Proof of Theorem suppvalbr
Step | Hyp | Ref
| Expression |
1 | | suppval 7950 |
. 2
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑅 supp 𝑍) = {𝑥 ∈ dom 𝑅 ∣ (𝑅 “ {𝑥}) ≠ {𝑍}}) |
2 | | df-rab 3072 |
. . . 4
⊢ {𝑥 ∈ dom 𝑅 ∣ (𝑅 “ {𝑥}) ≠ {𝑍}} = {𝑥 ∣ (𝑥 ∈ dom 𝑅 ∧ (𝑅 “ {𝑥}) ≠ {𝑍})} |
3 | | vex 3426 |
. . . . . . 7
⊢ 𝑥 ∈ V |
4 | 3 | eldm 5798 |
. . . . . 6
⊢ (𝑥 ∈ dom 𝑅 ↔ ∃𝑦 𝑥𝑅𝑦) |
5 | | df-sn 4559 |
. . . . . . . 8
⊢ {𝑍} = {𝑦 ∣ 𝑦 = 𝑍} |
6 | 5 | neeq2i 3008 |
. . . . . . 7
⊢ ({𝑦 ∣ 𝑥𝑅𝑦} ≠ {𝑍} ↔ {𝑦 ∣ 𝑥𝑅𝑦} ≠ {𝑦 ∣ 𝑦 = 𝑍}) |
7 | | imasng 5980 |
. . . . . . . . 9
⊢ (𝑥 ∈ V → (𝑅 “ {𝑥}) = {𝑦 ∣ 𝑥𝑅𝑦}) |
8 | 7 | elv 3428 |
. . . . . . . 8
⊢ (𝑅 “ {𝑥}) = {𝑦 ∣ 𝑥𝑅𝑦} |
9 | 8 | neeq1i 3007 |
. . . . . . 7
⊢ ((𝑅 “ {𝑥}) ≠ {𝑍} ↔ {𝑦 ∣ 𝑥𝑅𝑦} ≠ {𝑍}) |
10 | | nabbi 3046 |
. . . . . . 7
⊢
(∃𝑦(𝑥𝑅𝑦 ↔ ¬ 𝑦 = 𝑍) ↔ {𝑦 ∣ 𝑥𝑅𝑦} ≠ {𝑦 ∣ 𝑦 = 𝑍}) |
11 | 6, 9, 10 | 3bitr4i 302 |
. . . . . 6
⊢ ((𝑅 “ {𝑥}) ≠ {𝑍} ↔ ∃𝑦(𝑥𝑅𝑦 ↔ ¬ 𝑦 = 𝑍)) |
12 | 4, 11 | anbi12i 626 |
. . . . 5
⊢ ((𝑥 ∈ dom 𝑅 ∧ (𝑅 “ {𝑥}) ≠ {𝑍}) ↔ (∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦 ↔ ¬ 𝑦 = 𝑍))) |
13 | 12 | abbii 2809 |
. . . 4
⊢ {𝑥 ∣ (𝑥 ∈ dom 𝑅 ∧ (𝑅 “ {𝑥}) ≠ {𝑍})} = {𝑥 ∣ (∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦 ↔ ¬ 𝑦 = 𝑍))} |
14 | 2, 13 | eqtri 2766 |
. . 3
⊢ {𝑥 ∈ dom 𝑅 ∣ (𝑅 “ {𝑥}) ≠ {𝑍}} = {𝑥 ∣ (∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦 ↔ ¬ 𝑦 = 𝑍))} |
15 | 14 | a1i 11 |
. 2
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → {𝑥 ∈ dom 𝑅 ∣ (𝑅 “ {𝑥}) ≠ {𝑍}} = {𝑥 ∣ (∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦 ↔ ¬ 𝑦 = 𝑍))}) |
16 | | df-ne 2943 |
. . . . . . . 8
⊢ (𝑦 ≠ 𝑍 ↔ ¬ 𝑦 = 𝑍) |
17 | 16 | bicomi 223 |
. . . . . . 7
⊢ (¬
𝑦 = 𝑍 ↔ 𝑦 ≠ 𝑍) |
18 | 17 | bibi2i 337 |
. . . . . 6
⊢ ((𝑥𝑅𝑦 ↔ ¬ 𝑦 = 𝑍) ↔ (𝑥𝑅𝑦 ↔ 𝑦 ≠ 𝑍)) |
19 | 18 | exbii 1851 |
. . . . 5
⊢
(∃𝑦(𝑥𝑅𝑦 ↔ ¬ 𝑦 = 𝑍) ↔ ∃𝑦(𝑥𝑅𝑦 ↔ 𝑦 ≠ 𝑍)) |
20 | 19 | anbi2i 622 |
. . . 4
⊢
((∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦 ↔ ¬ 𝑦 = 𝑍)) ↔ (∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦 ↔ 𝑦 ≠ 𝑍))) |
21 | 20 | abbii 2809 |
. . 3
⊢ {𝑥 ∣ (∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦 ↔ ¬ 𝑦 = 𝑍))} = {𝑥 ∣ (∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦 ↔ 𝑦 ≠ 𝑍))} |
22 | 21 | a1i 11 |
. 2
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → {𝑥 ∣ (∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦 ↔ ¬ 𝑦 = 𝑍))} = {𝑥 ∣ (∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦 ↔ 𝑦 ≠ 𝑍))}) |
23 | 1, 15, 22 | 3eqtrd 2782 |
1
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑅 supp 𝑍) = {𝑥 ∣ (∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦 ↔ 𝑦 ≠ 𝑍))}) |