MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unisn2 Structured version   Visualization version   GIF version

Theorem unisn2 5330
Description: A version of unisn 4950 without the 𝐴 ∈ V hypothesis. (Contributed by Stefan Allan, 14-Mar-2006.)
Assertion
Ref Expression
unisn2 {𝐴} ∈ {∅, 𝐴}

Proof of Theorem unisn2
StepHypRef Expression
1 unisng 4949 . . 3 (𝐴 ∈ V → {𝐴} = 𝐴)
2 prid2g 4786 . . 3 (𝐴 ∈ V → 𝐴 ∈ {∅, 𝐴})
31, 2eqeltrd 2844 . 2 (𝐴 ∈ V → {𝐴} ∈ {∅, 𝐴})
4 snprc 4742 . . . . 5 𝐴 ∈ V ↔ {𝐴} = ∅)
54biimpi 216 . . . 4 𝐴 ∈ V → {𝐴} = ∅)
65unieqd 4944 . . 3 𝐴 ∈ V → {𝐴} = ∅)
7 uni0 4959 . . . 4 ∅ = ∅
8 0ex 5325 . . . . 5 ∅ ∈ V
98prid1 4787 . . . 4 ∅ ∈ {∅, 𝐴}
107, 9eqeltri 2840 . . 3 ∅ ∈ {∅, 𝐴}
116, 10eqeltrdi 2852 . 2 𝐴 ∈ V → {𝐴} ∈ {∅, 𝐴})
123, 11pm2.61i 182 1 {𝐴} ∈ {∅, 𝐴}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1537  wcel 2108  Vcvv 3488  c0 4352  {csn 4648  {cpr 4650   cuni 4931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-11 2158  ax-ext 2711  ax-nul 5324
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-sn 4649  df-pr 4651  df-uni 4932
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator