MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpteq12da Structured version   Visualization version   GIF version

Theorem mpteq12da 5223
Description: An equality inference for the maps-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021.) Remove dependency on ax-10 2129. (Revised by SN, 11-Nov-2024.)
Hypotheses
Ref Expression
mpteq12da.1 𝑥𝜑
mpteq12da.2 (𝜑𝐴 = 𝐶)
mpteq12da.3 ((𝜑𝑥𝐴) → 𝐵 = 𝐷)
Assertion
Ref Expression
mpteq12da (𝜑 → (𝑥𝐴𝐵) = (𝑥𝐶𝐷))

Proof of Theorem mpteq12da
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 mpteq12da.1 . . 3 𝑥𝜑
2 nfv 1909 . . 3 𝑦𝜑
3 mpteq12da.3 . . . . . 6 ((𝜑𝑥𝐴) → 𝐵 = 𝐷)
43eqeq2d 2735 . . . . 5 ((𝜑𝑥𝐴) → (𝑦 = 𝐵𝑦 = 𝐷))
54pm5.32da 578 . . . 4 (𝜑 → ((𝑥𝐴𝑦 = 𝐵) ↔ (𝑥𝐴𝑦 = 𝐷)))
6 mpteq12da.2 . . . . . 6 (𝜑𝐴 = 𝐶)
76eleq2d 2811 . . . . 5 (𝜑 → (𝑥𝐴𝑥𝐶))
87anbi1d 629 . . . 4 (𝜑 → ((𝑥𝐴𝑦 = 𝐷) ↔ (𝑥𝐶𝑦 = 𝐷)))
95, 8bitrd 279 . . 3 (𝜑 → ((𝑥𝐴𝑦 = 𝐵) ↔ (𝑥𝐶𝑦 = 𝐷)))
101, 2, 9opabbid 5203 . 2 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)} = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝑦 = 𝐷)})
11 df-mpt 5222 . 2 (𝑥𝐴𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)}
12 df-mpt 5222 . 2 (𝑥𝐶𝐷) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝑦 = 𝐷)}
1310, 11, 123eqtr4g 2789 1 (𝜑 → (𝑥𝐴𝐵) = (𝑥𝐶𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wnf 1777  wcel 2098  {copab 5200  cmpt 5221
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-12 2163  ax-ext 2695
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-opab 5201  df-mpt 5222
This theorem is referenced by:  mpteq12df  5224  mpteq2da  5236  smflimmpt  45977  smfsupmpt  45982  smflimsupmpt  45996  smfliminfmpt  45999
  Copyright terms: Public domain W3C validator