![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpteq12da | Structured version Visualization version GIF version |
Description: An equality inference for the maps-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021.) Remove dependency on ax-10 2129. (Revised by SN, 11-Nov-2024.) |
Ref | Expression |
---|---|
mpteq12da.1 | ⊢ Ⅎ𝑥𝜑 |
mpteq12da.2 | ⊢ (𝜑 → 𝐴 = 𝐶) |
mpteq12da.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐷) |
Ref | Expression |
---|---|
mpteq12da | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpteq12da.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | nfv 1909 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
3 | mpteq12da.3 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐷) | |
4 | 3 | eqeq2d 2735 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑦 = 𝐵 ↔ 𝑦 = 𝐷)) |
5 | 4 | pm5.32da 578 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷))) |
6 | mpteq12da.2 | . . . . . 6 ⊢ (𝜑 → 𝐴 = 𝐶) | |
7 | 6 | eleq2d 2811 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐶)) |
8 | 7 | anbi1d 629 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷) ↔ (𝑥 ∈ 𝐶 ∧ 𝑦 = 𝐷))) |
9 | 5, 8 | bitrd 279 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵) ↔ (𝑥 ∈ 𝐶 ∧ 𝑦 = 𝐷))) |
10 | 1, 2, 9 | opabbid 5203 | . 2 ⊢ (𝜑 → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐶 ∧ 𝑦 = 𝐷)}) |
11 | df-mpt 5222 | . 2 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
12 | df-mpt 5222 | . 2 ⊢ (𝑥 ∈ 𝐶 ↦ 𝐷) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐶 ∧ 𝑦 = 𝐷)} | |
13 | 10, 11, 12 | 3eqtr4g 2789 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 Ⅎwnf 1777 ∈ wcel 2098 {copab 5200 ↦ cmpt 5221 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-12 2163 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-opab 5201 df-mpt 5222 |
This theorem is referenced by: mpteq12df 5224 mpteq2da 5236 smflimmpt 45977 smfsupmpt 45982 smflimsupmpt 45996 smfliminfmpt 45999 |
Copyright terms: Public domain | W3C validator |