Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumrnmpt2 Structured version   Visualization version   GIF version

Theorem esumrnmpt2 34041
Description: Rewrite an extended sum into a sum on the range of a mapping function. (Contributed by Thierry Arnoux, 30-May-2020.)
Hypotheses
Ref Expression
esumrnmpt2.1 (𝑦 = 𝐵𝐶 = 𝐷)
esumrnmpt2.2 (𝜑𝐴𝑉)
esumrnmpt2.3 ((𝜑𝑘𝐴) → 𝐷 ∈ (0[,]+∞))
esumrnmpt2.4 ((𝜑𝑘𝐴) → 𝐵𝑊)
esumrnmpt2.5 (((𝜑𝑘𝐴) ∧ 𝐵 = ∅) → 𝐷 = 0)
esumrnmpt2.6 (𝜑Disj 𝑘𝐴 𝐵)
Assertion
Ref Expression
esumrnmpt2 (𝜑 → Σ*𝑦 ∈ ran (𝑘𝐴𝐵)𝐶 = Σ*𝑘𝐴𝐷)
Distinct variable groups:   𝐴,𝑘,𝑦   𝑦,𝐵   𝐶,𝑘   𝑦,𝐷   𝑘,𝑊   𝜑,𝑘,𝑦
Allowed substitution hints:   𝐵(𝑘)   𝐶(𝑦)   𝐷(𝑘)   𝑉(𝑦,𝑘)   𝑊(𝑦)

Proof of Theorem esumrnmpt2
StepHypRef Expression
1 nfrab1 3415 . . . . 5 𝑘{𝑘𝐴 ∣ ¬ 𝐵 = ∅}
2 esumrnmpt2.1 . . . . 5 (𝑦 = 𝐵𝐶 = 𝐷)
3 esumrnmpt2.2 . . . . . 6 (𝜑𝐴𝑉)
4 ssrab2 4031 . . . . . . 7 {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ⊆ 𝐴
54a1i 11 . . . . . 6 (𝜑 → {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ⊆ 𝐴)
63, 5ssexd 5263 . . . . 5 (𝜑 → {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ∈ V)
75sselda 3935 . . . . . 6 ((𝜑𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}) → 𝑘𝐴)
8 esumrnmpt2.3 . . . . . 6 ((𝜑𝑘𝐴) → 𝐷 ∈ (0[,]+∞))
97, 8syldan 591 . . . . 5 ((𝜑𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}) → 𝐷 ∈ (0[,]+∞))
10 esumrnmpt2.4 . . . . . . 7 ((𝜑𝑘𝐴) → 𝐵𝑊)
117, 10syldan 591 . . . . . 6 ((𝜑𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}) → 𝐵𝑊)
12 rabid 3416 . . . . . . . . 9 (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↔ (𝑘𝐴 ∧ ¬ 𝐵 = ∅))
1312simprbi 496 . . . . . . . 8 (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} → ¬ 𝐵 = ∅)
1413adantl 481 . . . . . . 7 ((𝜑𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}) → ¬ 𝐵 = ∅)
15 elsng 4591 . . . . . . . 8 (𝐵𝑊 → (𝐵 ∈ {∅} ↔ 𝐵 = ∅))
1611, 15syl 17 . . . . . . 7 ((𝜑𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}) → (𝐵 ∈ {∅} ↔ 𝐵 = ∅))
1714, 16mtbird 325 . . . . . 6 ((𝜑𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}) → ¬ 𝐵 ∈ {∅})
1811, 17eldifd 3914 . . . . 5 ((𝜑𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}) → 𝐵 ∈ (𝑊 ∖ {∅}))
19 esumrnmpt2.6 . . . . . 6 (𝜑Disj 𝑘𝐴 𝐵)
20 nfcv 2891 . . . . . . 7 𝑘𝐴
211, 20disjss1f 32516 . . . . . 6 ({𝑘𝐴 ∣ ¬ 𝐵 = ∅} ⊆ 𝐴 → (Disj 𝑘𝐴 𝐵Disj 𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}𝐵))
225, 19, 21sylc 65 . . . . 5 (𝜑Disj 𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}𝐵)
231, 2, 6, 9, 18, 22esumrnmpt 34025 . . . 4 (𝜑 → Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)𝐶 = Σ*𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}𝐷)
24 nfv 1914 . . . . . . . . . . 11 𝑦(𝜑 ∧ ∃𝑘𝐴 𝐵 = ∅)
25 snex 5375 . . . . . . . . . . . 12 {∅} ∈ V
2625a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ ∃𝑘𝐴 𝐵 = ∅) → {∅} ∈ V)
27 velsn 4593 . . . . . . . . . . . . . . 15 (𝑦 ∈ {∅} ↔ 𝑦 = ∅)
2827biimpi 216 . . . . . . . . . . . . . 14 (𝑦 ∈ {∅} → 𝑦 = ∅)
2928adantl 481 . . . . . . . . . . . . 13 (((𝜑 ∧ ∃𝑘𝐴 𝐵 = ∅) ∧ 𝑦 ∈ {∅}) → 𝑦 = ∅)
30 nfv 1914 . . . . . . . . . . . . . . . 16 𝑘𝜑
31 nfre1 3254 . . . . . . . . . . . . . . . 16 𝑘𝑘𝐴 𝐵 = ∅
3230, 31nfan 1899 . . . . . . . . . . . . . . 15 𝑘(𝜑 ∧ ∃𝑘𝐴 𝐵 = ∅)
