Proof of Theorem esumrnmpt2
| Step | Hyp | Ref
| Expression |
| 1 | | nfrab1 3441 |
. . . . 5
⊢
Ⅎ𝑘{𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} |
| 2 | | esumrnmpt2.1 |
. . . . 5
⊢ (𝑦 = 𝐵 → 𝐶 = 𝐷) |
| 3 | | esumrnmpt2.2 |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| 4 | | ssrab2 4060 |
. . . . . . 7
⊢ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ⊆ 𝐴 |
| 5 | 4 | a1i 11 |
. . . . . 6
⊢ (𝜑 → {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ⊆ 𝐴) |
| 6 | 3, 5 | ssexd 5299 |
. . . . 5
⊢ (𝜑 → {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ∈ V) |
| 7 | 5 | sselda 3963 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}) → 𝑘 ∈ 𝐴) |
| 8 | | esumrnmpt2.3 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐷 ∈ (0[,]+∞)) |
| 9 | 7, 8 | syldan 591 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}) → 𝐷 ∈ (0[,]+∞)) |
| 10 | | esumrnmpt2.4 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝑊) |
| 11 | 7, 10 | syldan 591 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}) → 𝐵 ∈ 𝑊) |
| 12 | | rabid 3442 |
. . . . . . . . 9
⊢ (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↔ (𝑘 ∈ 𝐴 ∧ ¬ 𝐵 = ∅)) |
| 13 | 12 | simprbi 496 |
. . . . . . . 8
⊢ (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} → ¬ 𝐵 = ∅) |
| 14 | 13 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}) → ¬ 𝐵 = ∅) |
| 15 | | elsng 4620 |
. . . . . . . 8
⊢ (𝐵 ∈ 𝑊 → (𝐵 ∈ {∅} ↔ 𝐵 = ∅)) |
| 16 | 11, 15 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}) → (𝐵 ∈ {∅} ↔ 𝐵 = ∅)) |
| 17 | 14, 16 | mtbird 325 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}) → ¬ 𝐵 ∈ {∅}) |
| 18 | 11, 17 | eldifd 3942 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}) → 𝐵 ∈ (𝑊 ∖ {∅})) |
| 19 | | esumrnmpt2.6 |
. . . . . 6
⊢ (𝜑 → Disj 𝑘 ∈ 𝐴 𝐵) |
| 20 | | nfcv 2899 |
. . . . . . 7
⊢
Ⅎ𝑘𝐴 |
| 21 | 1, 20 | disjss1f 32558 |
. . . . . 6
⊢ ({𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ⊆ 𝐴 → (Disj 𝑘 ∈ 𝐴 𝐵 → Disj 𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}𝐵)) |
| 22 | 5, 19, 21 | sylc 65 |
. . . . 5
⊢ (𝜑 → Disj 𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}𝐵) |
| 23 | 1, 2, 6, 9, 18, 22 | esumrnmpt 34088 |
. . . 4
⊢ (𝜑 → Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)𝐶 = Σ*𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}𝐷) |
| 24 | | nfv 1914 |
. . . . . . . . . . 11
⊢
Ⅎ𝑦(𝜑 ∧ ∃𝑘 ∈ 𝐴 𝐵 = ∅) |
| 25 | | snex 5411 |
. . . . . . . . . . . 12
⊢ {∅}
∈ V |
| 26 | 25 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ∃𝑘 ∈ 𝐴 𝐵 = ∅) → {∅} ∈
V) |
| 27 | | velsn 4622 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ {∅} ↔ 𝑦 = ∅) |
| 28 | 27 | biimpi 216 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ {∅} → 𝑦 = ∅) |
| 29 | 28 | adantl 481 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ∃𝑘 ∈ 𝐴 𝐵 = ∅) ∧ 𝑦 ∈ {∅}) → 𝑦 = ∅) |
| 30 | | nfv 1914 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑘𝜑 |
| 31 | | nfre1 3271 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑘∃𝑘 ∈ 𝐴 𝐵 = ∅ |
| 32 | 30, 31 | nfan 1899 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑘(𝜑 ∧ ∃𝑘 ∈ 𝐴 𝐵 = ∅) |
| 33 | | nfv 1914 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑘 𝑦 = ∅ |
| 34 | 32, 33 | nfan 1899 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑘((𝜑 ∧ ∃𝑘 ∈ 𝐴 𝐵 = ∅) ∧ 𝑦 = ∅) |
| 35 | | nfv 1914 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑘 𝐶 = 0 |
| 36 | | simpllr 775 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧
∃𝑘 ∈ 𝐴 𝐵 = ∅) ∧ 𝑦 = ∅) ∧ 𝑘 ∈ 𝐴) ∧ 𝐵 = ∅) → 𝑦 = ∅) |
| 37 | | simpr 484 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧
