MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suppvalbr Structured version   Visualization version   GIF version

Theorem suppvalbr 8026
Description: The value of the operation constructing the support of a function expressed by binary relations. (Contributed by AV, 7-Apr-2019.)
Assertion
Ref Expression
suppvalbr ((𝑅𝑉𝑍𝑊) → (𝑅 supp 𝑍) = {𝑥 ∣ (∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦𝑦𝑍))})
Distinct variable groups:   𝑥,𝑅,𝑦   𝑥,𝑍,𝑦
Allowed substitution hints:   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem suppvalbr
StepHypRef Expression
1 suppval 8024 . 2 ((𝑅𝑉𝑍𝑊) → (𝑅 supp 𝑍) = {𝑥 ∈ dom 𝑅 ∣ (𝑅 “ {𝑥}) ≠ {𝑍}})
2 df-rab 3405 . . . 4 {𝑥 ∈ dom 𝑅 ∣ (𝑅 “ {𝑥}) ≠ {𝑍}} = {𝑥 ∣ (𝑥 ∈ dom 𝑅 ∧ (𝑅 “ {𝑥}) ≠ {𝑍})}
3 vex 3445 . . . . . . 7 𝑥 ∈ V
43eldm 5827 . . . . . 6 (𝑥 ∈ dom 𝑅 ↔ ∃𝑦 𝑥𝑅𝑦)
5 df-sn 4570 . . . . . . . 8 {𝑍} = {𝑦𝑦 = 𝑍}
65neeq2i 3007 . . . . . . 7 ({𝑦𝑥𝑅𝑦} ≠ {𝑍} ↔ {𝑦𝑥𝑅𝑦} ≠ {𝑦𝑦 = 𝑍})
7 imasng 6006 . . . . . . . . 9 (𝑥 ∈ V → (𝑅 “ {𝑥}) = {𝑦𝑥𝑅𝑦})
87elv 3447 . . . . . . . 8 (𝑅 “ {𝑥}) = {𝑦𝑥𝑅𝑦}
98neeq1i 3006 . . . . . . 7 ((𝑅 “ {𝑥}) ≠ {𝑍} ↔ {𝑦𝑥𝑅𝑦} ≠ {𝑍})
10 nabbi 3045 . . . . . . 7 (∃𝑦(𝑥𝑅𝑦 ↔ ¬ 𝑦 = 𝑍) ↔ {𝑦𝑥𝑅𝑦} ≠ {𝑦𝑦 = 𝑍})
116, 9, 103bitr4i 302 . . . . . 6 ((𝑅 “ {𝑥}) ≠ {𝑍} ↔ ∃𝑦(𝑥𝑅𝑦 ↔ ¬ 𝑦 = 𝑍))
124, 11anbi12i 627 . . . . 5 ((𝑥 ∈ dom 𝑅 ∧ (𝑅 “ {𝑥}) ≠ {𝑍}) ↔ (∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦 ↔ ¬ 𝑦 = 𝑍)))
1312abbii 2807 . . . 4 {𝑥 ∣ (𝑥 ∈ dom 𝑅 ∧ (𝑅 “ {𝑥}) ≠ {𝑍})} = {𝑥 ∣ (∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦 ↔ ¬ 𝑦 = 𝑍))}
142, 13eqtri 2765 . . 3 {𝑥 ∈ dom 𝑅 ∣ (𝑅 “ {𝑥}) ≠ {𝑍}} = {𝑥 ∣ (∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦 ↔ ¬ 𝑦 = 𝑍))}
1514a1i 11 . 2 ((𝑅𝑉𝑍𝑊) → {𝑥 ∈ dom 𝑅 ∣ (𝑅 “ {𝑥}) ≠ {𝑍}} = {𝑥 ∣ (∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦 ↔ ¬ 𝑦 = 𝑍))})
16 df-ne 2942 . . . . . . . 8 (𝑦𝑍 ↔ ¬ 𝑦 = 𝑍)
1716bicomi 223 . . . . . . 7 𝑦 = 𝑍𝑦𝑍)
1817bibi2i 337 . . . . . 6 ((𝑥𝑅𝑦 ↔ ¬ 𝑦 = 𝑍) ↔ (𝑥𝑅𝑦𝑦𝑍))
1918exbii 1849 . . . . 5 (∃𝑦(𝑥𝑅𝑦 ↔ ¬ 𝑦 = 𝑍) ↔ ∃𝑦(𝑥𝑅𝑦𝑦𝑍))
2019anbi2i 623 . . . 4 ((∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦 ↔ ¬ 𝑦 = 𝑍)) ↔ (∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦𝑦𝑍)))
2120abbii 2807 . . 3 {𝑥 ∣ (∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦 ↔ ¬ 𝑦 = 𝑍))} = {𝑥 ∣ (∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦𝑦𝑍))}
2221a1i 11 . 2 ((𝑅𝑉𝑍𝑊) → {𝑥 ∣ (∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦 ↔ ¬ 𝑦 = 𝑍))} = {𝑥 ∣ (∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦𝑦𝑍))})
231, 15, 223eqtrd 2781 1 ((𝑅𝑉𝑍𝑊) → (𝑅 supp 𝑍) = {𝑥 ∣ (∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦𝑦𝑍))})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1540  wex 1780  wcel 2105  {cab 2714  wne 2941  {crab 3404  Vcvv 3441  {csn 4569   class class class wbr 5085  dom cdm 5605  cima 5608  (class class class)co 7313   supp csupp 8022
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-sep 5236  ax-nul 5243  ax-pr 5365  ax-un 7626
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3405  df-v 3443  df-sbc 3726  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-nul 4267  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4849  df-br 5086  df-opab 5148  df-id 5505  df-xp 5611  df-rel 5612  df-cnv 5613  df-co 5614  df-dm 5615  df-rn 5616  df-res 5617  df-ima 5618  df-iota 6415  df-fun 6465  df-fv 6471  df-ov 7316  df-oprab 7317  df-mpo 7318  df-supp 8023
This theorem is referenced by:  suppimacnvss  8034  suppimacnv  8035
  Copyright terms: Public domain W3C validator