MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvmptvg Structured version   Visualization version   GIF version

Theorem cbvmptvg 5185
Description: Rule to change the bound variable in a maps-to function, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2372. See cbvmptv 5183 for a version with more disjoint variable conditions, but not requiring ax-13 2372. (Contributed by Mario Carneiro, 19-Feb-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
cbvmptvg.1 (𝑥 = 𝑦𝐵 = 𝐶)
Assertion
Ref Expression
cbvmptvg (𝑥𝐴𝐵) = (𝑦𝐴𝐶)
Distinct variable groups:   𝑥,𝐴   𝑦,𝐴   𝑦,𝐵   𝑥,𝐶
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑦)

Proof of Theorem cbvmptvg
StepHypRef Expression
1 nfcv 2906 . 2 𝑦𝐵
2 nfcv 2906 . 2 𝑥𝐶
3 cbvmptvg.1 . 2 (𝑥 = 𝑦𝐵 = 𝐶)
41, 2, 3cbvmptg 5182 1 (𝑥𝐴𝐵) = (𝑦𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  cmpt 5153
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-13 2372  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-opab 5133  df-mpt 5154
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator