MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unisn2 Structured version   Visualization version   GIF version

Theorem unisn2 5177
Description: A version of unisn 4815 without the 𝐴 ∈ V hypothesis. (Contributed by Stefan Allan, 14-Mar-2006.)
Assertion
Ref Expression
unisn2 {𝐴} ∈ {∅, 𝐴}

Proof of Theorem unisn2
StepHypRef Expression
1 unisng 4814 . . 3 (𝐴 ∈ V → {𝐴} = 𝐴)
2 prid2g 4649 . . 3 (𝐴 ∈ V → 𝐴 ∈ {∅, 𝐴})
31, 2eqeltrd 2833 . 2 (𝐴 ∈ V → {𝐴} ∈ {∅, 𝐴})
4 snprc 4605 . . . . 5 𝐴 ∈ V ↔ {𝐴} = ∅)
54biimpi 219 . . . 4 𝐴 ∈ V → {𝐴} = ∅)
65unieqd 4807 . . 3 𝐴 ∈ V → {𝐴} = ∅)
7 uni0 4823 . . . 4 ∅ = ∅
8 0ex 5172 . . . . 5 ∅ ∈ V
98prid1 4650 . . . 4 ∅ ∈ {∅, 𝐴}
107, 9eqeltri 2829 . . 3 ∅ ∈ {∅, 𝐴}
116, 10eqeltrdi 2841 . 2 𝐴 ∈ V → {𝐴} ∈ {∅, 𝐴})
123, 11pm2.61i 185 1 {𝐴} ∈ {∅, 𝐴}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1542  wcel 2113  Vcvv 3397  c0 4209  {csn 4513  {cpr 4515   cuni 4793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-11 2161  ax-ext 2710  ax-nul 5171
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-tru 1545  df-fal 1555  df-ex 1787  df-sb 2074  df-clab 2717  df-cleq 2730  df-clel 2811  df-ral 3058  df-rex 3059  df-v 3399  df-dif 3844  df-un 3846  df-in 3848  df-ss 3858  df-nul 4210  df-sn 4514  df-pr 4516  df-uni 4794
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator