MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvmptvg Structured version   Visualization version   GIF version

Theorem cbvmptvg 5198
Description: Rule to change the bound variable in a maps-to function, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2374. See cbvmptv 5197 for a version with more disjoint variable conditions, but not requiring ax-13 2374. (Contributed by Mario Carneiro, 19-Feb-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
cbvmptvg.1 (𝑥 = 𝑦𝐵 = 𝐶)
Assertion
Ref Expression
cbvmptvg (𝑥𝐴𝐵) = (𝑦𝐴𝐶)
Distinct variable groups:   𝑥,𝐴   𝑦,𝐴   𝑦,𝐵   𝑥,𝐶
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑦)

Proof of Theorem cbvmptvg
StepHypRef Expression
1 nfcv 2895 . 2 𝑦𝐵
2 nfcv 2895 . 2 𝑥𝐶
3 cbvmptvg.1 . 2 (𝑥 = 𝑦𝐵 = 𝐶)
41, 2, 3cbvmptg 5196 1 (𝑥𝐴𝐵) = (𝑦𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  cmpt 5174
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-13 2374  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-opab 5156  df-mpt 5175
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator