![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df2nd2 | Structured version Visualization version GIF version |
Description: An alternate possible definition of the 2nd function. (Contributed by NM, 10-Aug-2006.) (Revised by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
df2nd2 | ⢠{āØāØš„, š¦ā©, š§ā© ⣠š§ = š¦} = (2nd ā¾ (V Ć V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fo2nd 8000 | . . . . . 6 ⢠2nd :VāontoāV | |
2 | fofn 6807 | . . . . . 6 ⢠(2nd :VāontoāV ā 2nd Fn V) | |
3 | 1, 2 | ax-mp 5 | . . . . 5 ⢠2nd Fn V |
4 | dffn5 6950 | . . . . 5 ⢠(2nd Fn V ā 2nd = (š¤ ā V ⦠(2nd āš¤))) | |
5 | 3, 4 | mpbi 229 | . . . 4 ⢠2nd = (š¤ ā V ⦠(2nd āš¤)) |
6 | mptv 5264 | . . . 4 ⢠(š¤ ā V ⦠(2nd āš¤)) = {āØš¤, š§ā© ⣠š§ = (2nd āš¤)} | |
7 | 5, 6 | eqtri 2759 | . . 3 ⢠2nd = {āØš¤, š§ā© ⣠š§ = (2nd āš¤)} |
8 | 7 | reseq1i 5977 | . 2 ⢠(2nd ā¾ (V Ć V)) = ({āØš¤, š§ā© ⣠š§ = (2nd āš¤)} ā¾ (V Ć V)) |
9 | resopab 6034 | . 2 ⢠({āØš¤, š§ā© ⣠š§ = (2nd āš¤)} ā¾ (V Ć V)) = {āØš¤, š§ā© ⣠(š¤ ā (V Ć V) ā§ š§ = (2nd āš¤))} | |
10 | vex 3477 | . . . . 5 ⢠š„ ā V | |
11 | vex 3477 | . . . . 5 ⢠š¦ ā V | |
12 | 10, 11 | op2ndd 7990 | . . . 4 ⢠(š¤ = āØš„, š¦ā© ā (2nd āš¤) = š¦) |
13 | 12 | eqeq2d 2742 | . . 3 ⢠(š¤ = āØš„, š¦ā© ā (š§ = (2nd āš¤) ā š§ = š¦)) |
14 | 13 | dfoprab3 8044 | . 2 ⢠{āØš¤, š§ā© ⣠(š¤ ā (V Ć V) ā§ š§ = (2nd āš¤))} = {āØāØš„, š¦ā©, š§ā© ⣠š§ = š¦} |
15 | 8, 9, 14 | 3eqtrri 2764 | 1 ⢠{āØāØš„, š¦ā©, š§ā© ⣠š§ = š¦} = (2nd ā¾ (V Ć V)) |
Colors of variables: wff setvar class |
Syntax hints: ā§ wa 395 = wceq 1540 ā wcel 2105 Vcvv 3473 āØcop 4634 {copab 5210 ⦠cmpt 5231 Ć cxp 5674 ā¾ cres 5678 Fn wfn 6538 āontoāwfo 6541 ācfv 6543 {coprab 7413 2nd c2nd 7978 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fo 6549 df-fv 6551 df-oprab 7416 df-1st 7979 df-2nd 7980 |
This theorem is referenced by: df2ndres 32359 |
Copyright terms: Public domain | W3C validator |