33 nfv 1914 . . . . . . . . . . . . . . 15 𝑘 𝑦 = ∅
3432, 33nfan 1899 . . . . . . . . . . . . . 14 𝑘((𝜑 ∧ ∃𝑘𝐴 𝐵 = ∅) ∧ 𝑦 = ∅)
35 nfv 1914 . . . . . . . . . . . . . 14 𝑘 𝐶 = 0
36 simpllr 775 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ ∃𝑘𝐴 𝐵 = ∅) ∧ 𝑦 = ∅) ∧ 𝑘𝐴) ∧ 𝐵 = ∅) → 𝑦 = ∅)
37 simpr 484 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ ∃𝑘𝐴 𝐵 = ∅) ∧ 𝑦 = ∅) ∧ 𝑘𝐴) ∧ 𝐵 = ∅) → 𝐵 = ∅)
3836, 37eqtr4d 2767 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ ∃𝑘𝐴 𝐵 = ∅) ∧ 𝑦 = ∅) ∧ 𝑘𝐴) ∧ 𝐵 = ∅) → 𝑦 = 𝐵)
3938, 2syl 17 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ ∃𝑘𝐴 𝐵 = ∅) ∧ 𝑦 = ∅) ∧ 𝑘𝐴) ∧ 𝐵 = ∅) → 𝐶 = 𝐷)
40 simp-4l 782 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ ∃𝑘𝐴 𝐵 = ∅) ∧ 𝑦 = ∅) ∧ 𝑘𝐴) ∧ 𝐵 = ∅) → 𝜑)
41 simplr 768 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ ∃𝑘𝐴 𝐵 = ∅) ∧ 𝑦 = ∅) ∧ 𝑘𝐴) ∧ 𝐵 = ∅) → 𝑘𝐴)
42 esumrnmpt2.5 . . . . . . . . . . . . . . . 16 (((𝜑𝑘𝐴) ∧ 𝐵 = ∅) → 𝐷 = 0)
4340, 41, 37, 42syl21anc 837 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ ∃𝑘𝐴 𝐵 = ∅) ∧ 𝑦 = ∅) ∧ 𝑘𝐴) ∧ 𝐵 = ∅) → 𝐷 = 0)
4439, 43eqtrd 2764 . . . . . . . . . . . . . 14 (((((𝜑 ∧ ∃𝑘𝐴 𝐵 = ∅) ∧ 𝑦 = ∅) ∧ 𝑘𝐴) ∧ 𝐵 = ∅) → 𝐶 = 0)
45 simplr 768 . . . . . . . . . . . . . 14 (((𝜑 ∧ ∃𝑘𝐴 𝐵 = ∅) ∧ 𝑦 = ∅) → ∃𝑘𝐴 𝐵 = ∅)
4634, 35, 44, 45r19.29af2 3237 . . . . . . . . . . . . 13 (((𝜑 ∧ ∃𝑘𝐴 𝐵 = ∅) ∧ 𝑦 = ∅) → 𝐶 = 0)
4729, 46syldan 591 . . . . . . . . . . . 12 (((𝜑 ∧ ∃𝑘𝐴 𝐵 = ∅) ∧ 𝑦 ∈ {∅}) → 𝐶 = 0)
48 0e0iccpnf 13362 . . . . . . . . . . . 12 0 ∈ (0[,]+∞)
4947, 48eqeltrdi 2836 . . . . . . . . . . 11 (((𝜑 ∧ ∃𝑘𝐴 𝐵 = ∅) ∧ 𝑦 ∈ {∅}) → 𝐶 ∈ (0[,]+∞))
50 nfcv 2891 . . . . . . . . . . . . . . . . 17 𝑘𝑦
51 nfmpt1 5191 . . . . . . . . . . . . . . . . . 18 𝑘(𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)
5251nfrn 5894 . . . . . . . . . . . . . . . . 17 𝑘ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)
5350, 52nfel 2906 . . . . . . . . . . . . . . . 16 𝑘 𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)
5430, 53nfan 1899 . . . . . . . . . . . . . . 15 𝑘(𝜑𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵))
55 simpr 484 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)) ∧ 𝑘 ∈ {𝑘𝐴𝐵 = ∅}) ∧ 𝑦 = 𝐵) → 𝑦 = 𝐵)
56 rabid 3416 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↔ (𝑘𝐴𝐵 = ∅))
5756simprbi 496 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ {𝑘𝐴𝐵 = ∅} → 𝐵 = ∅)
5857ad2antlr 727 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)) ∧ 𝑘 ∈ {𝑘𝐴𝐵 = ∅}) ∧ 𝑦 = 𝐵) → 𝐵 = ∅)
5955, 58eqtrd 2764 . . . . . . . . . . . . . . . 16 ((((𝜑𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)) ∧ 𝑘 ∈ {𝑘𝐴𝐵 = ∅}) ∧ 𝑦 = 𝐵) → 𝑦 = ∅)
6059, 27sylibr 234 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)) ∧ 𝑘 ∈ {𝑘𝐴𝐵 = ∅}) ∧ 𝑦 = 𝐵) → 𝑦 ∈ {∅})
61 vex 3440 . . . . . . . . . . . . . . . . . 18 𝑦 ∈ V
62 eqid 2729 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵) = (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)
6362elrnmpt 5900 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ V → (𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵) ↔ ∃𝑘 ∈ {𝑘𝐴𝐵 = ∅}𝑦 = 𝐵))
6461, 63ax-mp 5 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵) ↔ ∃𝑘 ∈ {𝑘𝐴𝐵 = ∅}𝑦 = 𝐵)
6564biimpi 216 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵) → ∃𝑘 ∈ {𝑘𝐴𝐵 = ∅}𝑦 = 𝐵)
