| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > n0el2 | Structured version Visualization version GIF version | ||
| Description: Two ways of expressing that the empty set is not an element of a class. (Contributed by Peter Mazsa, 31-Jan-2018.) |
| Ref | Expression |
|---|---|
| n0el2 | ⊢ (¬ ∅ ∈ 𝐴 ↔ dom (◡ E ↾ 𝐴) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmopab3 5904 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 𝑦 ∈ 𝑥 ↔ dom {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)} = 𝐴) | |
| 2 | n0el 4344 | . 2 ⊢ (¬ ∅ ∈ 𝐴 ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 𝑦 ∈ 𝑥) | |
| 3 | cnvepres 38321 | . . . 4 ⊢ (◡ E ↾ 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)} | |
| 4 | 3 | dmeqi 5889 | . . 3 ⊢ dom (◡ E ↾ 𝐴) = dom {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)} |
| 5 | 4 | eqeq1i 2741 | . 2 ⊢ (dom (◡ E ↾ 𝐴) = 𝐴 ↔ dom {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)} = 𝐴) |
| 6 | 1, 2, 5 | 3bitr4i 303 | 1 ⊢ (¬ ∅ ∈ 𝐴 ↔ dom (◡ E ↾ 𝐴) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∀wral 3052 ∅c0 4313 {copab 5186 E cep 5557 ◡ccnv 5658 dom cdm 5659 ↾ cres 5661 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-eprel 5558 df-xp 5665 df-rel 5666 df-cnv 5667 df-dm 5669 df-res 5671 |
| This theorem is referenced by: n0elim 38673 membpartlem19 38834 |
| Copyright terms: Public domain | W3C validator |