MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df2nd2 Structured version   Visualization version   GIF version

Theorem df2nd2 8081
Description: An alternate possible definition of the 2nd function. (Contributed by NM, 10-Aug-2006.) (Revised by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
df2nd2 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑦} = (2nd ↾ (V × V))
Distinct variable group:   𝑥,𝑦,𝑧

Proof of Theorem df2nd2
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 fo2nd 7992 . . . . . 6 2nd :V–onto→V
2 fofn 6777 . . . . . 6 (2nd :V–onto→V → 2nd Fn V)
31, 2ax-mp 5 . . . . 5 2nd Fn V
4 dffn5 6922 . . . . 5 (2nd Fn V ↔ 2nd = (𝑤 ∈ V ↦ (2nd𝑤)))
53, 4mpbi 230 . . . 4 2nd = (𝑤 ∈ V ↦ (2nd𝑤))
6 mptv 5216 . . . 4 (𝑤 ∈ V ↦ (2nd𝑤)) = {⟨𝑤, 𝑧⟩ ∣ 𝑧 = (2nd𝑤)}
75, 6eqtri 2753 . . 3 2nd = {⟨𝑤, 𝑧⟩ ∣ 𝑧 = (2nd𝑤)}
87reseq1i 5949 . 2 (2nd ↾ (V × V)) = ({⟨𝑤, 𝑧⟩ ∣ 𝑧 = (2nd𝑤)} ↾ (V × V))
9 resopab 6008 . 2 ({⟨𝑤, 𝑧⟩ ∣ 𝑧 = (2nd𝑤)} ↾ (V × V)) = {⟨𝑤, 𝑧⟩ ∣ (𝑤 ∈ (V × V) ∧ 𝑧 = (2nd𝑤))}
10 vex 3454 . . . . 5 𝑥 ∈ V
11 vex 3454 . . . . 5 𝑦 ∈ V
1210, 11op2ndd 7982 . . . 4 (𝑤 = ⟨𝑥, 𝑦⟩ → (2nd𝑤) = 𝑦)
1312eqeq2d 2741 . . 3 (𝑤 = ⟨𝑥, 𝑦⟩ → (𝑧 = (2nd𝑤) ↔ 𝑧 = 𝑦))
1413dfoprab3 8036 . 2 {⟨𝑤, 𝑧⟩ ∣ (𝑤 ∈ (V × V) ∧ 𝑧 = (2nd𝑤))} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑦}
158, 9, 143eqtrri 2758 1 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑦} = (2nd ↾ (V × V))
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2109  Vcvv 3450  cop 4598  {copab 5172  cmpt 5191   × cxp 5639  cres 5643   Fn wfn 6509  ontowfo 6512  cfv 6514  {coprab 7391  2nd c2nd 7970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fo 6520  df-fv 6522  df-oprab 7394  df-1st 7971  df-2nd 7972
This theorem is referenced by:  df2ndres  32635
  Copyright terms: Public domain W3C validator