ∅) → 𝜑)
41 simplr 768 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ ∃𝑘𝐴 𝐵 = ∅) ∧ 𝑦 = ∅) ∧ 𝑘𝐴) ∧ 𝐵 = ∅) → 𝑘𝐴)
42 esumrnmpt2.5 . . . . . . . . . . . . . . . 16 (((𝜑𝑘𝐴) ∧ 𝐵 = ∅) → 𝐷 = 0)
4340, 41, 37, 42syl21anc 836 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ ∃𝑘𝐴 𝐵 = ∅) ∧ 𝑦 = ∅) ∧ 𝑘𝐴) ∧ 𝐵 = ∅) → 𝐷 = 0)
4439, 43eqtrd 2833 . . . . . . . . . . . . . 14 (((((𝜑 ∧ ∃𝑘𝐴 𝐵 = ∅) ∧ 𝑦 = ∅) ∧ 𝑘𝐴) ∧ 𝐵 = ∅) → 𝐶 = 0)
45 simplr 768 . . . . . . . . . . . . . 14 (((𝜑 ∧ ∃𝑘𝐴 𝐵 = ∅) ∧ 𝑦 = ∅) → ∃𝑘𝐴 𝐵 = ∅)
4634, 35, 44, 45r19.29af2 3288 . . . . . . . . . . . . 13 (((𝜑 ∧ ∃𝑘𝐴 𝐵 = ∅) ∧ 𝑦 = ∅) → 𝐶 = 0)
4729, 46syldan 594 . . . . . . . . . . . 12 (((𝜑 ∧ ∃𝑘𝐴 𝐵 = ∅) ∧ 𝑦 ∈ {∅}) → 𝐶 = 0)
48 0e0iccpnf 12837 . . . . . . . . . . . 12 0 ∈ (0[,]+∞)
4947, 48eqeltrdi 2898 . . . . . . . . . . 11 (((𝜑 ∧ ∃𝑘𝐴 𝐵 = ∅) ∧ 𝑦 ∈ {∅}) → 𝐶 ∈ (0[,]+∞))
50 nfcv 2955 . . . . . . . . . . . . . . . . 17 𝑘𝑦
51 nfmpt1 5128 . . . . . . . . . . . . . . . . . 18 𝑘(𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)
5251nfrn 5788 . . . . . . . . . . . . . . . . 17 𝑘ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)
5350, 52nfel 2969 . . . . . . . . . . . . . . . 16 𝑘 𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)
5430, 53nfan 1900 . . . . . . . . . . . . . . 15 𝑘(𝜑𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵))
55 simpr 488 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)) ∧ 𝑘 ∈ {𝑘𝐴𝐵 = ∅}) ∧ 𝑦 = 𝐵) → 𝑦 = 𝐵)
56 rabid 3331 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↔ (𝑘𝐴𝐵 = ∅))
5756simprbi 500 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ {𝑘𝐴𝐵 = ∅} → 𝐵 = ∅)
5857ad2antlr 726 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)) ∧ 𝑘 ∈ {𝑘𝐴𝐵 = ∅}) ∧ 𝑦 = 𝐵) → 𝐵 = ∅)
5955, 58eqtrd 2833 . . . . . . . . . . . . . . . 16 ((((𝜑𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)) ∧ 𝑘 ∈ {𝑘𝐴𝐵 = ∅}) ∧ 𝑦 = 𝐵) → 𝑦 = ∅)
6059, 27sylibr 237 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)) ∧ 𝑘 ∈ {𝑘𝐴𝐵 = ∅}) ∧ 𝑦 = 𝐵) → 𝑦 ∈ {∅})
61 vex 3444 . . . . . . . . . . . . . . . . . 18 𝑦 ∈ V
62 eqid 2798 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵) = (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)
6362elrnmpt 5792 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ V → (𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵) ↔ ∃𝑘 ∈ {𝑘𝐴𝐵 = ∅}𝑦 = 𝐵))
6461, 63ax-mp 5 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵) ↔ ∃𝑘 ∈ {𝑘𝐴𝐵 = ∅}𝑦 = 𝐵)
6564biimpi 219 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵) → ∃𝑘 ∈ {𝑘𝐴𝐵 = ∅}𝑦 = 𝐵)
6665adantl 485 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)) → ∃𝑘 ∈ {𝑘𝐴𝐵 = ∅}𝑦 = 𝐵)
6754, 60, 66r19.29af 3289 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)) → 𝑦 ∈ {∅})
6867ex 416 . . . . . . . . . . . . 13 (𝜑 → (𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵) → 𝑦 ∈ {∅}))
6968ssrdv 3921 . . . . . . . . . . . 12 (𝜑 → ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵) ⊆ {∅})
7069adantr 484 . . . . . . . . . . 11 ((𝜑 ∧ ∃𝑘𝐴 𝐵 = ∅) → ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵) ⊆ {∅})
7124, 26, 49, 70esummono 31423 . . . . . . . . . 10 ((𝜑 ∧ ∃𝑘𝐴 𝐵 = ∅) → Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)𝐶 ≤ Σ*𝑦 ∈ {∅}𝐶)
