MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsplit Structured version   Visualization version   GIF version

Theorem fsplit 8122
Description: A function that can be used to feed a common value to both operands of an operation. Use as the second argument of a composition with the function of fpar 8121 in order to build compound functions such as (𝑥 ∈ (0[,)+∞) ↦ ((√‘𝑥) + (sin‘𝑥))). (Contributed by NM, 17-Sep-2007.) Replace use of dfid2 5578 with df-id 5576. (Revised by BJ, 31-Dec-2023.)
Assertion
Ref Expression
fsplit (1st ↾ I ) = (𝑥 ∈ V ↦ ⟨𝑥, 𝑥⟩)

Proof of Theorem fsplit
Dummy variables 𝑦 𝑧 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3465 . . . . 5 𝑥 ∈ V
2 vex 3465 . . . . 5 𝑦 ∈ V
31, 2brcnv 5885 . . . 4 (𝑥(1st ↾ I )𝑦𝑦(1st ↾ I )𝑥)
41brresi 5994 . . . 4 (𝑦(1st ↾ I )𝑥 ↔ (𝑦 ∈ I ∧ 𝑦1st 𝑥))
5 19.42v 1949 . . . . . 6 (∃𝑧((1st𝑦) = 𝑥𝑦 = ⟨𝑧, 𝑧⟩) ↔ ((1st𝑦) = 𝑥 ∧ ∃𝑧 𝑦 = ⟨𝑧, 𝑧⟩))
6 vex 3465 . . . . . . . . . 10 𝑧 ∈ V
76, 6op1std 8004 . . . . . . . . 9 (𝑦 = ⟨𝑧, 𝑧⟩ → (1st𝑦) = 𝑧)
87eqeq1d 2727 . . . . . . . 8 (𝑦 = ⟨𝑧, 𝑧⟩ → ((1st𝑦) = 𝑥𝑧 = 𝑥))
98pm5.32ri 574 . . . . . . 7 (((1st𝑦) = 𝑥𝑦 = ⟨𝑧, 𝑧⟩) ↔ (𝑧 = 𝑥𝑦 = ⟨𝑧, 𝑧⟩))
109exbii 1842 . . . . . 6 (∃𝑧((1st𝑦) = 𝑥𝑦 = ⟨𝑧, 𝑧⟩) ↔ ∃𝑧(𝑧 = 𝑥𝑦 = ⟨𝑧, 𝑧⟩))
11 fo1st 8014 . . . . . . . . 9 1st :V–onto→V
12 fofn 6812 . . . . . . . . 9 (1st :V–onto→V → 1st Fn V)
1311, 12ax-mp 5 . . . . . . . 8 1st Fn V
14 fnbrfvb 6949 . . . . . . . 8 ((1st Fn V ∧ 𝑦 ∈ V) → ((1st𝑦) = 𝑥𝑦1st 𝑥))
1513, 2, 14mp2an 690 . . . . . . 7 ((1st𝑦) = 𝑥𝑦1st 𝑥)
16 df-id 5576 . . . . . . . . 9 I = {⟨𝑧, 𝑡⟩ ∣ 𝑧 = 𝑡}
1716eleq2i 2817 . . . . . . . 8 (𝑦 ∈ I ↔ 𝑦 ∈ {⟨𝑧, 𝑡⟩ ∣ 𝑧 = 𝑡})
18 elopab 5529 . . . . . . . 8 (𝑦 ∈ {⟨𝑧, 𝑡⟩ ∣ 𝑧 = 𝑡} ↔ ∃𝑧𝑡(𝑦 = ⟨𝑧, 𝑡⟩ ∧ 𝑧 = 𝑡))
19 ancom 459 . . . . . . . . . . . 12 ((𝑦 = ⟨𝑧, 𝑡⟩ ∧ 𝑧 = 𝑡) ↔ (𝑧 = 𝑡𝑦 = ⟨𝑧, 𝑡⟩))
20 equcom 2013 . . . . . . . . . . . . 13 (𝑧 = 𝑡𝑡 = 𝑧)
2120anbi1i 622 . . . . . . . . . . . 12 ((𝑧 = 𝑡𝑦 = ⟨𝑧, 𝑡⟩) ↔ (𝑡 = 𝑧𝑦 = ⟨𝑧, 𝑡⟩))
22 opeq2 4876 . . . . . . . . . . . . . 14 (𝑡 = 𝑧 → ⟨𝑧, 𝑡⟩ = ⟨𝑧, 𝑧⟩)
2322eqeq2d 2736 . . . . . . . . . . . . 13 (𝑡 = 𝑧 → (𝑦 = ⟨𝑧, 𝑡⟩ ↔ 𝑦 = ⟨𝑧, 𝑧⟩))
2423pm5.32i 573 . . . . . . . . . . . 12 ((𝑡 = 𝑧𝑦 = ⟨𝑧, 𝑡⟩) ↔ (𝑡 = 𝑧𝑦 = ⟨𝑧, 𝑧⟩))
2519, 21, 243bitri 296 . . . . . . . . . . 11 ((𝑦 = ⟨𝑧, 𝑡⟩ ∧ 𝑧 = 𝑡) ↔ (𝑡 = 𝑧𝑦 = ⟨𝑧, 𝑧⟩))
2625exbii 1842 . . . . . . . . . 10 (∃𝑡(𝑦 = ⟨𝑧, 𝑡⟩ ∧ 𝑧 = 𝑡) ↔ ∃𝑡(𝑡 = 𝑧𝑦 = ⟨𝑧, 𝑧⟩))
27 biidd 261 . . . . . . . . . . 11 (𝑡 = 𝑧 → (𝑦 = ⟨𝑧, 𝑧⟩ ↔ 𝑦 = ⟨𝑧, 𝑧⟩))
2827equsexvw 2000 . . . . . . . . . 10 (∃𝑡(𝑡 = 𝑧𝑦 = ⟨𝑧, 𝑧⟩) ↔ 𝑦 = ⟨𝑧, 𝑧⟩)
2926, 28bitri 274 . . . . . . . . 9 (∃𝑡(𝑦 = ⟨𝑧, 𝑡⟩ ∧ 𝑧 = 𝑡) ↔ 𝑦 = ⟨𝑧, 𝑧⟩)
3029exbii 1842 . . . . . . . 8 (∃𝑧𝑡(𝑦 = ⟨𝑧, 𝑡⟩ ∧ 𝑧 = 𝑡) ↔ ∃𝑧 𝑦 = ⟨𝑧, 𝑧⟩)
3117, 18, 303bitrri 297 . . . . . . 7 (∃𝑧 𝑦 = ⟨𝑧, 𝑧⟩ ↔ 𝑦 ∈ I )
3215, 31anbi12ci 627 . . . . . 6 (((1st𝑦) = 𝑥 ∧ ∃𝑧 𝑦 = ⟨𝑧, 𝑧⟩) ↔ (𝑦 ∈ I ∧ 𝑦1st 𝑥))
335, 10, 323bitr3ri 301 . . . . 5 ((𝑦 ∈ I ∧ 𝑦1st 𝑥) ↔ ∃𝑧(𝑧 = 𝑥𝑦 = ⟨𝑧, 𝑧⟩))
34 id 22 . . . . . . . 8 (𝑧 = 𝑥𝑧 = 𝑥)
3534, 34opeq12d 4883 . . . . . . 7 (𝑧 = 𝑥 → ⟨𝑧, 𝑧⟩ = ⟨𝑥, 𝑥⟩)
3635eqeq2d 2736 . . . . . 6 (𝑧 = 𝑥 → (𝑦 = ⟨𝑧, 𝑧⟩ ↔ 𝑦 = ⟨𝑥, 𝑥⟩))
3736equsexvw 2000 . . . . 5 (∃𝑧(𝑧 = 𝑥𝑦 = ⟨𝑧, 𝑧⟩) ↔ 𝑦 = ⟨𝑥, 𝑥⟩)
3833, 37bitri 274 . . . 4 ((𝑦 ∈ I ∧ 𝑦1st 𝑥) ↔ 𝑦 = ⟨𝑥, 𝑥⟩)
393, 4, 383bitri 296 . . 3 (𝑥(1st ↾ I )𝑦𝑦 = ⟨𝑥, 𝑥⟩)
4039opabbii 5216 . 2 {⟨𝑥, 𝑦⟩ ∣ 𝑥(1st ↾ I )𝑦} = {⟨𝑥, 𝑦⟩ ∣ 𝑦 = ⟨𝑥, 𝑥⟩}
41 relcnv 6109 . . 3 Rel (1st ↾ I )
42 dfrel4v 6196 . . 3 (Rel (1st ↾ I ) ↔ (1st ↾ I ) = {⟨𝑥, 𝑦⟩ ∣ 𝑥(1st ↾ I )𝑦})
4341, 42mpbi 229 . 2 (1st ↾ I ) = {⟨𝑥, 𝑦⟩ ∣ 𝑥(1st ↾ I )𝑦}
44 mptv 5265 . 2 (𝑥 ∈ V ↦ ⟨𝑥, 𝑥⟩) = {⟨𝑥, 𝑦⟩ ∣ 𝑦 = ⟨𝑥, 𝑥⟩}
4540, 43, 443eqtr4i 2763 1 (1st ↾ I ) = (𝑥 ∈ V ↦ ⟨𝑥, 𝑥⟩)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 394   = wceq 1533  wex 1773  wcel 2098  Vcvv 3461  cop 4636   class class class wbr 5149  {copab 5211  cmpt 5232   I cid 5575  ccnv 5677  cres 5680  Rel wrel 5683   Fn wfn 6544  ontowfo 6547  cfv 6549  1st c1st 7992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pr 5429  ax-un 7741
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-fo 6555  df-fv 6557  df-1st 7994
This theorem is referenced by:  fsplitfpar  8123
  Copyright terms: Public domain W3C validator