6665adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)) → ∃𝑘 ∈ {𝑘𝐴𝐵 = ∅}𝑦 = 𝐵)
6754, 60, 66r19.29af 3238 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)) → 𝑦 ∈ {∅})
6867ex 412 . . . . . . . . . . . . 13 (𝜑 → (𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵) → 𝑦 ∈ {∅}))
6968ssrdv 3941 . . . . . . . . . . . 12 (𝜑 → ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵) ⊆ {∅})
7069adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ ∃𝑘𝐴 𝐵 = ∅) → ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵) ⊆ {∅})
7124, 26, 49, 70esummono 34027 . . . . . . . . . 10 ((𝜑 ∧ ∃𝑘𝐴 𝐵 = ∅) → Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)𝐶 ≤ Σ*𝑦 ∈ {∅}𝐶)
72 0ex 5246 . . . . . . . . . . . 12 ∅ ∈ V
7372a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ ∃𝑘𝐴 𝐵 = ∅) → ∅ ∈ V)
7448a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ ∃𝑘𝐴 𝐵 = ∅) → 0 ∈ (0[,]+∞))
7546, 73, 74esumsn 34038 . . . . . . . . . 10 ((𝜑 ∧ ∃𝑘𝐴 𝐵 = ∅) → Σ*𝑦 ∈ {∅}𝐶 = 0)
7671, 75breqtrd 5118 . . . . . . . . 9 ((𝜑 ∧ ∃𝑘𝐴 𝐵 = ∅) → Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)𝐶 ≤ 0)
77 simpr 484 . . . . . . . . . 10 ((𝜑 ∧ ¬ ∃𝑘𝐴 𝐵 = ∅) → ¬ ∃𝑘𝐴 𝐵 = ∅)
78 nfv 1914 . . . . . . . . . . . . 13 𝑦 ¬ ∃𝑘𝐴 𝐵 = ∅
7931nfn 1857 . . . . . . . . . . . . . . . . 17 𝑘 ¬ ∃𝑘𝐴 𝐵 = ∅
80 rabn0 4340 . . . . . . . . . . . . . . . . . . 19 ({𝑘𝐴𝐵 = ∅} ≠ ∅ ↔ ∃𝑘𝐴 𝐵 = ∅)
8180biimpi 216 . . . . . . . . . . . . . . . . . 18 ({𝑘𝐴𝐵 = ∅} ≠ ∅ → ∃𝑘𝐴 𝐵 = ∅)
8281necon1bi 2953 . . . . . . . . . . . . . . . . 17 (¬ ∃𝑘𝐴 𝐵 = ∅ → {𝑘𝐴𝐵 = ∅} = ∅)
83 eqid 2729 . . . . . . . . . . . . . . . . . 18 𝐵 = 𝐵
8483a1i 11 . . . . . . . . . . . . . . . . 17 (¬ ∃𝑘𝐴 𝐵 = ∅ → 𝐵 = 𝐵)
8579, 82, 84mpteq12df 5176 . . . . . . . . . . . . . . . 16 (¬ ∃𝑘𝐴 𝐵 = ∅ → (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵) = (𝑘 ∈ ∅ ↦ 𝐵))
86 mpt0 6624 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ∅ ↦ 𝐵) = ∅
8785, 86eqtrdi 2780 . . . . . . . . . . . . . . 15 (¬ ∃𝑘𝐴 𝐵 = ∅ → (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵) = ∅)
8887rneqd 5880 . . . . . . . . . . . . . 14 (¬ ∃𝑘𝐴 𝐵 = ∅ → ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵) = ran ∅)
89 rn0 5868 . . . . . . . . . . . . . 14 ran ∅ = ∅
9088, 89eqtrdi 2780 . . . . . . . . . . . . 13 (¬ ∃𝑘𝐴 𝐵 = ∅ → ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵) = ∅)
9178, 90esumeq1d 34008 . . . . . . . . . . . 12 (¬ ∃𝑘𝐴 𝐵 = ∅ → Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)𝐶 = Σ*𝑦 ∈ ∅𝐶)
92 esumnul 34021 . . . . . . . . . . . 12 Σ*𝑦 ∈ ∅𝐶 = 0
9391, 92eqtrdi 2780 . . . . . . . . . . 11 (¬ ∃𝑘𝐴 𝐵 = ∅ → Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)𝐶 = 0)
94 0le0 12229 . . . . . . . . . . 11 0 ≤ 0
9593, 94eqbrtrdi 5131 . . . . . . . . . 10 (¬ ∃𝑘𝐴 𝐵 = ∅ → Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)𝐶 ≤ 0)
9677, 95syl 17 . . . . . . . . 9 ((𝜑 ∧ ¬ ∃𝑘𝐴 𝐵 = ∅) → Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)𝐶 ≤ 0)
9776, 96pm2.61dan 812 . . . . . . . 8 (𝜑 → Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)𝐶 ≤ 0)
98 ssrab2 4031 . . . . . . . . . . . . 13 {𝑘𝐴𝐵 = ∅} ⊆ 𝐴
9998a1i 11 . . . . . . . . . . . 12 (𝜑 → {𝑘𝐴𝐵 = ∅} ⊆ 𝐴)
1003, 99ssexd 5263 . . . . . . . . . . 11 (𝜑 → {𝑘𝐴𝐵 = ∅} ∈ V)
101 nfrab1 3415 . . . . . . . . . . . 12 𝑘{𝑘𝐴𝐵 = ∅}
