MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df1st2 Structured version   Visualization version   GIF version

Theorem df1st2 8038
Description: An alternate possible definition of the 1st function. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
df1st2 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑥} = (1st ↾ (V × V))
Distinct variable group:   𝑥,𝑦,𝑧

Proof of Theorem df1st2
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 fo1st 7951 . . . . . 6 1st :V–onto→V
2 fofn 6742 . . . . . 6 (1st :V–onto→V → 1st Fn V)
31, 2ax-mp 5 . . . . 5 1st Fn V
4 dffn5 6885 . . . . 5 (1st Fn V ↔ 1st = (𝑤 ∈ V ↦ (1st𝑤)))
53, 4mpbi 230 . . . 4 1st = (𝑤 ∈ V ↦ (1st𝑤))
6 mptv 5201 . . . 4 (𝑤 ∈ V ↦ (1st𝑤)) = {⟨𝑤, 𝑧⟩ ∣ 𝑧 = (1st𝑤)}
75, 6eqtri 2752 . . 3 1st = {⟨𝑤, 𝑧⟩ ∣ 𝑧 = (1st𝑤)}
87reseq1i 5930 . 2 (1st ↾ (V × V)) = ({⟨𝑤, 𝑧⟩ ∣ 𝑧 = (1st𝑤)} ↾ (V × V))
9 resopab 5989 . 2 ({⟨𝑤, 𝑧⟩ ∣ 𝑧 = (1st𝑤)} ↾ (V × V)) = {⟨𝑤, 𝑧⟩ ∣ (𝑤 ∈ (V × V) ∧ 𝑧 = (1st𝑤))}
10 vex 3442 . . . . 5 𝑥 ∈ V
11 vex 3442 . . . . 5 𝑦 ∈ V
1210, 11op1std 7941 . . . 4 (𝑤 = ⟨𝑥, 𝑦⟩ → (1st𝑤) = 𝑥)
1312eqeq2d 2740 . . 3 (𝑤 = ⟨𝑥, 𝑦⟩ → (𝑧 = (1st𝑤) ↔ 𝑧 = 𝑥))
1413dfoprab3 7996 . 2 {⟨𝑤, 𝑧⟩ ∣ (𝑤 ∈ (V × V) ∧ 𝑧 = (1st𝑤))} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑥}
158, 9, 143eqtrri 2757 1 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝑥} = (1st ↾ (V × V))
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2109  Vcvv 3438  cop 4585  {copab 5157  cmpt 5176   × cxp 5621  cres 5625   Fn wfn 6481  ontowfo 6484  cfv 6486  {coprab 7354  1st c1st 7929
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fo 6492  df-fv 6494  df-oprab 7357  df-1st 7931  df-2nd 7932
This theorem is referenced by:  df1stres  32660
  Copyright terms: Public domain W3C validator