72 0ex 5175 . . . . . . . . . . . 12 ∅ ∈ V
7372a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ ∃𝑘𝐴 𝐵 = ∅) → ∅ ∈ V)
7448a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ ∃𝑘𝐴 𝐵 = ∅) → 0 ∈ (0[,]+∞))
7546, 73, 74esumsn 31434 . . . . . . . . . 10 ((𝜑 ∧ ∃𝑘𝐴 𝐵 = ∅) → Σ*𝑦 ∈ {∅}𝐶 = 0)
7671, 75breqtrd 5056 . . . . . . . . 9 ((𝜑 ∧ ∃𝑘𝐴 𝐵 = ∅) → Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)𝐶 ≤ 0)
77 simpr 488 . . . . . . . . . 10 ((𝜑 ∧ ¬ ∃𝑘𝐴 𝐵 = ∅) → ¬ ∃𝑘𝐴 𝐵 = ∅)
78 nfv 1915 . . . . . . . . . . . . 13 𝑦 ¬ ∃𝑘𝐴 𝐵 = ∅
7931nfn 1858 . . . . . . . . . . . . . . . . 17 𝑘 ¬ ∃𝑘𝐴 𝐵 = ∅
80 rabn0 4293 . . . . . . . . . . . . . . . . . . 19 ({𝑘𝐴𝐵 = ∅} ≠ ∅ ↔ ∃𝑘𝐴 𝐵 = ∅)
8180biimpi 219 . . . . . . . . . . . . . . . . . 18 ({𝑘𝐴𝐵 = ∅} ≠ ∅ → ∃𝑘𝐴 𝐵 = ∅)
8281necon1bi 3015 . . . . . . . . . . . . . . . . 17 (¬ ∃𝑘𝐴 𝐵 = ∅ → {𝑘𝐴𝐵 = ∅} = ∅)
83 eqid 2798 . . . . . . . . . . . . . . . . . 18 𝐵 = 𝐵
8483a1i 11 . . . . . . . . . . . . . . . . 17 (¬ ∃𝑘𝐴 𝐵 = ∅ → 𝐵 = 𝐵)
8579, 82, 84mpteq12df 5112 . . . . . . . . . . . . . . . 16 (¬ ∃𝑘𝐴 𝐵 = ∅ → (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵) = (𝑘 ∈ ∅ ↦ 𝐵))
86 mpt0 6462 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ∅ ↦ 𝐵) = ∅
8785, 86eqtrdi 2849 . . . . . . . . . . . . . . 15 (¬ ∃𝑘𝐴 𝐵 = ∅ → (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵) = ∅)
8887rneqd 5772 . . . . . . . . . . . . . 14 (¬ ∃𝑘𝐴 𝐵 = ∅ → ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵) = ran ∅)
89 rn0 5760 . . . . . . . . . . . . . 14 ran ∅ = ∅
9088, 89eqtrdi 2849 . . . . . . . . . . . . 13 (¬ ∃𝑘𝐴 𝐵 = ∅ → ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵) = ∅)
9178, 90esumeq1d 31404 . . . . . . . . . . . 12 (¬ ∃𝑘𝐴 𝐵 = ∅ → Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)𝐶 = Σ*𝑦 ∈ ∅𝐶)
92 esumnul 31417 . . . . . . . . . . . 12 Σ*𝑦 ∈ ∅𝐶 = 0
9391, 92eqtrdi 2849 . . . . . . . . . . 11 (¬ ∃𝑘𝐴 𝐵 = ∅ → Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)𝐶 = 0)
94 0le0 11726 . . . . . . . . . . 11 0 ≤ 0
9593, 94eqbrtrdi 5069 . . . . . . . . . 10 (¬ ∃𝑘𝐴 𝐵 = ∅ → Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)𝐶 ≤ 0)
9677, 95syl 17 . . . . . . . . 9 ((𝜑 ∧ ¬ ∃𝑘𝐴 𝐵 = ∅) → Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)𝐶 ≤ 0)
9776, 96pm2.61dan 812 . . . . . . . 8 (𝜑 → Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)𝐶 ≤ 0)
98 ssrab2 4007 . . . . . . . . . . . . 13 {𝑘𝐴𝐵 = ∅} ⊆ 𝐴
9998a1i 11 . . . . . . . . . . . 12 (𝜑 → {𝑘𝐴𝐵 = ∅} ⊆ 𝐴)
1003, 99ssexd 5192 . . . . . . . . . . 11 (𝜑 → {𝑘𝐴𝐵 = ∅} ∈ V)
101 nfrab1 3337 . . . . . . . . . . . 12 𝑘{𝑘𝐴𝐵 = ∅}
102101mptexgf 6962 . . . . . . . . . . 11 ({𝑘𝐴𝐵 = ∅} ∈ V → (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵) ∈ V)
103 rnexg 7595 . . . . . . . . . . 11 ((𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵) ∈ V → ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵) ∈ V)
104100, 102, 1033syl 18 . . . . . . . . . 10 (𝜑 → ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵) ∈ V)
1052adantl 485 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)) ∧ 𝑘 ∈ {𝑘𝐴𝐵 = ∅}) ∧ 𝑦 = 𝐵) → 𝐶 = 𝐷)
106 simplll 774 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)) ∧ 𝑘 ∈ {𝑘𝐴𝐵 = ∅}) ∧ 𝑦 = 𝐵) → 𝜑)
10799sselda 3915 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ {𝑘𝐴𝐵 = ∅}) → 𝑘𝐴)
108107adantlr 714 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)) ∧ 𝑘 ∈ {𝑘𝐴𝐵 = ∅}) → 𝑘𝐴)
109108adantr 484 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)) ∧ 𝑘 ∈ {𝑘𝐴𝐵 = ∅}) ∧ 𝑦 = 𝐵) → 𝑘𝐴)
110106, 109, 8syl2anc 587 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)) ∧ 𝑘 ∈ {𝑘𝐴𝐵 = ∅}) ∧ 𝑦 = 𝐵) → 𝐷 ∈ (0[,]+∞))
111105, 110eqeltrd 2890 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)) ∧ 𝑘 ∈ {𝑘𝐴𝐵 = ∅}) ∧ 𝑦 = 𝐵) → 𝐶 ∈ (0[,]+∞))
11254, 111, 66r19.29af 3289 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)) → 𝐶 ∈ (0[,]+∞))
113112ralrimiva 3149 . . . . . . . . . 10 (𝜑 → ∀𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)𝐶 ∈ (0[,]+∞))
114 nfcv 2955 . . . . . . . . . . 11 𝑦ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)
115114esumcl 31399 . . . . . . . . . 10 ((ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵) ∈ V ∧ ∀𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)𝐶 ∈ (0[,]+∞)) → Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)𝐶 ∈ (0[,]+∞))
116104, 113, 115syl2anc 587 . . . . . . . . 9 (𝜑 → Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)𝐶 ∈ (0[,]+∞))
117 elxrge0 12835 . . . . . . . . . 10 *𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)𝐶 ∈ (0[,]+∞) ↔ (Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)𝐶 ∈ ℝ* ∧ 0 ≤ Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)𝐶))
118117simprbi 500 . . . . . . . . 9 *𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)𝐶 ∈ (0[,]+∞) → 0 ≤ Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)𝐶)
119116, 118syl 17 . . . . . . . 8 (𝜑 → 0 ≤ Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)𝐶)
12097, 119jca 515 . . . . . . 7 (𝜑 → (Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)𝐶 ≤ 0 ∧ 0 ≤ Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)𝐶))
121 iccssxr 12808 . . . . . . . . 9 (0[,]+∞) ⊆ ℝ*
122121, 116sseldi 3913 . . . . . . . 8 (𝜑 → Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)𝐶 ∈ ℝ*)
123121, 48sselii 3912 . . . . . . . . 9 0 ∈ ℝ*
124123a1i 11 . . . . . . . 8 (𝜑 → 0 ∈ ℝ*)
125 xrletri3 12535 . . . . . . . 8 ((Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)𝐶 ∈ ℝ* ∧ 0 ∈ ℝ*) → (Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)𝐶 = 0 ↔ (Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)𝐶 ≤ 0 ∧ 0 ≤ Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)𝐶)))
126122, 124, 125syl2anc 587 . . . . . . 7 (𝜑 → (Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)𝐶 = 0 ↔ (Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)𝐶 ≤ 0 ∧ 0 ≤ Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)𝐶)))
127120, 126mpbird 260 . . . . . 6 (𝜑 → Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)𝐶 = 0)
128127oveq1d 7150 . . . . 5 (𝜑 → (Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)𝐶 +𝑒 Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)𝐶) = (0 +𝑒 Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)𝐶))