102101mptexgf 7158 . . . . . . . . . . 11 ({𝑘𝐴𝐵 = ∅} ∈ V → (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵) ∈ V)
103 rnexg 7835 . . . . . . . . . . 11 ((𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵) ∈ V → ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵) ∈ V)
104100, 102, 1033syl 18 . . . . . . . . . 10 (𝜑 → ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵) ∈ V)
1052adantl 481 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)) ∧ 𝑘 ∈ {𝑘𝐴𝐵 = ∅}) ∧ 𝑦 = 𝐵) → 𝐶 = 𝐷)
106 simplll 774 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)) ∧ 𝑘 ∈ {𝑘𝐴𝐵 = ∅}) ∧ 𝑦 = 𝐵) → 𝜑)
10799sselda 3935 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ {𝑘𝐴𝐵 = ∅}) → 𝑘𝐴)
108107adantlr 715 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)) ∧ 𝑘 ∈ {𝑘𝐴𝐵 = ∅}) → 𝑘𝐴)
109108adantr 480 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)) ∧ 𝑘 ∈ {𝑘𝐴𝐵 = ∅}) ∧ 𝑦 = 𝐵) → 𝑘𝐴)
110106, 109, 8syl2anc 584 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)) ∧ 𝑘 ∈ {𝑘𝐴𝐵 = ∅}) ∧ 𝑦 = 𝐵) → 𝐷 ∈ (0[,]+∞))
111105, 110eqeltrd 2828 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)) ∧ 𝑘 ∈ {𝑘𝐴𝐵 = ∅}) ∧ 𝑦 = 𝐵) → 𝐶 ∈ (0[,]+∞))
11254, 111, 66r19.29af 3238 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)) → 𝐶 ∈ (0[,]+∞))
113112ralrimiva 3121 . . . . . . . . . 10 (𝜑 → ∀𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)𝐶 ∈ (0[,]+∞))
114 nfcv 2891 . . . . . . . . . . 11 𝑦ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)
115114esumcl 34003 . . . . . . . . . 10 ((ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵) ∈ V ∧ ∀𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)𝐶 ∈ (0[,]+∞)) → Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)𝐶 ∈ (0[,]+∞))
116104, 113, 115syl2anc 584 . . . . . . . . 9 (𝜑 → Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)𝐶 ∈ (0[,]+∞))
117 elxrge0 13360 . . . . . . . . . 10 *𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)𝐶 ∈ (0[,]+∞) ↔ (Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)𝐶 ∈ ℝ* ∧ 0 ≤ Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)𝐶))
118117simprbi 496 . . . . . . . . 9 *𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)𝐶 ∈ (0[,]+∞) → 0 ≤ Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)𝐶)
119116, 118syl 17 . . . . . . . 8 (𝜑 → 0 ≤ Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)𝐶)
12097, 119jca 511 . . . . . . 7 (𝜑 → (Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)𝐶 ≤ 0 ∧ 0 ≤ Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)𝐶))
121 iccssxr 13333 . . . . . . . . 9 (0[,]+∞) ⊆ ℝ*
122121, 116sselid 3933 . . . . . . . 8 (𝜑 → Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)𝐶 ∈ ℝ*)
123121, 48sselii 3932 . . . . . . . . 9 0 ∈ ℝ*
124123a1i 11 . . . . . . . 8 (𝜑 → 0 ∈ ℝ*)
125 xrletri3 13056 . . . . . . . 8 ((Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)𝐶 ∈ ℝ* ∧ 0 ∈ ℝ*) → (Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)𝐶 = 0 ↔ (Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)𝐶 ≤ 0 ∧ 0 ≤ Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)𝐶)))
126122, 124, 125syl2anc 584 . . . . . . 7 (𝜑 → (Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)𝐶 = 0 ↔ (Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)𝐶 ≤ 0 ∧ 0 ≤ Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)𝐶)))
