MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df2nd2 Structured version   Visualization version   GIF version

Theorem df2nd2 8090
Description: An alternate possible definition of the 2nd function. (Contributed by NM, 10-Aug-2006.) (Revised by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
df2nd2 {āŸØāŸØš‘„, š‘¦āŸ©, š‘§āŸ© ∣ š‘§ = š‘¦} = (2nd ↾ (V Ɨ V))
Distinct variable group:   š‘„,š‘¦,š‘§

Proof of Theorem df2nd2
Dummy variable š‘¤ is distinct from all other variables.
StepHypRef Expression
1 fo2nd 8000 . . . . . 6 2nd :V–onto→V
2 fofn 6807 . . . . . 6 (2nd :V–onto→V → 2nd Fn V)
31, 2ax-mp 5 . . . . 5 2nd Fn V
4 dffn5 6950 . . . . 5 (2nd Fn V ↔ 2nd = (š‘¤ ∈ V ↦ (2nd ā€˜š‘¤)))
53, 4mpbi 229 . . . 4 2nd = (š‘¤ ∈ V ↦ (2nd ā€˜š‘¤))
6 mptv 5264 . . . 4 (š‘¤ ∈ V ↦ (2nd ā€˜š‘¤)) = {āŸØš‘¤, š‘§āŸ© ∣ š‘§ = (2nd ā€˜š‘¤)}
75, 6eqtri 2759 . . 3 2nd = {āŸØš‘¤, š‘§āŸ© ∣ š‘§ = (2nd ā€˜š‘¤)}
87reseq1i 5977 . 2 (2nd ↾ (V Ɨ V)) = ({āŸØš‘¤, š‘§āŸ© ∣ š‘§ = (2nd ā€˜š‘¤)} ↾ (V Ɨ V))
9 resopab 6034 . 2 ({āŸØš‘¤, š‘§āŸ© ∣ š‘§ = (2nd ā€˜š‘¤)} ↾ (V Ɨ V)) = {āŸØš‘¤, š‘§āŸ© ∣ (š‘¤ ∈ (V Ɨ V) ∧ š‘§ = (2nd ā€˜š‘¤))}
10 vex 3477 . . . . 5 š‘„ ∈ V
11 vex 3477 . . . . 5 š‘¦ ∈ V
1210, 11op2ndd 7990 . . . 4 (š‘¤ = āŸØš‘„, š‘¦āŸ© → (2nd ā€˜š‘¤) = š‘¦)
1312eqeq2d 2742 . . 3 (š‘¤ = āŸØš‘„, š‘¦āŸ© → (š‘§ = (2nd ā€˜š‘¤) ↔ š‘§ = š‘¦))
1413dfoprab3 8044 . 2 {āŸØš‘¤, š‘§āŸ© ∣ (š‘¤ ∈ (V Ɨ V) ∧ š‘§ = (2nd ā€˜š‘¤))} = {āŸØāŸØš‘„, š‘¦āŸ©, š‘§āŸ© ∣ š‘§ = š‘¦}
158, 9, 143eqtrri 2764 1 {āŸØāŸØš‘„, š‘¦āŸ©, š‘§āŸ© ∣ š‘§ = š‘¦} = (2nd ↾ (V Ɨ V))
Colors of variables: wff setvar class
Syntax hints:   ∧ wa 395   = wceq 1540   ∈ wcel 2105  Vcvv 3473  āŸØcop 4634  {copab 5210   ↦ cmpt 5231   Ɨ cxp 5674   ↾ cres 5678   Fn wfn 6538  ā€“onto→wfo 6541  ā€˜cfv 6543  {coprab 7413  2nd c2nd 7978
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fo 6549  df-fv 6551  df-oprab 7416  df-1st 7979  df-2nd 7980
This theorem is referenced by:  df2ndres  32359
  Copyright terms: Public domain W3C validator