∃𝑘 ∈ 𝐴 𝐵 = ∅) ∧ 𝑦 = ∅) ∧ 𝑘 ∈ 𝐴) ∧ 𝐵 = ∅) → 𝐵 = ∅) |
| 38 | 36, 37 | eqtr4d 2774 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧
∃𝑘 ∈ 𝐴 𝐵 = ∅) ∧ 𝑦 = ∅) ∧ 𝑘 ∈ 𝐴) ∧ 𝐵 = ∅) → 𝑦 = 𝐵) |
| 39 | 38, 2 | syl 17 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧
∃𝑘 ∈ 𝐴 𝐵 = ∅) ∧ 𝑦 = ∅) ∧ 𝑘 ∈ 𝐴) ∧ 𝐵 = ∅) → 𝐶 = 𝐷) |
| 40 | | simp-4l 782 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧
∃𝑘 ∈ 𝐴 𝐵 = ∅) ∧ 𝑦 = ∅) ∧ 𝑘 ∈ 𝐴) ∧ 𝐵 = ∅) → 𝜑) |
| 41 | | simplr 768 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧
∃𝑘 ∈ 𝐴 𝐵 = ∅) ∧ 𝑦 = ∅) ∧ 𝑘 ∈ 𝐴) ∧ 𝐵 = ∅) → 𝑘 ∈ 𝐴) |
| 42 | | esumrnmpt2.5 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ 𝐵 = ∅) → 𝐷 = 0) |
| 43 | 40, 41, 37, 42 | syl21anc 837 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧
∃𝑘 ∈ 𝐴 𝐵 = ∅) ∧ 𝑦 = ∅) ∧ 𝑘 ∈ 𝐴) ∧ 𝐵 = ∅) → 𝐷 = 0) |
| 44 | 39, 43 | eqtrd 2771 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧
∃𝑘 ∈ 𝐴 𝐵 = ∅) ∧ 𝑦 = ∅) ∧ 𝑘 ∈ 𝐴) ∧ 𝐵 = ∅) → 𝐶 = 0) |
| 45 | | simplr 768 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ ∃𝑘 ∈ 𝐴 𝐵 = ∅) ∧ 𝑦 = ∅) → ∃𝑘 ∈ 𝐴 𝐵 = ∅) |
| 46 | 34, 35, 44, 45 | r19.29af2 3254 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ∃𝑘 ∈ 𝐴 𝐵 = ∅) ∧ 𝑦 = ∅) → 𝐶 = 0) |
| 47 | 29, 46 | syldan 591 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ∃𝑘 ∈ 𝐴 𝐵 = ∅) ∧ 𝑦 ∈ {∅}) → 𝐶 = 0) |
| 48 | | 0e0iccpnf 13481 |
. . . . . . . . . . . 12
⊢ 0 ∈
(0[,]+∞) |
| 49 | 47, 48 | eqeltrdi 2843 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ∃𝑘 ∈ 𝐴 𝐵 = ∅) ∧ 𝑦 ∈ {∅}) → 𝐶 ∈ (0[,]+∞)) |
| 50 | | nfcv 2899 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑘𝑦 |
| 51 | | nfmpt1 5225 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑘(𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵) |
| 52 | 51 | nfrn 5937 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑘ran
(𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵) |
| 53 | 50, 52 | nfel 2914 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑘 𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵) |
| 54 | 30, 53 | nfan 1899 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑘(𝜑 ∧ 𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)) |
| 55 | | simpr 484 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)) ∧ 𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅}) ∧ 𝑦 = 𝐵) → 𝑦 = 𝐵) |
| 56 | | rabid 3442 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↔ (𝑘 ∈ 𝐴 ∧ 𝐵 = ∅)) |
| 57 | 56 | simprbi 496 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} → 𝐵 = ∅) |
| 58 | 57 | ad2antlr 727 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)) ∧ 𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅}) ∧ 𝑦 = 𝐵) → 𝐵 = ∅) |
| 59 | 55, 58 | eqtrd 2771 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)) ∧ 𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅}) ∧ 𝑦 = 𝐵) → 𝑦 = ∅) |
| 60 | 59, 27 | sylibr 234 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)) ∧ 𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅}) ∧ 𝑦 = 𝐵) → 𝑦 ∈ {∅}) |
| 61 | | vex 3468 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑦 ∈ V |
| 62 | | eqid 2736 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵) = (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵) |
| 63 | 62 | elrnmpt 5943 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ∈ V → (𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵) ↔ ∃𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅}𝑦 = 𝐵)) |
| 64 | 61, 63 | ax-mp 5 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵) ↔ ∃𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅}𝑦 = 𝐵) |
| 65 | 64 | biimpi 216 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵) → ∃𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅}𝑦 = 𝐵) |
| 66 | 65 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)) → ∃𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅}𝑦 = 𝐵) |
| 67 | 54, 60, 66 | r19.29af 3255 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)) → 𝑦 ∈ {∅}) |
| 68 | 67 | ex 412 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵) → 𝑦 ∈ {∅})) |
| 69 | 68 | ssrdv 3969 |
. . . . . . . . . . . 12
⊢ (𝜑 → ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵) ⊆ {∅}) |
| 70 | 69 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ∃𝑘 ∈ 𝐴 𝐵 = ∅) → ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵) ⊆ {∅}) |
| 71 | 24, 26, 49, 70 | esummono 34090 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ∃𝑘 ∈ 𝐴 𝐵 = ∅) → Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)𝐶 ≤ Σ*𝑦 ∈ {∅}𝐶) |
| 72 | | 0ex 5282 |
. . . . . . . . . . . 12
⊢ ∅
∈ V |
| 73 | 72 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ∃𝑘 ∈ 𝐴 𝐵 = ∅) → ∅ ∈
V) |
| 74 | 48 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ∃𝑘 ∈ 𝐴 𝐵 = ∅) → 0 ∈
(0[,]+∞)) |
| 75 | 46, 73, 74 | esumsn 34101 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ∃𝑘 ∈ 𝐴 𝐵 = ∅) → Σ*𝑦 ∈ {∅}𝐶 = 0) |
| 76 | 71, 75 | breqtrd 5150 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ∃𝑘 ∈ 𝐴 𝐵 = ∅) → Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)𝐶 ≤ 0) |
| 77 | | simpr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ¬ ∃𝑘 ∈ 𝐴 𝐵 = ∅) → ¬ ∃𝑘 ∈ 𝐴 𝐵 = ∅) |
| 78 | | nfv 1914 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑦 ¬
∃𝑘 ∈ 𝐴 𝐵 = ∅ |
| 79 | 31 | nfn 1857 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑘 ¬
∃𝑘 ∈ 𝐴 𝐵 = ∅ |
| 80 | | rabn0 4369 |
. . . . . . . . . . . . . . . . . . 19
⊢ ({𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ≠ ∅ ↔ ∃𝑘 ∈ 𝐴 𝐵 = ∅) |
| 81 | 80 | biimpi 216 |
. . . . . . . . . . . . . . . . . 18
⊢ ({𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ≠ ∅ → ∃𝑘 ∈ 𝐴 𝐵 = ∅) |
| 82 | 81 | necon1bi 2961 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
∃𝑘 ∈ 𝐴 𝐵 = ∅ → {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} = ∅) |
| 83 | | eqid 2736 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝐵 = 𝐵 |
| 84 | 83 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
∃𝑘 ∈ 𝐴 𝐵 = ∅ → 𝐵 = 𝐵) |
| 85 | 79, 82, 84 | mpteq12df 5209 |
. . . . . . . . . . . . . . . 16
⊢ (¬
∃𝑘 ∈ 𝐴 𝐵 = ∅ → (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵) = (𝑘 ∈ ∅ ↦ 𝐵)) |
| 86 | | mpt0 6685 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ ∅ ↦ 𝐵) = ∅ |
| 87 | 85, 86 | eqtrdi 2787 |
. . . . . . . . . . . . . . 15
⊢ (¬
∃𝑘 ∈ 𝐴 𝐵 = ∅ → (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵) = ∅) |
| 88 | 87 | rneqd 5923 |
. . . . . . . . . . . . . 14
⊢ (¬
∃𝑘 ∈ 𝐴 𝐵 = ∅ → ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵) = ran ∅) |
| 89 | | rn0 5910 |
. . . . . . . . . . . . . 14
⊢ ran
∅ = ∅ |
| 90 | 88, 89 | eqtrdi 2787 |
. . . . . . . . . . . . 13
⊢ (¬
∃𝑘 ∈ 𝐴 𝐵 = ∅ → ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵) = ∅) |
| 91 | 78, 90 | esumeq1d 34071 |
. . . . . . . . . . . 12
⊢ (¬
∃𝑘 ∈ 𝐴 𝐵 = ∅ → Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)𝐶 = Σ*𝑦 ∈ ∅𝐶) |
| 92 | | esumnul 34084 |
. . . . . . . . . . . 12
⊢
Σ*𝑦
∈ ∅𝐶 =
0 |
| 93 | 91, 92 | eqtrdi 2787 |
. . . . . . . . . . 11
⊢ (¬
∃𝑘 ∈ 𝐴 𝐵 = ∅ → Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)𝐶 = 0) |
| 94 | | 0le0 12346 |
. . . . . . . . . . 11
⊢ 0 ≤
0 |
| 95 | 93, 94 | eqbrtrdi 5163 |
. . . . . . . . . 10
⊢ (¬
∃𝑘 ∈ 𝐴 𝐵 = ∅ → Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)𝐶 ≤ 0) |
| 96 | 77, 95 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ ∃𝑘 ∈ 𝐴 𝐵 = ∅) → Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)𝐶 ≤ 0) |
| 97 | 76, 96 | pm2.61dan 812 |
. . . . . . . 8
⊢ (𝜑 → Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)𝐶 ≤ 0) |
| 98 | | ssrab2 4060 |
. . . . . . . . . . . . 13
⊢ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ⊆ 𝐴 |
| 99 | 98 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ⊆ 𝐴) |
| 100 | 3, 99 | ssexd 5299 |
. . . . . . . . . . 11
⊢ (𝜑 → {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ∈ V) |
| 101 | | nfrab1 3441 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑘{𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} |
| 102 | 101 | mptexgf 7219 |
. . . . . . . . . . 11
⊢ ({𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ∈ V → (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵) ∈ V) |
| 103 | | rnexg 7903 |
. . . . . . . . . . 11
⊢ ((𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵) ∈ V → ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵) ∈ V) |
| 104 | 100, 102,
103 | 3syl 18 |
. . . . . . . . . 10
⊢ (𝜑 → ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵) ∈ V) |
| 105 | 2 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)) ∧ 𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅}) ∧ 𝑦 = 𝐵) → 𝐶 = 𝐷) |
| 106 | | simplll 774 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)) ∧ 𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅}) ∧ 𝑦 = 𝐵) → 𝜑) |
| 107 | 99 | sselda 3963 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅}) → 𝑘 ∈ 𝐴) |
| 108 | 107 | adantlr 715 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)) ∧ 𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅}) → 𝑘 ∈ 𝐴) |
| 109 | 108 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)) ∧ 𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅}) ∧ 𝑦 = 𝐵) → 𝑘 ∈ 𝐴) |
| 110 | 106, 109,
8 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)) ∧ 𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅}) ∧ 𝑦 = 𝐵) → 𝐷 ∈ (0[,]+∞)) |
| 111 | 105, 110 | eqeltrd 2835 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)) ∧ 𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅}) ∧ 𝑦 = 𝐵) → 𝐶 ∈ (0[,]+∞)) |
| 112 | 54, 111, 66 | r19.29af 3255 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)) → 𝐶 ∈ (0[,]+∞)) |
| 113 | 112 | ralrimiva 3133 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)𝐶 ∈ (0[,]+∞)) |
| 114 | | nfcv 2899 |
. . . . . . . . . . 11
⊢
Ⅎ𝑦ran
(𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵) |
| 115 | 114 | esumcl 34066 |
. . . . . . . . . 10
⊢ ((ran
(𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵) ∈ V ∧ ∀𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)𝐶 ∈ (0[,]+∞)) →
Σ*𝑦 ∈
ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)𝐶 ∈ (0[,]+∞)) |
| 116 | 104, 113,
115 | syl2anc 584 |
. . . . . . . . 9
⊢ (𝜑 → Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)𝐶 ∈ (0[,]+∞)) |
| 117 | | elxrge0 13479 |
. . . . . . . . . 10
⊢
(Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)𝐶 ∈ (0[,]+∞) ↔
(Σ*𝑦
∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)𝐶 ∈ ℝ* ∧ 0 ≤
Σ*𝑦 ∈
ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)𝐶)) |
| 118 | 117 | simprbi 496 |
. . . . . . . . 9
⊢
(Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)𝐶 ∈ (0[,]+∞) → 0 ≤
Σ*𝑦 ∈
ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)𝐶) |
| 119 | 116, 118 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 0 ≤
Σ*𝑦 ∈
ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)𝐶) |
| 120 | 97, 119 | jca 511 |
. . . . . . 7
⊢ (𝜑 → (Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)𝐶 ≤ 0 ∧ 0 ≤
Σ*𝑦 ∈
ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)𝐶)) |
| 121 | | iccssxr 13452 |
. . . . . . . . 9
⊢
(0[,]+∞) ⊆ ℝ* |
| 122 | 121, 116 | sselid 3961 |
. . . . . . . 8
⊢ (𝜑 → Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)𝐶 ∈
ℝ*) |
| 123 | 121, 48 | sselii 3960 |
. . . . . . . . 9
⊢ 0 ∈
ℝ* |
| 124 | 123 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → 0 ∈
ℝ*) |
| 125 | | xrletri3 13175 |
. . . . . . . 8
⊢
((Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)𝐶 ∈ ℝ* ∧ 0 ∈
ℝ*) → (Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)𝐶 = 0 ↔ (Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)𝐶 ≤ 0 ∧ 0 ≤
Σ*𝑦 ∈
ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)𝐶))) |
| 126 | 122, 124,
125 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → (Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)𝐶 = 0 ↔ (Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)𝐶 ≤ 0 ∧ 0 ≤
Σ*𝑦 ∈
ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)𝐶))) |
| 127 | 120, 126 | mpbird 257 |
. . . . . 6
⊢ (𝜑 → Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)𝐶 = 0) |
| 128 | 127 | oveq1d 7425 |
. . . . 5
⊢ (𝜑 → (Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)𝐶 +𝑒
Σ*𝑦 ∈
ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)𝐶) = (0 +𝑒
Σ*𝑦 ∈
ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)𝐶)) |
| 129 | 9 | ralrimiva 3133 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}𝐷 ∈ (0[,]+∞)) |
| 130 | 1 | esumcl 34066 |
. . . . . . . . 9
⊢ (({𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ∈ V ∧ ∀𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}𝐷 ∈ (0[,]+∞)) →
Σ*𝑘 ∈
{𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}𝐷 ∈ (0[,]+∞)) |
| 131 | 6, 129, 130 | syl2anc 584 |
. . . . . . . 8
⊢ (𝜑 → Σ*𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}𝐷 ∈ (0[,]+∞)) |
| 132 | 121, 131 | sselid 3961 |
. . . . . . 7
⊢ (𝜑 → Σ*𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}𝐷 ∈
ℝ*) |
| 133 | 23, 132 | eqeltrd 2835 |
. . . . . 6
⊢ (𝜑 → Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)𝐶 ∈
ℝ*) |
| 134 | | xaddlid 13263 |
. . . . . 6
⊢
(Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)𝐶 ∈ ℝ* → (0
+𝑒 Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)𝐶) = Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)𝐶) |
| 135 | 133, 134 | syl 17 |
. . . . 5
⊢ (𝜑 → (0 +𝑒
Σ*𝑦 ∈
ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)𝐶) = Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)𝐶) |
| 136 | 128, 135 | eqtrd 2771 |
. . . 4
⊢ (𝜑 → (Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)𝐶 +𝑒
Σ*𝑦 ∈
ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)𝐶) = Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)𝐶) |
| 137 | | simpl 482 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅}) → 𝜑) |
| 138 | 57 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅}) → 𝐵 = ∅) |
| 139 | 137, 107,
138, 42 | syl21anc 837 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅}) → 𝐷 = 0) |
| 140 | 139 | ralrimiva 3133 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅}𝐷 = 0) |
| 141 | 30, 140 | esumeq2d 34073 |
. . . . . . 7
⊢ (𝜑 → Σ*𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅}𝐷 = Σ*𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅}0) |