127120, 126mpbird 257 . . . . . 6 (𝜑 → Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)𝐶 = 0)
128127oveq1d 7364 . . . . 5 (𝜑 → (Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)𝐶 +𝑒 Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)𝐶) = (0 +𝑒 Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)𝐶))
1299ralrimiva 3121 . . . . . . . . 9 (𝜑 → ∀𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}𝐷 ∈ (0[,]+∞))
1301esumcl 34003 . . . . . . . . 9 (({𝑘𝐴 ∣ ¬ 𝐵 = ∅} ∈ V ∧ ∀𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}𝐷 ∈ (0[,]+∞)) → Σ*𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}𝐷 ∈ (0[,]+∞))
1316, 129, 130syl2anc 584 . . . . . . . 8 (𝜑 → Σ*𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}𝐷 ∈ (0[,]+∞))
132121, 131sselid 3933 . . . . . . 7 (𝜑 → Σ*𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}𝐷 ∈ ℝ*)
13323, 132eqeltrd 2828 . . . . . 6 (𝜑 → Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)𝐶 ∈ ℝ*)
134 xaddlid 13144 . . . . . 6 *𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)𝐶 ∈ ℝ* → (0 +𝑒 Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)𝐶) = Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)𝐶)
135133, 134syl 17 . . . . 5 (𝜑 → (0 +𝑒 Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)𝐶) = Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)𝐶)
136128, 135eqtrd 2764 . . . 4 (𝜑 → (Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)𝐶 +𝑒 Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)𝐶) = Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)𝐶)
137 simpl 482 . . . . . . . . . 10 ((𝜑𝑘 ∈ {𝑘𝐴𝐵 = ∅}) → 𝜑)
13857adantl 481 . . . . . . . . . 10 ((𝜑𝑘 ∈ {𝑘𝐴𝐵 = ∅}) → 𝐵 = ∅)
139137, 107, 138, 42syl21anc 837 . . . . . . . . 9 ((𝜑𝑘 ∈ {𝑘𝐴𝐵 = ∅}) → 𝐷 = 0)
140139ralrimiva 3121 . . . . . . . 8 (𝜑 → ∀𝑘 ∈ {𝑘𝐴𝐵 = ∅}𝐷 = 0)
14130, 140esumeq2d 34010 . . . . . . 7 (𝜑 → Σ*𝑘 ∈ {𝑘𝐴𝐵 = ∅}𝐷 = Σ*𝑘 ∈ {𝑘𝐴𝐵 = ∅}0)
142101esum0 34022 . . . . . . . 8 ({𝑘𝐴𝐵 = ∅} ∈ V → Σ*𝑘 ∈ {𝑘𝐴𝐵 = ∅}0 = 0)
143100, 142syl 17 . . . . . . 7 (𝜑 → Σ*𝑘 ∈ {𝑘𝐴𝐵 = ∅}0 = 0)
144141, 143eqtrd 2764 . . . . . 6 (𝜑 → Σ*𝑘 ∈ {𝑘𝐴𝐵 = ∅}𝐷 = 0)
145144oveq1d 7364 . . . . 5 (𝜑 → (Σ*𝑘 ∈ {𝑘𝐴𝐵 = ∅}𝐷 +𝑒 Σ*𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}𝐷) = (0 +𝑒 Σ*𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}𝐷))
146 xaddlid 13144 . . . . . 6 *𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}𝐷 ∈ ℝ* → (0 +𝑒 Σ*𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}𝐷) = Σ*𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}𝐷)
147132, 146syl 17 . . . . 5 (𝜑 → (0 +𝑒 Σ*𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}𝐷) = Σ*𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}𝐷)
148145, 147eqtrd 2764 . . . 4 (𝜑 → (Σ*𝑘 ∈ {𝑘𝐴𝐵 = ∅}𝐷 +𝑒 Σ*𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}𝐷) = Σ*𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}𝐷)
14923, 136, 1483eqtr4d 2774 . . 3 (𝜑 → (Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)𝐶 +𝑒 Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)𝐶) = (Σ*𝑘 ∈ {𝑘𝐴𝐵 = ∅}𝐷 +𝑒 Σ*𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}𝐷))
150 nfv 1914 . . . 4 𝑦𝜑
151 nfcv 2891 . . . 4 𝑦ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)
1521mptexgf 7158 . . . . 5 ({𝑘𝐴 ∣ ¬ 𝐵 = ∅} ∈ V → (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵) ∈ V)
153 rnexg 7835 . . . . 5 ((𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵) ∈ V → ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵) ∈ V)
1546, 152, 1533syl 18 . . . 4 (𝜑 → ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵) ∈ V)
15569ssrind 4195 . . . . . 6 (𝜑 → (ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵) ∩ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)) ⊆ ({∅} ∩ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)))
156 incom 4160 . . . . . . 7 (ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵) ∩ {∅}) = ({∅} ∩ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵))
15713neqned 2932 . . . . . . . . . . . 12 (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} → 𝐵 ≠ ∅)
158157necomd 2980 . . . . . . . . . . 11 (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} → ∅ ≠ 𝐵)
159158neneqd 2930 . . . . . . . . . 10 (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} → ¬ ∅ = 𝐵)
160159nrex 3057 . . . . . . . . 9 ¬ ∃𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}∅ = 𝐵
161 eqid 2729 . . . . . . . . . . 11 (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵) = (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)
162161elrnmpt 5900 . . . . . . . . . 10 (∅ ∈ V → (∅ ∈ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵) ↔ ∃𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}∅ = 𝐵))
16372, 162ax-mp 5 . . . . . . . . 9 (∅ ∈ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵) ↔ ∃𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}∅ = 𝐵)
164160, 163mtbir 323 . . . . . . . 8 ¬ ∅ ∈ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)
165 disjsn 4663 . . . . . . . 8 ((ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵) ∩ {∅}) = ∅ ↔ ¬ ∅ ∈ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵))
166164, 165mpbir 231 . . . . . . 7 (ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵) ∩ {∅}) = ∅
167156, 166eqtr3i 2754 . . . . . 6 ({∅} ∩ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)) = ∅
168155, 167sseqtrdi 3976 . . . . 5 (𝜑 → (ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵) ∩ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)) ⊆ ∅)
169 ss0 4353 . . . . 5 ((ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵) ∩ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)) ⊆ ∅ → (ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵) ∩ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)) = ∅)
170168, 169syl 17 . . . 4 (𝜑 → (ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵) ∩ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)) = ∅)
171 nfmpt1 5191 . . . . . . . 8 𝑘(𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)
172171nfrn 5894 . . . . . . 7 𝑘ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)
17350, 172nfel 2906 . . . . . 6 𝑘 𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)
17430, 173nfan 1899 . . . . 5 𝑘(𝜑𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵))
1752adantl 481 . . . . . 6 ((((𝜑𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)) ∧ 𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}) ∧ 𝑦 = 𝐵) → 𝐶 = 𝐷)