1299ralrimiva 3149 . . . . . . . . 9 (𝜑 → ∀𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}𝐷 ∈ (0[,]+∞))
1301esumcl 31399 . . . . . . . . 9 (({𝑘𝐴 ∣ ¬ 𝐵 = ∅} ∈ V ∧ ∀𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}𝐷 ∈ (0[,]+∞)) → Σ*𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}𝐷 ∈ (0[,]+∞))
1316, 129, 130syl2anc 587 . . . . . . . 8 (𝜑 → Σ*𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}𝐷 ∈ (0[,]+∞))
132121, 131sseldi 3913 . . . . . . 7 (𝜑 → Σ*𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}𝐷 ∈ ℝ*)
13323, 132eqeltrd 2890 . . . . . 6 (𝜑 → Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)𝐶 ∈ ℝ*)
134 xaddid2 12623 . . . . . 6 *𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)𝐶 ∈ ℝ* → (0 +𝑒 Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)𝐶) = Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)𝐶)
135133, 134syl 17 . . . . 5 (𝜑 → (0 +𝑒 Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)𝐶) = Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)𝐶)
136128, 135eqtrd 2833 . . . 4 (𝜑 → (Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)𝐶 +𝑒 Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)𝐶) = Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)𝐶)
137 simpl 486 . . . . . . . . . 10 ((𝜑𝑘 ∈ {𝑘𝐴𝐵 = ∅}) → 𝜑)
13857adantl 485 . . . . . . . . . 10 ((𝜑𝑘 ∈ {𝑘𝐴𝐵 = ∅}) → 𝐵 = ∅)
139137, 107, 138, 42syl21anc 836 . . . . . . . . 9 ((𝜑𝑘 ∈ {𝑘𝐴𝐵 = ∅}) → 𝐷 = 0)
140139ralrimiva 3149 . . . . . . . 8 (𝜑 → ∀𝑘 ∈ {𝑘𝐴𝐵 = ∅}𝐷 = 0)
14130, 140esumeq2d 31406 . . . . . . 7 (𝜑 → Σ*𝑘 ∈ {𝑘𝐴𝐵 = ∅}𝐷 = Σ*𝑘 ∈ {𝑘𝐴𝐵 = ∅}0)
142101esum0 31418 . . . . . . . 8 ({𝑘𝐴𝐵 = ∅} ∈ V → Σ*𝑘 ∈ {𝑘𝐴𝐵 = ∅}0 = 0)
143100, 142syl 17 . . . . . . 7 (𝜑 → Σ*𝑘 ∈ {𝑘𝐴𝐵 = ∅}0 = 0)
144141, 143eqtrd 2833 . . . . . 6 (𝜑 → Σ*𝑘 ∈ {𝑘𝐴𝐵 = ∅}𝐷 = 0)
145144oveq1d 7150 . . . . 5 (𝜑 → (Σ*𝑘 ∈ {𝑘𝐴𝐵 = ∅}𝐷 +𝑒 Σ*𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}𝐷) = (0 +𝑒 Σ*𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}𝐷))
146 xaddid2 12623 . . . . . 6 *𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}𝐷 ∈ ℝ* → (0 +𝑒 Σ*𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}𝐷) = Σ*𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}𝐷)
147132, 146syl 17 . . . . 5 (𝜑 → (0 +𝑒 Σ*𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}𝐷) = Σ*𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}𝐷)
148145, 147eqtrd 2833 . . . 4 (𝜑 → (Σ*𝑘 ∈ {𝑘𝐴𝐵 = ∅}𝐷 +𝑒 Σ*𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}𝐷) = Σ*𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}𝐷)
14923, 136, 1483eqtr4d 2843 . . 3 (𝜑 → (Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)𝐶 +𝑒 Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)𝐶) = (Σ*𝑘 ∈ {𝑘𝐴𝐵 = ∅}𝐷 +𝑒 Σ*𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}𝐷))
150 nfv 1915 . . . 4 𝑦𝜑
151 nfcv 2955 . . . 4 𝑦ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)
1521mptexgf 6962 . . . . 5 ({𝑘𝐴 ∣ ¬ 𝐵 = ∅} ∈ V → (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵) ∈ V)
153 rnexg 7595 . . . . 5 ((𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵) ∈ V → ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵) ∈ V)
1546, 152, 1533syl 18 . . . 4 (𝜑 → ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵) ∈ V)
15569ssrind 4162 . . . . . 6 (𝜑 → (ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵) ∩ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)) ⊆ ({∅} ∩ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)))
156 incom 4128 . . . . . . 7 (ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵) ∩ {∅}) = ({∅} ∩ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵))
15713neqned 2994 . . . . . . . . . . . 12 (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} → 𝐵 ≠ ∅)
158157necomd 3042 . . . . . . . . . . 11 (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} → ∅ ≠ 𝐵)
159158neneqd 2992 . . . . . . . . . 10 (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} → ¬ ∅ = 𝐵)
160159nrex 3228 . . . . . . . . 9 ¬ ∃𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}∅ = 𝐵
161 eqid 2798 . . . . . . . . . . 11 (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵) = (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)
162161elrnmpt 5792 . . . . . . . . . 10 (∅ ∈ V → (∅ ∈ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵) ↔ ∃𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}∅ = 𝐵))
16372, 162ax-mp 5 . . . . . . . . 9 (∅ ∈ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵) ↔ ∃𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}∅ = 𝐵)
164160, 163mtbir 326 . . . . . . . 8 ¬ ∅ ∈ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)
165 disjsn 4607 . . . . . . . 8 ((ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵) ∩ {∅}) = ∅ ↔ ¬ ∅ ∈ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵))
166164, 165mpbir 234 . . . . . . 7 (ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵) ∩ {∅}) = ∅
167156, 166eqtr3i 2823 . . . . . 6 ({∅} ∩ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)) = ∅
168155, 167sseqtrdi 3965 . . . . 5 (𝜑 → (ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵) ∩ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)) ⊆ ∅)
169 ss0 4306 . . . . 5 ((ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵) ∩ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)) ⊆ ∅ → (ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵) ∩ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)) = ∅)
170168, 169syl 17 . . . 4 (𝜑 → (ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵) ∩ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)) = ∅)
171 nfmpt1 5128 . . . . . . . 8 𝑘(𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)
172171nfrn 5788 . . . . . . 7 𝑘ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)
17350, 172nfel 2969 . . . . . 6 𝑘 𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)
17430, 173nfan 1900 . . . . 5 𝑘(𝜑𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵))
1752adantl 485 . . . . . 6 ((((𝜑𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)) ∧ 𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}) ∧ 𝑦 = 𝐵) → 𝐶 = 𝐷)
176 simplll 774 . . . . . . 7 ((((𝜑𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)) ∧ 𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}) ∧ 𝑦 = 𝐵) → 𝜑)
