Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  n0el2 Structured version   Visualization version   GIF version

Theorem n0el2 36447
Description: Two ways of expressing that the empty set is not an element of a class. (Contributed by Peter Mazsa, 31-Jan-2018.)
Assertion
Ref Expression
n0el2 (¬ ∅ ∈ 𝐴 ↔ dom ( E ↾ 𝐴) = 𝐴)

Proof of Theorem n0el2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmopab3 5825 . 2 (∀𝑥𝐴𝑦 𝑦𝑥 ↔ dom {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝑥)} = 𝐴)
2 n0el 4300 . 2 (¬ ∅ ∈ 𝐴 ↔ ∀𝑥𝐴𝑦 𝑦𝑥)
3 cnvepres 36412 . . . 4 ( E ↾ 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝑥)}
43dmeqi 5810 . . 3 dom ( E ↾ 𝐴) = dom {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝑥)}
54eqeq1i 2744 . 2 (dom ( E ↾ 𝐴) = 𝐴 ↔ dom {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝑥)} = 𝐴)
61, 2, 53bitr4i 302 1 (¬ ∅ ∈ 𝐴 ↔ dom ( E ↾ 𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 395   = wceq 1541  wex 1785  wcel 2109  wral 3065  c0 4261  {copab 5140   E cep 5493  ccnv 5587  dom cdm 5588  cres 5590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-br 5079  df-opab 5141  df-eprel 5494  df-xp 5594  df-rel 5595  df-cnv 5596  df-dm 5598  df-res 5600
This theorem is referenced by:  n0el3  36742
  Copyright terms: Public domain W3C validator