MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df1st2 Structured version   Visualization version   GIF version

Theorem df1st2 8122
Description: An alternate possible definition of the 1st function. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
df1st2 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑥} = (1st ↾ (V × V))
Distinct variable group:   𝑥,𝑦,𝑧

Proof of Theorem df1st2
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 fo1st 8033 . . . . . 6 1st :V–onto→V
2 fofn 6823 . . . . . 6 (1st :V–onto→V → 1st Fn V)
31, 2ax-mp 5 . . . . 5 1st Fn V
4 dffn5 6967 . . . . 5 (1st Fn V ↔ 1st = (𝑤 ∈ V ↦ (1st𝑤)))
53, 4mpbi 230 . . . 4 1st = (𝑤 ∈ V ↦ (1st𝑤))
6 mptv 5264 . . . 4 (𝑤 ∈ V ↦ (1st𝑤)) = {⟨𝑤, 𝑧⟩ ∣ 𝑧 = (1st𝑤)}
75, 6eqtri 2763 . . 3 1st = {⟨𝑤, 𝑧⟩ ∣ 𝑧 = (1st𝑤)}
87reseq1i 5996 . 2 (1st ↾ (V × V)) = ({⟨𝑤, 𝑧⟩ ∣ 𝑧 = (1st𝑤)} ↾ (V × V))
9 resopab 6054 . 2 ({⟨𝑤, 𝑧⟩ ∣ 𝑧 = (1st𝑤)} ↾ (V × V)) = {⟨𝑤, 𝑧⟩ ∣ (𝑤 ∈ (V × V) ∧ 𝑧 = (1st𝑤))}
10 vex 3482 . . . . 5 𝑥 ∈ V
11 vex 3482 . . . . 5 𝑦 ∈ V
1210, 11op1std 8023 . . . 4 (𝑤 = ⟨𝑥, 𝑦⟩ → (1st𝑤) = 𝑥)
1312eqeq2d 2746 . . 3 (𝑤 = ⟨𝑥, 𝑦⟩ → (𝑧 = (1st𝑤) ↔ 𝑧 = 𝑥))
1413dfoprab3 8078 . 2 {⟨𝑤, 𝑧⟩ ∣ (𝑤 ∈ (V × V) ∧ 𝑧 = (1st𝑤))} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑥}
158, 9, 143eqtrri 2768 1 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑥} = (1st ↾ (V × V))
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1537  wcel 2106  Vcvv 3478  cop 4637  {copab 5210  cmpt 5231   × cxp 5687  cres 5691   Fn wfn 6558  ontowfo 6561  cfv 6563  {coprab 7432  1st c1st 8011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fo 6569  df-fv 6571  df-oprab 7435  df-1st 8013  df-2nd 8014
This theorem is referenced by:  df1stres  32719
  Copyright terms: Public domain W3C validator