| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df1st2 | Structured version Visualization version GIF version | ||
| Description: An alternate possible definition of the 1st function. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| df1st2 | ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝑧 = 𝑥} = (1st ↾ (V × V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fo1st 7949 | . . . . . 6 ⊢ 1st :V–onto→V | |
| 2 | fofn 6744 | . . . . . 6 ⊢ (1st :V–onto→V → 1st Fn V) | |
| 3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ 1st Fn V |
| 4 | dffn5 6888 | . . . . 5 ⊢ (1st Fn V ↔ 1st = (𝑤 ∈ V ↦ (1st ‘𝑤))) | |
| 5 | 3, 4 | mpbi 230 | . . . 4 ⊢ 1st = (𝑤 ∈ V ↦ (1st ‘𝑤)) |
| 6 | mptv 5201 | . . . 4 ⊢ (𝑤 ∈ V ↦ (1st ‘𝑤)) = {〈𝑤, 𝑧〉 ∣ 𝑧 = (1st ‘𝑤)} | |
| 7 | 5, 6 | eqtri 2756 | . . 3 ⊢ 1st = {〈𝑤, 𝑧〉 ∣ 𝑧 = (1st ‘𝑤)} |
| 8 | 7 | reseq1i 5930 | . 2 ⊢ (1st ↾ (V × V)) = ({〈𝑤, 𝑧〉 ∣ 𝑧 = (1st ‘𝑤)} ↾ (V × V)) |
| 9 | resopab 5989 | . 2 ⊢ ({〈𝑤, 𝑧〉 ∣ 𝑧 = (1st ‘𝑤)} ↾ (V × V)) = {〈𝑤, 𝑧〉 ∣ (𝑤 ∈ (V × V) ∧ 𝑧 = (1st ‘𝑤))} | |
| 10 | vex 3441 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 11 | vex 3441 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 12 | 10, 11 | op1std 7939 | . . . 4 ⊢ (𝑤 = 〈𝑥, 𝑦〉 → (1st ‘𝑤) = 𝑥) |
| 13 | 12 | eqeq2d 2744 | . . 3 ⊢ (𝑤 = 〈𝑥, 𝑦〉 → (𝑧 = (1st ‘𝑤) ↔ 𝑧 = 𝑥)) |
| 14 | 13 | dfoprab3 7994 | . 2 ⊢ {〈𝑤, 𝑧〉 ∣ (𝑤 ∈ (V × V) ∧ 𝑧 = (1st ‘𝑤))} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝑧 = 𝑥} |
| 15 | 8, 9, 14 | 3eqtrri 2761 | 1 ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝑧 = 𝑥} = (1st ↾ (V × V)) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∈ wcel 2113 Vcvv 3437 〈cop 4583 {copab 5157 ↦ cmpt 5176 × cxp 5619 ↾ cres 5623 Fn wfn 6483 –onto→wfo 6486 ‘cfv 6488 {coprab 7355 1st c1st 7927 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7676 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-fo 6494 df-fv 6496 df-oprab 7358 df-1st 7929 df-2nd 7930 |
| This theorem is referenced by: df1stres 32691 |
| Copyright terms: Public domain | W3C validator |