MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suppvalbr Structured version   Visualization version   GIF version

Theorem suppvalbr 8097
Description: The value of the operation constructing the support of a function expressed by binary relations. (Contributed by AV, 7-Apr-2019.)
Assertion
Ref Expression
suppvalbr ((𝑅𝑉𝑍𝑊) → (𝑅 supp 𝑍) = {𝑥 ∣ (∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦𝑦𝑍))})
Distinct variable groups:   𝑥,𝑅,𝑦   𝑥,𝑍,𝑦
Allowed substitution hints:   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem suppvalbr
StepHypRef Expression
1 df-rab 3395 . . . 4 {𝑥 ∈ dom 𝑅 ∣ (𝑅 “ {𝑥}) ≠ {𝑍}} = {𝑥 ∣ (𝑥 ∈ dom 𝑅 ∧ (𝑅 “ {𝑥}) ≠ {𝑍})}
2 vex 3440 . . . . . . 7 𝑥 ∈ V
32eldm 5843 . . . . . 6 (𝑥 ∈ dom 𝑅 ↔ ∃𝑦 𝑥𝑅𝑦)
4 imasng 6035 . . . . . . . . 9 (𝑥 ∈ V → (𝑅 “ {𝑥}) = {𝑦𝑥𝑅𝑦})
54elv 3441 . . . . . . . 8 (𝑅 “ {𝑥}) = {𝑦𝑥𝑅𝑦}
65neeq1i 2989 . . . . . . 7 ((𝑅 “ {𝑥}) ≠ {𝑍} ↔ {𝑦𝑥𝑅𝑦} ≠ {𝑍})
7 df-sn 4578 . . . . . . . 8 {𝑍} = {𝑦𝑦 = 𝑍}
87neeq2i 2990 . . . . . . 7 ({𝑦𝑥𝑅𝑦} ≠ {𝑍} ↔ {𝑦𝑥𝑅𝑦} ≠ {𝑦𝑦 = 𝑍})
9 nabbib 3028 . . . . . . 7 ({𝑦𝑥𝑅𝑦} ≠ {𝑦𝑦 = 𝑍} ↔ ∃𝑦(𝑥𝑅𝑦 ↔ ¬ 𝑦 = 𝑍))
106, 8, 93bitri 297 . . . . . 6 ((𝑅 “ {𝑥}) ≠ {𝑍} ↔ ∃𝑦(𝑥𝑅𝑦 ↔ ¬ 𝑦 = 𝑍))
113, 10anbi12i 628 . . . . 5 ((𝑥 ∈ dom 𝑅 ∧ (𝑅 “ {𝑥}) ≠ {𝑍}) ↔ (∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦 ↔ ¬ 𝑦 = 𝑍)))
1211abbii 2796 . . . 4 {𝑥 ∣ (𝑥 ∈ dom 𝑅 ∧ (𝑅 “ {𝑥}) ≠ {𝑍})} = {𝑥 ∣ (∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦 ↔ ¬ 𝑦 = 𝑍))}
131, 12eqtr2i 2753 . . 3 {𝑥 ∣ (∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦 ↔ ¬ 𝑦 = 𝑍))} = {𝑥 ∈ dom 𝑅 ∣ (𝑅 “ {𝑥}) ≠ {𝑍}}
1413a1i 11 . 2 ((𝑅𝑉𝑍𝑊) → {𝑥 ∣ (∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦 ↔ ¬ 𝑦 = 𝑍))} = {𝑥 ∈ dom 𝑅 ∣ (𝑅 “ {𝑥}) ≠ {𝑍}})
15 df-ne 2926 . . . . . . 7 (𝑦𝑍 ↔ ¬ 𝑦 = 𝑍)
1615bibi2i 337 . . . . . 6 ((𝑥𝑅𝑦𝑦𝑍) ↔ (𝑥𝑅𝑦 ↔ ¬ 𝑦 = 𝑍))
1716exbii 1848 . . . . 5 (∃𝑦(𝑥𝑅𝑦𝑦𝑍) ↔ ∃𝑦(𝑥𝑅𝑦 ↔ ¬ 𝑦 = 𝑍))
1817anbi2i 623 . . . 4 ((∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦𝑦𝑍)) ↔ (∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦 ↔ ¬ 𝑦 = 𝑍)))
1918abbii 2796 . . 3 {𝑥 ∣ (∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦𝑦𝑍))} = {𝑥 ∣ (∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦 ↔ ¬ 𝑦 = 𝑍))}
2019a1i 11 . 2 ((𝑅𝑉𝑍𝑊) → {𝑥 ∣ (∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦𝑦𝑍))} = {𝑥 ∣ (∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦 ↔ ¬ 𝑦 = 𝑍))})
21 suppval 8095 . 2 ((𝑅𝑉𝑍𝑊) → (𝑅 supp 𝑍) = {𝑥 ∈ dom 𝑅 ∣ (𝑅 “ {𝑥}) ≠ {𝑍}})
2214, 20, 213eqtr4rd 2775 1 ((𝑅𝑉𝑍𝑊) → (𝑅 supp 𝑍) = {𝑥 ∣ (∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦𝑦𝑍))})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  {cab 2707  wne 2925  {crab 3394  Vcvv 3436  {csn 4577   class class class wbr 5092  dom cdm 5619  cima 5622  (class class class)co 7349   supp csupp 8093
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-supp 8094
This theorem is referenced by:  suppimacnvss  8106  suppimacnv  8107
  Copyright terms: Public domain W3C validator