1777adantlr 714 . . . . . . . 8 (((𝜑𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)) ∧ 𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}) → 𝑘𝐴)
178177adantr 484 . . . . . . 7 ((((𝜑𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)) ∧ 𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}) ∧ 𝑦 = 𝐵) → 𝑘𝐴)
179176, 178, 8syl2anc 587 . . . . . 6 ((((𝜑𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)) ∧ 𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}) ∧ 𝑦 = 𝐵) → 𝐷 ∈ (0[,]+∞))
180175, 179eqeltrd 2890 . . . . 5 ((((𝜑𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)) ∧ 𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}) ∧ 𝑦 = 𝐵) → 𝐶 ∈ (0[,]+∞))
181161elrnmpt 5792 . . . . . . . 8 (𝑦 ∈ V → (𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵) ↔ ∃𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}𝑦 = 𝐵))
18261, 181ax-mp 5 . . . . . . 7 (𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵) ↔ ∃𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}𝑦 = 𝐵)
183182biimpi 219 . . . . . 6 (𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵) → ∃𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}𝑦 = 𝐵)
184183adantl 485 . . . . 5 ((𝜑𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)) → ∃𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}𝑦 = 𝐵)
185174, 180, 184r19.29af 3289 . . . 4 ((𝜑𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)) → 𝐶 ∈ (0[,]+∞))
186150, 114, 151, 104, 154, 170, 112, 185esumsplit 31422 . . 3 (𝜑 → Σ*𝑦 ∈ (ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵) ∪ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵))𝐶 = (Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)𝐶 +𝑒 Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)𝐶))
187 rabnc 4295 . . . . 5 ({𝑘𝐴𝐵 = ∅} ∩ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}) = ∅
188187a1i 11 . . . 4 (𝜑 → ({𝑘𝐴𝐵 = ∅} ∩ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}) = ∅)
189107, 8syldan 594 . . . 4 ((𝜑𝑘 ∈ {𝑘𝐴𝐵 = ∅}) → 𝐷 ∈ (0[,]+∞))
19030, 101, 1, 100, 6, 188, 189, 9esumsplit 31422 . . 3 (𝜑 → Σ*𝑘 ∈ ({𝑘𝐴𝐵 = ∅} ∪ {𝑘𝐴 ∣ ¬ 𝐵 = ∅})𝐷 = (Σ*𝑘 ∈ {𝑘𝐴𝐵 = ∅}𝐷 +𝑒 Σ*𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}𝐷))
191149, 186, 1903eqtr4d 2843 . 2 (𝜑 → Σ*𝑦 ∈ (ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵) ∪ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵))𝐶 = Σ*𝑘 ∈ ({𝑘𝐴𝐵 = ∅} ∪ {𝑘𝐴 ∣ ¬ 𝐵 = ∅})𝐷)
192 rabxm 4294 . . . . . . . 8 𝐴 = ({𝑘𝐴𝐵 = ∅} ∪ {𝑘𝐴 ∣ ¬ 𝐵 = ∅})
193192, 83mpteq12i 5123 . . . . . . 7 (𝑘𝐴𝐵) = (𝑘 ∈ ({𝑘𝐴𝐵 = ∅} ∪ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}) ↦ 𝐵)
194 mptun 6466 . . . . . . 7 (𝑘 ∈ ({𝑘𝐴𝐵 = ∅} ∪ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}) ↦ 𝐵) = ((𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵) ∪ (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵))
195193, 194eqtri 2821 . . . . . 6 (𝑘𝐴𝐵) = ((𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵) ∪ (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵))
196195rneqi 5771 . . . . 5 ran (𝑘𝐴𝐵) = ran ((𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵) ∪ (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵))
