![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > suppvalbr | Structured version Visualization version GIF version |
Description: The value of the operation constructing the support of a function expressed by binary relations. (Contributed by AV, 7-Apr-2019.) |
Ref | Expression |
---|---|
suppvalbr | ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑅 supp 𝑍) = {𝑥 ∣ (∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦 ↔ 𝑦 ≠ 𝑍))}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rab 3433 | . . . 4 ⊢ {𝑥 ∈ dom 𝑅 ∣ (𝑅 “ {𝑥}) ≠ {𝑍}} = {𝑥 ∣ (𝑥 ∈ dom 𝑅 ∧ (𝑅 “ {𝑥}) ≠ {𝑍})} | |
2 | vex 3478 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
3 | 2 | eldm 5900 | . . . . . 6 ⊢ (𝑥 ∈ dom 𝑅 ↔ ∃𝑦 𝑥𝑅𝑦) |
4 | imasng 6082 | . . . . . . . . 9 ⊢ (𝑥 ∈ V → (𝑅 “ {𝑥}) = {𝑦 ∣ 𝑥𝑅𝑦}) | |
5 | 4 | elv 3480 | . . . . . . . 8 ⊢ (𝑅 “ {𝑥}) = {𝑦 ∣ 𝑥𝑅𝑦} |
6 | 5 | neeq1i 3005 | . . . . . . 7 ⊢ ((𝑅 “ {𝑥}) ≠ {𝑍} ↔ {𝑦 ∣ 𝑥𝑅𝑦} ≠ {𝑍}) |
7 | df-sn 4629 | . . . . . . . 8 ⊢ {𝑍} = {𝑦 ∣ 𝑦 = 𝑍} | |
8 | 7 | neeq2i 3006 | . . . . . . 7 ⊢ ({𝑦 ∣ 𝑥𝑅𝑦} ≠ {𝑍} ↔ {𝑦 ∣ 𝑥𝑅𝑦} ≠ {𝑦 ∣ 𝑦 = 𝑍}) |
9 | nabbib 3045 | . . . . . . 7 ⊢ ({𝑦 ∣ 𝑥𝑅𝑦} ≠ {𝑦 ∣ 𝑦 = 𝑍} ↔ ∃𝑦(𝑥𝑅𝑦 ↔ ¬ 𝑦 = 𝑍)) | |
10 | 6, 8, 9 | 3bitri 296 | . . . . . 6 ⊢ ((𝑅 “ {𝑥}) ≠ {𝑍} ↔ ∃𝑦(𝑥𝑅𝑦 ↔ ¬ 𝑦 = 𝑍)) |
11 | 3, 10 | anbi12i 627 | . . . . 5 ⊢ ((𝑥 ∈ dom 𝑅 ∧ (𝑅 “ {𝑥}) ≠ {𝑍}) ↔ (∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦 ↔ ¬ 𝑦 = 𝑍))) |
12 | 11 | abbii 2802 | . . . 4 ⊢ {𝑥 ∣ (𝑥 ∈ dom 𝑅 ∧ (𝑅 “ {𝑥}) ≠ {𝑍})} = {𝑥 ∣ (∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦 ↔ ¬ 𝑦 = 𝑍))} |
13 | 1, 12 | eqtr2i 2761 | . . 3 ⊢ {𝑥 ∣ (∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦 ↔ ¬ 𝑦 = 𝑍))} = {𝑥 ∈ dom 𝑅 ∣ (𝑅 “ {𝑥}) ≠ {𝑍}} |
14 | 13 | a1i 11 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → {𝑥 ∣ (∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦 ↔ ¬ 𝑦 = 𝑍))} = {𝑥 ∈ dom 𝑅 ∣ (𝑅 “ {𝑥}) ≠ {𝑍}}) |
15 | df-ne 2941 | . . . . . . 7 ⊢ (𝑦 ≠ 𝑍 ↔ ¬ 𝑦 = 𝑍) | |
16 | 15 | bibi2i 337 | . . . . . 6 ⊢ ((𝑥𝑅𝑦 ↔ 𝑦 ≠ 𝑍) ↔ (𝑥𝑅𝑦 ↔ ¬ 𝑦 = 𝑍)) |
17 | 16 | exbii 1850 | . . . . 5 ⊢ (∃𝑦(𝑥𝑅𝑦 ↔ 𝑦 ≠ 𝑍) ↔ ∃𝑦(𝑥𝑅𝑦 ↔ ¬ 𝑦 = 𝑍)) |
18 | 17 | anbi2i 623 | . . . 4 ⊢ ((∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦 ↔ 𝑦 ≠ 𝑍)) ↔ (∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦 ↔ ¬ 𝑦 = 𝑍))) |
19 | 18 | abbii 2802 | . . 3 ⊢ {𝑥 ∣ (∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦 ↔ 𝑦 ≠ 𝑍))} = {𝑥 ∣ (∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦 ↔ ¬ 𝑦 = 𝑍))} |
20 | 19 | a1i 11 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → {𝑥 ∣ (∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦 ↔ 𝑦 ≠ 𝑍))} = {𝑥 ∣ (∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦 ↔ ¬ 𝑦 = 𝑍))}) |
21 | suppval 8147 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑅 supp 𝑍) = {𝑥 ∈ dom 𝑅 ∣ (𝑅 “ {𝑥}) ≠ {𝑍}}) | |
22 | 14, 20, 21 | 3eqtr4rd 2783 | 1 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑅 supp 𝑍) = {𝑥 ∣ (∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦 ↔ 𝑦 ≠ 𝑍))}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∃wex 1781 ∈ wcel 2106 {cab 2709 ≠ wne 2940 {crab 3432 Vcvv 3474 {csn 4628 class class class wbr 5148 dom cdm 5676 “ cima 5679 (class class class)co 7408 supp csupp 8145 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fv 6551 df-ov 7411 df-oprab 7412 df-mpo 7413 df-supp 8146 |
This theorem is referenced by: suppimacnvss 8157 suppimacnv 8158 |
Copyright terms: Public domain | W3C validator |