Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  n0el2 Structured version   Visualization version   GIF version

Theorem n0el2 37190
Description: Two ways of expressing that the empty set is not an element of a class. (Contributed by Peter Mazsa, 31-Jan-2018.)
Assertion
Ref Expression
n0el2 (¬ ∅ ∈ 𝐴 ↔ dom ( E ↾ 𝐴) = 𝐴)

Proof of Theorem n0el2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmopab3 5917 . 2 (∀𝑥𝐴𝑦 𝑦𝑥 ↔ dom {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝑥)} = 𝐴)
2 n0el 4360 . 2 (¬ ∅ ∈ 𝐴 ↔ ∀𝑥𝐴𝑦 𝑦𝑥)
3 cnvepres 37155 . . . 4 ( E ↾ 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝑥)}
43dmeqi 5902 . . 3 dom ( E ↾ 𝐴) = dom {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝑥)}
54eqeq1i 2737 . 2 (dom ( E ↾ 𝐴) = 𝐴 ↔ dom {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝑥)} = 𝐴)
61, 2, 53bitr4i 302 1 (¬ ∅ ∈ 𝐴 ↔ dom ( E ↾ 𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 396   = wceq 1541  wex 1781  wcel 2106  wral 3061  c0 4321  {copab 5209   E cep 5578  ccnv 5674  dom cdm 5675  cres 5677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-br 5148  df-opab 5210  df-eprel 5579  df-xp 5681  df-rel 5682  df-cnv 5683  df-dm 5685  df-res 5687
This theorem is referenced by:  n0elim  37508  membpartlem19  37669
  Copyright terms: Public domain W3C validator