Proof of Theorem suppvalbr
| Step | Hyp | Ref
| Expression |
| 1 | | df-rab 3437 |
. . . 4
⊢ {𝑥 ∈ dom 𝑅 ∣ (𝑅 “ {𝑥}) ≠ {𝑍}} = {𝑥 ∣ (𝑥 ∈ dom 𝑅 ∧ (𝑅 “ {𝑥}) ≠ {𝑍})} |
| 2 | | vex 3484 |
. . . . . . 7
⊢ 𝑥 ∈ V |
| 3 | 2 | eldm 5911 |
. . . . . 6
⊢ (𝑥 ∈ dom 𝑅 ↔ ∃𝑦 𝑥𝑅𝑦) |
| 4 | | imasng 6102 |
. . . . . . . . 9
⊢ (𝑥 ∈ V → (𝑅 “ {𝑥}) = {𝑦 ∣ 𝑥𝑅𝑦}) |
| 5 | 4 | elv 3485 |
. . . . . . . 8
⊢ (𝑅 “ {𝑥}) = {𝑦 ∣ 𝑥𝑅𝑦} |
| 6 | 5 | neeq1i 3005 |
. . . . . . 7
⊢ ((𝑅 “ {𝑥}) ≠ {𝑍} ↔ {𝑦 ∣ 𝑥𝑅𝑦} ≠ {𝑍}) |
| 7 | | df-sn 4627 |
. . . . . . . 8
⊢ {𝑍} = {𝑦 ∣ 𝑦 = 𝑍} |
| 8 | 7 | neeq2i 3006 |
. . . . . . 7
⊢ ({𝑦 ∣ 𝑥𝑅𝑦} ≠ {𝑍} ↔ {𝑦 ∣ 𝑥𝑅𝑦} ≠ {𝑦 ∣ 𝑦 = 𝑍}) |
| 9 | | nabbib 3045 |
. . . . . . 7
⊢ ({𝑦 ∣ 𝑥𝑅𝑦} ≠ {𝑦 ∣ 𝑦 = 𝑍} ↔ ∃𝑦(𝑥𝑅𝑦 ↔ ¬ 𝑦 = 𝑍)) |
| 10 | 6, 8, 9 | 3bitri 297 |
. . . . . 6
⊢ ((𝑅 “ {𝑥}) ≠ {𝑍} ↔ ∃𝑦(𝑥𝑅𝑦 ↔ ¬ 𝑦 = 𝑍)) |
| 11 | 3, 10 | anbi12i 628 |
. . . . 5
⊢ ((𝑥 ∈ dom 𝑅 ∧ (𝑅 “ {𝑥}) ≠ {𝑍}) ↔ (∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦 ↔ ¬ 𝑦 = 𝑍))) |
| 12 | 11 | abbii 2809 |
. . . 4
⊢ {𝑥 ∣ (𝑥 ∈ dom 𝑅 ∧ (𝑅 “ {𝑥}) ≠ {𝑍})} = {𝑥 ∣ (∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦 ↔ ¬ 𝑦 = 𝑍))} |
| 13 | 1, 12 | eqtr2i 2766 |
. . 3
⊢ {𝑥 ∣ (∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦 ↔ ¬ 𝑦 = 𝑍))} = {𝑥 ∈ dom 𝑅 ∣ (𝑅 “ {𝑥}) ≠ {𝑍}} |
| 14 | 13 | a1i 11 |
. 2
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → {𝑥 ∣ (∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦 ↔ ¬ 𝑦 = 𝑍))} = {𝑥 ∈ dom 𝑅 ∣ (𝑅 “ {𝑥}) ≠ {𝑍}}) |
| 15 | | df-ne 2941 |
. . . . . . 7
⊢ (𝑦 ≠ 𝑍 ↔ ¬ 𝑦 = 𝑍) |
| 16 | 15 | bibi2i 337 |
. . . . . 6
⊢ ((𝑥𝑅𝑦 ↔ 𝑦 ≠ 𝑍) ↔ (𝑥𝑅𝑦 ↔ ¬ 𝑦 = 𝑍)) |
| 17 | 16 | exbii 1848 |
. . . . 5
⊢
(∃𝑦(𝑥𝑅𝑦 ↔ 𝑦 ≠ 𝑍) ↔ ∃𝑦(𝑥𝑅𝑦 ↔ ¬ 𝑦 = 𝑍)) |
| 18 | 17 | anbi2i 623 |
. . . 4
⊢
((∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦 ↔ 𝑦 ≠ 𝑍)) ↔ (∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦 ↔ ¬ 𝑦 = 𝑍))) |
| 19 | 18 | abbii 2809 |
. . 3
⊢ {𝑥 ∣ (∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦 ↔ 𝑦 ≠ 𝑍))} = {𝑥 ∣ (∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦 ↔ ¬ 𝑦 = 𝑍))} |
| 20 | 19 | a1i 11 |
. 2
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → {𝑥 ∣ (∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦 ↔ 𝑦 ≠ 𝑍))} = {𝑥 ∣ (∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦 ↔ ¬ 𝑦 = 𝑍))}) |
| 21 | | suppval 8187 |
. 2
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑅 supp 𝑍) = {𝑥 ∈ dom 𝑅 ∣ (𝑅 “ {𝑥}) ≠ {𝑍}}) |
| 22 | 14, 20, 21 | 3eqtr4rd 2788 |
1
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑅 supp 𝑍) = {𝑥 ∣ (∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦 ↔ 𝑦 ≠ 𝑍))}) |