MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unisn2 Structured version   Visualization version   GIF version

Theorem unisn2 5312
Description: A version of unisn 4930 without the 𝐴 ∈ V hypothesis. (Contributed by Stefan Allan, 14-Mar-2006.)
Assertion
Ref Expression
unisn2 {𝐴} ∈ {∅, 𝐴}

Proof of Theorem unisn2
StepHypRef Expression
1 unisng 4929 . . 3 (𝐴 ∈ V → {𝐴} = 𝐴)
2 prid2g 4765 . . 3 (𝐴 ∈ V → 𝐴 ∈ {∅, 𝐴})
31, 2eqeltrd 2833 . 2 (𝐴 ∈ V → {𝐴} ∈ {∅, 𝐴})
4 snprc 4721 . . . . 5 𝐴 ∈ V ↔ {𝐴} = ∅)
54biimpi 215 . . . 4 𝐴 ∈ V → {𝐴} = ∅)
65unieqd 4922 . . 3 𝐴 ∈ V → {𝐴} = ∅)
7 uni0 4939 . . . 4 ∅ = ∅
8 0ex 5307 . . . . 5 ∅ ∈ V
98prid1 4766 . . . 4 ∅ ∈ {∅, 𝐴}
107, 9eqeltri 2829 . . 3 ∅ ∈ {∅, 𝐴}
116, 10eqeltrdi 2841 . 2 𝐴 ∈ V → {𝐴} ∈ {∅, 𝐴})
123, 11pm2.61i 182 1 {𝐴} ∈ {∅, 𝐴}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1541  wcel 2106  Vcvv 3474  c0 4322  {csn 4628  {cpr 4630   cuni 4908
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-11 2154  ax-ext 2703  ax-nul 5306
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rex 3071  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-sn 4629  df-pr 4631  df-uni 4909
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator