![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df1st2 | Structured version Visualization version GIF version |
Description: An alternate possible definition of the 1st function. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
df1st2 | ā¢ {āØāØš„, š¦ā©, š§ā© ā£ š§ = š„} = (1st ā¾ (V Ć V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fo1st 7991 | . . . . . 6 ā¢ 1st :VāontoāV | |
2 | fofn 6804 | . . . . . 6 ā¢ (1st :VāontoāV ā 1st Fn V) | |
3 | 1, 2 | ax-mp 5 | . . . . 5 ā¢ 1st Fn V |
4 | dffn5 6947 | . . . . 5 ā¢ (1st Fn V ā 1st = (š¤ ā V ā¦ (1st āš¤))) | |
5 | 3, 4 | mpbi 229 | . . . 4 ā¢ 1st = (š¤ ā V ā¦ (1st āš¤)) |
6 | mptv 5263 | . . . 4 ā¢ (š¤ ā V ā¦ (1st āš¤)) = {āØš¤, š§ā© ā£ š§ = (1st āš¤)} | |
7 | 5, 6 | eqtri 2760 | . . 3 ā¢ 1st = {āØš¤, š§ā© ā£ š§ = (1st āš¤)} |
8 | 7 | reseq1i 5975 | . 2 ā¢ (1st ā¾ (V Ć V)) = ({āØš¤, š§ā© ā£ š§ = (1st āš¤)} ā¾ (V Ć V)) |
9 | resopab 6032 | . 2 ā¢ ({āØš¤, š§ā© ā£ š§ = (1st āš¤)} ā¾ (V Ć V)) = {āØš¤, š§ā© ā£ (š¤ ā (V Ć V) ā§ š§ = (1st āš¤))} | |
10 | vex 3478 | . . . . 5 ā¢ š„ ā V | |
11 | vex 3478 | . . . . 5 ā¢ š¦ ā V | |
12 | 10, 11 | op1std 7981 | . . . 4 ā¢ (š¤ = āØš„, š¦ā© ā (1st āš¤) = š„) |
13 | 12 | eqeq2d 2743 | . . 3 ā¢ (š¤ = āØš„, š¦ā© ā (š§ = (1st āš¤) ā š§ = š„)) |
14 | 13 | dfoprab3 8036 | . 2 ā¢ {āØš¤, š§ā© ā£ (š¤ ā (V Ć V) ā§ š§ = (1st āš¤))} = {āØāØš„, š¦ā©, š§ā© ā£ š§ = š„} |
15 | 8, 9, 14 | 3eqtrri 2765 | 1 ā¢ {āØāØš„, š¦ā©, š§ā© ā£ š§ = š„} = (1st ā¾ (V Ć V)) |
Colors of variables: wff setvar class |
Syntax hints: ā§ wa 396 = wceq 1541 ā wcel 2106 Vcvv 3474 āØcop 4633 {copab 5209 ā¦ cmpt 5230 Ć cxp 5673 ā¾ cres 5677 Fn wfn 6535 āontoāwfo 6538 ācfv 6540 {coprab 7406 1st c1st 7969 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-fo 6546 df-fv 6548 df-oprab 7409 df-1st 7971 df-2nd 7972 |
This theorem is referenced by: df1stres 31912 |
Copyright terms: Public domain | W3C validator |