176 simplll 774 . . . . . . 7 ((((𝜑𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)) ∧ 𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}) ∧ 𝑦 = 𝐵) → 𝜑)
1777adantlr 715 . . . . . . . 8 (((𝜑𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)) ∧ 𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}) → 𝑘𝐴)
178177adantr 480 . . . . . . 7 ((((𝜑𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)) ∧ 𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}) ∧ 𝑦 = 𝐵) → 𝑘𝐴)
179176, 178, 8syl2anc 584 . . . . . 6 ((((𝜑𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)) ∧ 𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}) ∧ 𝑦 = 𝐵) → 𝐷 ∈ (0[,]+∞))
180175, 179eqeltrd 2828 . . . . 5 ((((𝜑𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)) ∧ 𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}) ∧ 𝑦 = 𝐵) → 𝐶 ∈ (0[,]+∞))
181161elrnmpt 5900 . . . . . . . 8 (𝑦 ∈ V → (𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵) ↔ ∃𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}𝑦 = 𝐵))
18261, 181ax-mp 5 . . . . . . 7 (𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵) ↔ ∃𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}𝑦 = 𝐵)
183182biimpi 216 . . . . . 6 (𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵) → ∃𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}𝑦 = 𝐵)
184183adantl 481 . . . . 5 ((𝜑𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)) → ∃𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}𝑦 = 𝐵)
185174, 180, 184r19.29af 3238 . . . 4 ((𝜑𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)) → 𝐶 ∈ (0[,]+∞))
186150, 114, 151, 104, 154, 170, 112, 185esumsplit 34026 . . 3 (𝜑 → Σ*𝑦 ∈ (ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵) ∪ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵))𝐶 = (Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵)𝐶 +𝑒 Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)𝐶))
187 rabnc 4342 . . . . 5 ({𝑘𝐴𝐵 = ∅} ∩ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}) = ∅
188187a1i 11 . . . 4 (𝜑 → ({𝑘𝐴𝐵 = ∅} ∩ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}) = ∅)
189107, 8syldan 591 . . . 4 ((𝜑𝑘 ∈ {𝑘𝐴𝐵 = ∅}) → 𝐷 ∈ (0[,]+∞))
19030, 101, 1, 100, 6, 188, 189, 9esumsplit 34026 . . 3 (𝜑 → Σ*𝑘 ∈ ({𝑘𝐴𝐵 = ∅} ∪ {𝑘𝐴 ∣ ¬ 𝐵 = ∅})𝐷 = (Σ*𝑘 ∈ {𝑘𝐴𝐵 = ∅}𝐷 +𝑒 Σ*𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}𝐷))
191149, 186, 1903eqtr4d 2774 . 2 (𝜑 → Σ*𝑦 ∈ (ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵) ∪ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵))𝐶 = Σ*𝑘 ∈ ({𝑘𝐴𝐵 = ∅} ∪ {𝑘𝐴 ∣ ¬ 𝐵 = ∅})𝐷)
192 rabxm 4341 . . . . . . . 8 𝐴 = ({𝑘𝐴𝐵 = ∅} ∪ {𝑘𝐴 ∣ ¬ 𝐵 = ∅})
193192, 83mpteq12i 5189 . . . . . . 7 (𝑘𝐴𝐵) = (𝑘 ∈ ({𝑘𝐴𝐵 = ∅} ∪ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}) ↦ 𝐵)
194 mptun 6628 . . . . . . 7 (𝑘 ∈ ({𝑘𝐴𝐵 = ∅} ∪ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}) ↦ 𝐵) = ((𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵) ∪ (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵))
195193, 194eqtri 2752 . . . . . 6 (𝑘𝐴𝐵) = ((𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵) ∪ (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵))
