MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unisn2 Structured version   Visualization version   GIF version

Theorem unisn2 5252
Description: A version of unisn 4877 without the 𝐴 ∈ V hypothesis. (Contributed by Stefan Allan, 14-Mar-2006.)
Assertion
Ref Expression
unisn2 {𝐴} ∈ {∅, 𝐴}

Proof of Theorem unisn2
StepHypRef Expression
1 unisng 4876 . . 3 (𝐴 ∈ V → {𝐴} = 𝐴)
2 prid2g 4713 . . 3 (𝐴 ∈ V → 𝐴 ∈ {∅, 𝐴})
31, 2eqeltrd 2833 . 2 (𝐴 ∈ V → {𝐴} ∈ {∅, 𝐴})
4 snprc 4669 . . . . 5 𝐴 ∈ V ↔ {𝐴} = ∅)
54biimpi 216 . . . 4 𝐴 ∈ V → {𝐴} = ∅)
65unieqd 4871 . . 3 𝐴 ∈ V → {𝐴} = ∅)
7 uni0 4886 . . . 4 ∅ = ∅
8 0ex 5247 . . . . 5 ∅ ∈ V
98prid1 4714 . . . 4 ∅ ∈ {∅, 𝐴}
107, 9eqeltri 2829 . . 3 ∅ ∈ {∅, 𝐴}
116, 10eqeltrdi 2841 . 2 𝐴 ∈ V → {𝐴} ∈ {∅, 𝐴})
123, 11pm2.61i 182 1 {𝐴} ∈ {∅, 𝐴}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1541  wcel 2113  Vcvv 3437  c0 4282  {csn 4575  {cpr 4577   cuni 4858
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-nul 5246
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-sn 4576  df-pr 4578  df-uni 4859
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator