MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpteq12da Structured version   Visualization version   GIF version

Theorem mpteq12da 5155
Description: An equality inference for the maps-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021.) Remove dependency on ax-10 2139. (Revised by SN, 11-Nov-2024.)
Hypotheses
Ref Expression
mpteq12da.1 𝑥𝜑
mpteq12da.2 (𝜑𝐴 = 𝐶)
mpteq12da.3 ((𝜑𝑥𝐴) → 𝐵 = 𝐷)
Assertion
Ref Expression
mpteq12da (𝜑 → (𝑥𝐴𝐵) = (𝑥𝐶𝐷))

Proof of Theorem mpteq12da
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 mpteq12da.1 . . 3 𝑥𝜑
2 nfv 1918 . . 3 𝑦𝜑
3 mpteq12da.3 . . . . . 6 ((𝜑𝑥𝐴) → 𝐵 = 𝐷)
43eqeq2d 2749 . . . . 5 ((𝜑𝑥𝐴) → (𝑦 = 𝐵𝑦 = 𝐷))
54pm5.32da 578 . . . 4 (𝜑 → ((𝑥𝐴𝑦 = 𝐵) ↔ (𝑥𝐴𝑦 = 𝐷)))
6 mpteq12da.2 . . . . . 6 (𝜑𝐴 = 𝐶)
76eleq2d 2824 . . . . 5 (𝜑 → (𝑥𝐴𝑥𝐶))
87anbi1d 629 . . . 4 (𝜑 → ((𝑥𝐴𝑦 = 𝐷) ↔ (𝑥𝐶𝑦 = 𝐷)))
95, 8bitrd 278 . . 3 (𝜑 → ((𝑥𝐴𝑦 = 𝐵) ↔ (𝑥𝐶𝑦 = 𝐷)))
101, 2, 9opabbid 5135 . 2 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)} = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝑦 = 𝐷)})
11 df-mpt 5154 . 2 (𝑥𝐴𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)}
12 df-mpt 5154 . 2 (𝑥𝐶𝐷) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝑦 = 𝐷)}
1310, 11, 123eqtr4g 2804 1 (𝜑 → (𝑥𝐴𝐵) = (𝑥𝐶𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wnf 1787  wcel 2108  {copab 5132  cmpt 5153
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-opab 5133  df-mpt 5154
This theorem is referenced by:  mpteq12df  5156  mpteq2da  5168  smflimmpt  44230  smfsupmpt  44235  smflimsupmpt  44249  smfliminfmpt  44252
  Copyright terms: Public domain W3C validator