197 rnun 5971 . . . . 5 ran ((𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵) ∪ (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)) = (ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵) ∪ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵))
198196, 197eqtri 2821 . . . 4 ran (𝑘𝐴𝐵) = (ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵) ∪ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵))
199198a1i 11 . . 3 (𝜑 → ran (𝑘𝐴𝐵) = (ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵) ∪ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)))
200150, 199esumeq1d 31404 . 2 (𝜑 → Σ*𝑦 ∈ ran (𝑘𝐴𝐵)𝐶 = Σ*𝑦 ∈ (ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵) ∪ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵))𝐶)
201192a1i 11 . . 3 (𝜑𝐴 = ({𝑘𝐴𝐵 = ∅} ∪ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}))
20230, 201esumeq1d 31404 . 2 (𝜑 → Σ*𝑘𝐴𝐷 = Σ*𝑘 ∈ ({𝑘𝐴𝐵 = ∅} ∪ {𝑘𝐴 ∣ ¬ 𝐵 = ∅})𝐷)
203191, 200, 2023eqtr4d 2843 1 (𝜑 → Σ*𝑦 ∈ ran (𝑘𝐴𝐵)𝐶 = Σ*𝑘𝐴𝐷)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wne 2987  wral 3106  wrex 3107  {crab 3110  Vcvv 3441  cun 3879  cin 3880  wss 3881  c0 4243  {csn 4525  Disj wdisj 4995   class class class wbr 5030  cmpt 5110  ran crn 5520  (class class class)co 7135  0cc0 10526  +∞cpnf 10661  *cxr 10663  cle 10665   +𝑒 cxad 12493  [,]cicc 12729  Σ*cesum 31396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-disj 4996  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-fi 8859  df-sup 8890  df-inf 8891  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ioc 12731  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426  df-fac 13630  df-bc 13659  df-hash 13687  df-shft 14418  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-limsup 14820  df-clim 14837  df-rlim 14838  df-sum 15035  df-ef 15413  df-sin 15415  df-cos 15416  df-pi 15418  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-ordt 16766  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-ps 17802  df-tsr 17803  df-plusf 17843  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-mhm 17948  df-submnd 17949  df-grp 18098  df-minusg 18099  df-sbg 18100  df-mulg 18217  df-subg 18268  df-cntz 18439  df-cmn 18900  df-abl 18901  df-mgp 19233  df-ur 19245  df-ring 19292  df-cring 19293  df-subrg 19526  df-abv 19581  df-lmod 19629  df-scaf 19630  df-sra 19937  df-rgmod 19938  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-fbas 20088  df-fg 20089  df-cnfld 20092  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-cld 21624  df-ntr 21625  df-cls 21626  df-nei 21703  df-lp 21741  df-perf 21742  df-cn 21832  df-cnp 21833  df-haus 21920  df-tx 22167  df-hmeo 22360  df-fil 22451  df-fm 22543  df-flim 22544  df-flf 22545  df-tmd 22677  df-tgp 22678  df-tsms 22732  df-trg 22765  df-xms 22927  df-ms 22928  df-tms 22929  df-nm 23189  df-ngp 23190  df-nrg 23192  df-nlm 23193  df-ii 23482  df-cncf 23483  df-limc 24469  df-dv 24470  df-log 25148  df-esum 31397
This theorem is referenced by:  carsggect  31686  carsgclctunlem2  31687  pmeasadd  31693
  Copyright terms: Public domain W3C validator