| 142 | 101 | esum0 34085 |
. . . . . . . 8
⊢ ({𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ∈ V →
Σ*𝑘 ∈
{𝑘 ∈ 𝐴 ∣ 𝐵 = ∅}0 = 0) |
| 143 | 100, 142 | syl 17 |
. . . . . . 7
⊢ (𝜑 → Σ*𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅}0 = 0) |
| 144 | 141, 143 | eqtrd 2771 |
. . . . . 6
⊢ (𝜑 → Σ*𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅}𝐷 = 0) |
| 145 | 144 | oveq1d 7425 |
. . . . 5
⊢ (𝜑 → (Σ*𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅}𝐷 +𝑒
Σ*𝑘 ∈
{𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}𝐷) = (0 +𝑒
Σ*𝑘 ∈
{𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}𝐷)) |
| 146 | | xaddlid 13263 |
. . . . . 6
⊢
(Σ*𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}𝐷 ∈ ℝ* → (0
+𝑒 Σ*𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}𝐷) = Σ*𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}𝐷) |
| 147 | 132, 146 | syl 17 |
. . . . 5
⊢ (𝜑 → (0 +𝑒
Σ*𝑘 ∈
{𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}𝐷) = Σ*𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}𝐷) |
| 148 | 145, 147 | eqtrd 2771 |
. . . 4
⊢ (𝜑 → (Σ*𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅}𝐷 +𝑒
Σ*𝑘 ∈
{𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}𝐷) = Σ*𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}𝐷) |
| 149 | 23, 136, 148 | 3eqtr4d 2781 |
. . 3
⊢ (𝜑 → (Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)𝐶 +𝑒
Σ*𝑦 ∈
ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)𝐶) = (Σ*𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅}𝐷 +𝑒
Σ*𝑘 ∈
{𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}𝐷)) |
| 150 | | nfv 1914 |
. . . 4
⊢
Ⅎ𝑦𝜑 |
| 151 | | nfcv 2899 |
. . . 4
⊢
Ⅎ𝑦ran
(𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵) |
| 152 | 1 | mptexgf 7219 |
. . . . 5
⊢ ({𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ∈ V → (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵) ∈ V) |
| 153 | | rnexg 7903 |
. . . . 5
⊢ ((𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵) ∈ V → ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵) ∈ V) |
| 154 | 6, 152, 153 | 3syl 18 |
. . . 4
⊢ (𝜑 → ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵) ∈ V) |
| 155 | 69 | ssrind 4224 |
. . . . . 6
⊢ (𝜑 → (ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵) ∩ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)) ⊆ ({∅} ∩ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵))) |
| 156 | | incom 4189 |
. . . . . . 7
⊢ (ran
(𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵) ∩ {∅}) = ({∅} ∩ ran
(𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)) |
| 157 | 13 | neqned 2940 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} → 𝐵 ≠ ∅) |
| 158 | 157 | necomd 2988 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} → ∅ ≠ 𝐵) |
| 159 | 158 | neneqd 2938 |
. . . . . . . . . 10
⊢ (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} → ¬ ∅ = 𝐵) |
| 160 | 159 | nrex 3065 |
. . . . . . . . 9
⊢ ¬
∃𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}∅ = 𝐵 |
| 161 | | eqid 2736 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵) = (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵) |
| 162 | 161 | elrnmpt 5943 |
. . . . . . . . . 10
⊢ (∅
∈ V → (∅ ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵) ↔ ∃𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}∅ = 𝐵)) |
| 163 | 72, 162 | ax-mp 5 |
. . . . . . . . 9
⊢ (∅
∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵) ↔ ∃𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}∅ = 𝐵) |
| 164 | 160, 163 | mtbir 323 |
