Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  n0el2 Structured version   Visualization version   GIF version

Theorem n0el2 38289
Description: Two ways of expressing that the empty set is not an element of a class. (Contributed by Peter Mazsa, 31-Jan-2018.)
Assertion
Ref Expression
n0el2 (¬ ∅ ∈ 𝐴 ↔ dom ( E ↾ 𝐴) = 𝐴)

Proof of Theorem n0el2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmopab3 5944 . 2 (∀𝑥𝐴𝑦 𝑦𝑥 ↔ dom {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝑥)} = 𝐴)
2 n0el 4387 . 2 (¬ ∅ ∈ 𝐴 ↔ ∀𝑥𝐴𝑦 𝑦𝑥)
3 cnvepres 38254 . . . 4 ( E ↾ 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝑥)}
43dmeqi 5929 . . 3 dom ( E ↾ 𝐴) = dom {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝑥)}
54eqeq1i 2745 . 2 (dom ( E ↾ 𝐴) = 𝐴 ↔ dom {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝑥)} = 𝐴)
61, 2, 53bitr4i 303 1 (¬ ∅ ∈ 𝐴 ↔ dom ( E ↾ 𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395   = wceq 1537  wex 1777  wcel 2108  wral 3067  c0 4352  {copab 5228   E cep 5598  ccnv 5699  dom cdm 5700  cres 5702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-eprel 5599  df-xp 5706  df-rel 5707  df-cnv 5708  df-dm 5710  df-res 5712
This theorem is referenced by:  n0elim  38606  membpartlem19  38767
  Copyright terms: Public domain W3C validator