![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > n0el2 | Structured version Visualization version GIF version |
Description: Two ways of expressing that the empty set is not an element of a class. (Contributed by Peter Mazsa, 31-Jan-2018.) |
Ref | Expression |
---|---|
n0el2 | ⊢ (¬ ∅ ∈ 𝐴 ↔ dom (◡ E ↾ 𝐴) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmopab3 5944 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 𝑦 ∈ 𝑥 ↔ dom {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)} = 𝐴) | |
2 | n0el 4387 | . 2 ⊢ (¬ ∅ ∈ 𝐴 ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 𝑦 ∈ 𝑥) | |
3 | cnvepres 38254 | . . . 4 ⊢ (◡ E ↾ 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)} | |
4 | 3 | dmeqi 5929 | . . 3 ⊢ dom (◡ E ↾ 𝐴) = dom {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)} |
5 | 4 | eqeq1i 2745 | . 2 ⊢ (dom (◡ E ↾ 𝐴) = 𝐴 ↔ dom {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)} = 𝐴) |
6 | 1, 2, 5 | 3bitr4i 303 | 1 ⊢ (¬ ∅ ∈ 𝐴 ↔ dom (◡ E ↾ 𝐴) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 = wceq 1537 ∃wex 1777 ∈ wcel 2108 ∀wral 3067 ∅c0 4352 {copab 5228 E cep 5598 ◡ccnv 5699 dom cdm 5700 ↾ cres 5702 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-eprel 5599 df-xp 5706 df-rel 5707 df-cnv 5708 df-dm 5710 df-res 5712 |
This theorem is referenced by: n0elim 38606 membpartlem19 38767 |
Copyright terms: Public domain | W3C validator |