. . . . . . . 8
⊢ ¬
∅ ∈ ran (𝑘
∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵) |
| 165 | | disjsn 4692 |
. . . . . . . 8
⊢ ((ran
(𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵) ∩ {∅}) = ∅ ↔ ¬
∅ ∈ ran (𝑘
∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)) |
| 166 | 164, 165 | mpbir 231 |
. . . . . . 7
⊢ (ran
(𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵) ∩ {∅}) =
∅ |
| 167 | 156, 166 | eqtr3i 2761 |
. . . . . 6
⊢
({∅} ∩ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)) = ∅ |
| 168 | 155, 167 | sseqtrdi 4004 |
. . . . 5
⊢ (𝜑 → (ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵) ∩ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)) ⊆ ∅) |
| 169 | | ss0 4382 |
. . . . 5
⊢ ((ran
(𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵) ∩ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)) ⊆ ∅ → (ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵) ∩ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)) = ∅) |
| 170 | 168, 169 | syl 17 |
. . . 4
⊢ (𝜑 → (ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵) ∩ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)) = ∅) |
| 171 | | nfmpt1 5225 |
. . . . . . . 8
⊢
Ⅎ𝑘(𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵) |
| 172 | 171 | nfrn 5937 |
. . . . . . 7
⊢
Ⅎ𝑘ran
(𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵) |
| 173 | 50, 172 | nfel 2914 |
. . . . . 6
⊢
Ⅎ𝑘 𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵) |
| 174 | 30, 173 | nfan 1899 |
. . . . 5
⊢
Ⅎ𝑘(𝜑 ∧ 𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)) |
| 175 | 2 | adantl 481 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)) ∧ 𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}) ∧ 𝑦 = 𝐵) → 𝐶 = 𝐷) |
| 176 | | simplll 774 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)) ∧ 𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}) ∧ 𝑦 = 𝐵) → 𝜑) |
| 177 | 7 | adantlr 715 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)) ∧ 𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}) → 𝑘 ∈ 𝐴) |
| 178 | 177 | adantr 480 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)) ∧ 𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}) ∧ 𝑦 = 𝐵) → 𝑘 ∈ 𝐴) |
| 179 | 176, 178,
8 | syl2anc 584 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)) ∧ 𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}) ∧ 𝑦 = 𝐵) → 𝐷 ∈ (0[,]+∞)) |
| 180 | 175, 179 | eqeltrd 2835 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)) ∧ 𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}) ∧ 𝑦 = 𝐵) → 𝐶 ∈ (0[,]+∞)) |
| 181 | 161 | elrnmpt 5943 |
. . . . . . . 8
⊢ (𝑦 ∈ V → (𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵) ↔ ∃𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}𝑦 = 𝐵)) |
| 182 | 61, 181 | ax-mp 5 |
. . . . . . 7
⊢ (𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵) ↔ ∃𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}𝑦 = 𝐵) |
| 183 | 182 | biimpi 216 |
. . . . . 6
⊢ (𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵) → ∃𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}𝑦 = 𝐵) |
| 184 | 183 | adantl 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)) → ∃𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}𝑦 = 𝐵) |
| 185 | 174, 180,
184 | r19.29af 3255 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)) → 𝐶 ∈ (0[,]+∞)) |
| 186 | 150, 114,
151, 104, 154, 170, 112, 185 | esumsplit 34089 |
. . 3
⊢ (𝜑 → Σ*𝑦 ∈ (ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵) ∪ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵))𝐶 = (Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)𝐶 +𝑒
