MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unisn2 Structured version   Visualization version   GIF version

Theorem unisn2 5270
Description: A version of unisn 4893 without the 𝐴 ∈ V hypothesis. (Contributed by Stefan Allan, 14-Mar-2006.)
Assertion
Ref Expression
unisn2 {𝐴} ∈ {∅, 𝐴}

Proof of Theorem unisn2
StepHypRef Expression
1 unisng 4892 . . 3 (𝐴 ∈ V → {𝐴} = 𝐴)
2 prid2g 4728 . . 3 (𝐴 ∈ V → 𝐴 ∈ {∅, 𝐴})
31, 2eqeltrd 2829 . 2 (𝐴 ∈ V → {𝐴} ∈ {∅, 𝐴})
4 snprc 4684 . . . . 5 𝐴 ∈ V ↔ {𝐴} = ∅)
54biimpi 216 . . . 4 𝐴 ∈ V → {𝐴} = ∅)
65unieqd 4887 . . 3 𝐴 ∈ V → {𝐴} = ∅)
7 uni0 4902 . . . 4 ∅ = ∅
8 0ex 5265 . . . . 5 ∅ ∈ V
98prid1 4729 . . . 4 ∅ ∈ {∅, 𝐴}
107, 9eqeltri 2825 . . 3 ∅ ∈ {∅, 𝐴}
116, 10eqeltrdi 2837 . 2 𝐴 ∈ V → {𝐴} ∈ {∅, 𝐴})
123, 11pm2.61i 182 1 {𝐴} ∈ {∅, 𝐴}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wcel 2109  Vcvv 3450  c0 4299  {csn 4592  {cpr 4594   cuni 4874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-11 2158  ax-ext 2702  ax-nul 5264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-sn 4593  df-pr 4595  df-uni 4875
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator