Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sylancl | Structured version Visualization version GIF version |
Description: Syllogism inference combined with modus ponens. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
sylancl.1 | ⊢ (𝜑 → 𝜓) |
sylancl.2 | ⊢ 𝜒 |
sylancl.3 | ⊢ ((𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
sylancl | ⊢ (𝜑 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylancl.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | sylancl.2 | . . 3 ⊢ 𝜒 | |
3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → 𝜒) |
4 | sylancl.3 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜃) | |
5 | 1, 3, 4 | syl2anc 584 | 1 ⊢ (𝜑 → 𝜃) |
Copyright terms: Public domain | W3C validator |