196195rneqi 5879 . . . . 5 ran (𝑘𝐴𝐵) = ran ((𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵) ∪ (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵))
197 rnun 6094 . . . . 5 ran ((𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵) ∪ (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)) = (ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵) ∪ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵))
198196, 197eqtri 2752 . . . 4 ran (𝑘𝐴𝐵) = (ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵) ∪ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵))
199198a1i 11 . . 3 (𝜑 → ran (𝑘𝐴𝐵) = (ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵) ∪ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)))
200150, 199esumeq1d 34008 . 2 (𝜑 → Σ*𝑦 ∈ ran (𝑘𝐴𝐵)𝐶 = Σ*𝑦 ∈ (ran (𝑘 ∈ {𝑘𝐴𝐵 = ∅} ↦ 𝐵) ∪ ran (𝑘 ∈ {𝑘𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵))𝐶)
201192a1i 11 . . 3 (𝜑𝐴 = ({𝑘𝐴𝐵 = ∅} ∪ {𝑘𝐴 ∣ ¬ 𝐵 = ∅}))
20230, 201esumeq1d 34008 . 2 (𝜑 → Σ*𝑘𝐴𝐷 = Σ*𝑘 ∈ ({𝑘𝐴𝐵 = ∅} ∪ {𝑘𝐴 ∣ ¬ 𝐵 = ∅})𝐷)
203191, 200, 2023eqtr4d 2774 1 (𝜑 → Σ*𝑦 ∈ ran (𝑘𝐴𝐵)𝐶 = Σ*𝑘𝐴𝐷)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  {crab 3394  Vcvv 3436  cun 3901  cin 3902  wss 3903  c0 4284  {csn 4577  Disj wdisj 5059   class class class wbr 5092  cmpt 5173  ran crn 5620  (class class class)co 7349  0cc0 11009  +∞cpnf 11146  *cxr 11148  cle 11150   +𝑒 cxad 13012  [,]cicc 13251  Σ*cesum 34000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088  ax-mulf 11089
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-disj 5060  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-pm 8756  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-fi 9301  df-sup 9332  df-inf 9333  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ioo 13252  df-ioc 13253  df-ico 13254  df-icc 13255  df-fz 13411  df-fzo 13558  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-shft 14974  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594  df-ef 15974  df-sin 15976  df-cos 15977  df-pi 15979  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-ordt 17405  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-ps 18472  df-tsr 18473  df-plusf 18513  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-mhm 18657  df-submnd 18658  df-grp 18815  df-minusg 18816  df-sbg 18817  df-mulg 18947  df-subg 19002  df-cntz 19196  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-cring 20121  df-subrng 20431  df-subrg 20455  df-abv 20694  df-lmod 20765  df-scaf 20766  df-sra 21077  df-rgmod 21078  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-fbas 21258  df-fg 21259  df-cnfld 21262  df-top 22779  df-topon 22796  df-topsp 22818  df-bases 22831  df-cld 22904  df-ntr 22905  df-cls 22906  df-nei 22983  df-lp 23021  df-perf 23022  df-cn 23112  df-cnp 23113  df-haus 23200  df-tx 23447  df-hmeo 23640  df-fil 23731  df-fm 23823  df-flim 23824  df-flf 23825  df-tmd 23957  df-tgp 23958  df-tsms 24012  df-trg 24045  df-xms 24206  df-ms 24207  df-tms 24208  df-nm 24468  df-ngp 24469  df-nrg 24471  df-nlm 24472  df-ii 24768  df-cncf 24769  df-limc 25765  df-dv 25766  df-log 26463  df-esum 34001
This theorem is referenced by:  carsggect  34292  carsgclctunlem2  34293  pmeasadd  34299
  Copyright terms: Public domain W3C validator