MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df1st2 Structured version   Visualization version   GIF version

Theorem df1st2 8080
Description: An alternate possible definition of the 1st function. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
df1st2 {āŸØāŸØš‘„, š‘¦āŸ©, š‘§āŸ© āˆ£ š‘§ = š‘„} = (1st ā†¾ (V Ɨ V))
Distinct variable group:   š‘„,š‘¦,š‘§

Proof of Theorem df1st2
Dummy variable š‘¤ is distinct from all other variables.
StepHypRef Expression
1 fo1st 7991 . . . . . 6 1st :Vā€“ontoā†’V
2 fofn 6804 . . . . . 6 (1st :Vā€“ontoā†’V ā†’ 1st Fn V)
31, 2ax-mp 5 . . . . 5 1st Fn V
4 dffn5 6947 . . . . 5 (1st Fn V ā†” 1st = (š‘¤ āˆˆ V ā†¦ (1st ā€˜š‘¤)))
53, 4mpbi 229 . . . 4 1st = (š‘¤ āˆˆ V ā†¦ (1st ā€˜š‘¤))
6 mptv 5263 . . . 4 (š‘¤ āˆˆ V ā†¦ (1st ā€˜š‘¤)) = {āŸØš‘¤, š‘§āŸ© āˆ£ š‘§ = (1st ā€˜š‘¤)}
75, 6eqtri 2760 . . 3 1st = {āŸØš‘¤, š‘§āŸ© āˆ£ š‘§ = (1st ā€˜š‘¤)}
87reseq1i 5975 . 2 (1st ā†¾ (V Ɨ V)) = ({āŸØš‘¤, š‘§āŸ© āˆ£ š‘§ = (1st ā€˜š‘¤)} ā†¾ (V Ɨ V))
9 resopab 6032 . 2 ({āŸØš‘¤, š‘§āŸ© āˆ£ š‘§ = (1st ā€˜š‘¤)} ā†¾ (V Ɨ V)) = {āŸØš‘¤, š‘§āŸ© āˆ£ (š‘¤ āˆˆ (V Ɨ V) āˆ§ š‘§ = (1st ā€˜š‘¤))}
10 vex 3478 . . . . 5 š‘„ āˆˆ V
11 vex 3478 . . . . 5 š‘¦ āˆˆ V
1210, 11op1std 7981 . . . 4 (š‘¤ = āŸØš‘„, š‘¦āŸ© ā†’ (1st ā€˜š‘¤) = š‘„)
1312eqeq2d 2743 . . 3 (š‘¤ = āŸØš‘„, š‘¦āŸ© ā†’ (š‘§ = (1st ā€˜š‘¤) ā†” š‘§ = š‘„))
1413dfoprab3 8036 . 2 {āŸØš‘¤, š‘§āŸ© āˆ£ (š‘¤ āˆˆ (V Ɨ V) āˆ§ š‘§ = (1st ā€˜š‘¤))} = {āŸØāŸØš‘„, š‘¦āŸ©, š‘§āŸ© āˆ£ š‘§ = š‘„}
158, 9, 143eqtrri 2765 1 {āŸØāŸØš‘„, š‘¦āŸ©, š‘§āŸ© āˆ£ š‘§ = š‘„} = (1st ā†¾ (V Ɨ V))
Colors of variables: wff setvar class
Syntax hints:   āˆ§ wa 396   = wceq 1541   āˆˆ wcel 2106  Vcvv 3474  āŸØcop 4633  {copab 5209   ā†¦ cmpt 5230   Ɨ cxp 5673   ā†¾ cres 5677   Fn wfn 6535  ā€“ontoā†’wfo 6538  ā€˜cfv 6540  {coprab 7406  1st c1st 7969
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-fo 6546  df-fv 6548  df-oprab 7409  df-1st 7971  df-2nd 7972
This theorem is referenced by:  df1stres  31912
  Copyright terms: Public domain W3C validator