Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mptexf Structured version   Visualization version   GIF version

Theorem mptexf 45361
Description: If the domain of a function given by maps-to notation is a set, the function is a set. Inference version of mptexg 7163. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
mptexf.1 𝑥𝐴
mptexf.2 𝐴 ∈ V
Assertion
Ref Expression
mptexf (𝑥𝐴𝐵) ∈ V

Proof of Theorem mptexf
StepHypRef Expression
1 mptexf.2 . 2 𝐴 ∈ V
2 mptexf.1 . . 3 𝑥𝐴
32mptexgf 7164 . 2 (𝐴 ∈ V → (𝑥𝐴𝐵) ∈ V)
41, 3ax-mp 5 1 (𝑥𝐴𝐵) ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2113  wnfc 2880  Vcvv 3437  cmpt 5176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496
This theorem is referenced by:  limsupequzmpt2  45843  liminfequzmpt2  45916  smflimsuplem2  46946  smflimsuplem5  46949
  Copyright terms: Public domain W3C validator