Σ*𝑦 ∈
ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)𝐶)) |
| 187 | | rabnc 4371 |
. . . . 5
⊢ ({𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ∩ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}) = ∅ |
| 188 | 187 | a1i 11 |
. . . 4
⊢ (𝜑 → ({𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ∩ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}) = ∅) |
| 189 | 107, 8 | syldan 591 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅}) → 𝐷 ∈ (0[,]+∞)) |
| 190 | 30, 101, 1, 100, 6, 188, 189, 9 | esumsplit 34089 |
. . 3
⊢ (𝜑 → Σ*𝑘 ∈ ({𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ∪ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅})𝐷 = (Σ*𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅}𝐷 +𝑒
Σ*𝑘 ∈
{𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}𝐷)) |
| 191 | 149, 186,
190 | 3eqtr4d 2781 |
. 2
⊢ (𝜑 → Σ*𝑦 ∈ (ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵) ∪ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵))𝐶 = Σ*𝑘 ∈ ({𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ∪ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅})𝐷) |
| 192 | | rabxm 4370 |
. . . . . . . 8
⊢ 𝐴 = ({𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ∪ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}) |
| 193 | 192, 83 | mpteq12i 5223 |
. . . . . . 7
⊢ (𝑘 ∈ 𝐴 ↦ 𝐵) = (𝑘 ∈ ({𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ∪ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}) ↦ 𝐵) |
| 194 | | mptun 6689 |
. . . . . . 7
⊢ (𝑘 ∈ ({𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ∪ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}) ↦ 𝐵) = ((𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵) ∪ (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)) |
| 195 | 193, 194 | eqtri 2759 |
. . . . . 6
⊢ (𝑘 ∈ 𝐴 ↦ 𝐵) = ((𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵) ∪ (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)) |
| 196 | 195 | rneqi 5922 |
. . . . 5
⊢ ran
(𝑘 ∈ 𝐴 ↦ 𝐵) = ran ((𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵) ∪ (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)) |
| 197 | | rnun 6139 |
. . . . 5
⊢ ran
((𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵) ∪ (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)) = (ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵) ∪ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)) |
| 198 | 196, 197 | eqtri 2759 |
. . . 4
⊢ ran
(𝑘 ∈ 𝐴 ↦ 𝐵) = (ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵) ∪ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)) |
| 199 | 198 | a1i 11 |
. . 3
⊢ (𝜑 → ran (𝑘 ∈ 𝐴 ↦ 𝐵) = (ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵) ∪ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵))) |
| 200 | 150, 199 | esumeq1d 34071 |
. 2
⊢ (𝜑 → Σ*𝑦 ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)𝐶 = Σ*𝑦 ∈ (ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵) ∪ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵))𝐶) |
| 201 | 192 | a1i 11 |
. . 3
⊢ (𝜑 → 𝐴 = ({𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ∪ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅})) |
| 202 | 30, 201 | esumeq1d 34071 |
. 2
⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐷 = Σ*𝑘 ∈ ({𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ∪ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅})𝐷) |
| 203 | 191, 200,
202 | 3eqtr4d 2781 |
1
⊢ (𝜑 → Σ*𝑦 ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)𝐶 = Σ*𝑘 ∈ 𝐴𝐷) |