MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unisn2 Structured version   Visualization version   GIF version

Theorem unisn2 5250
Description: A version of unisn 4878 without the 𝐴 ∈ V hypothesis. (Contributed by Stefan Allan, 14-Mar-2006.)
Assertion
Ref Expression
unisn2 {𝐴} ∈ {∅, 𝐴}

Proof of Theorem unisn2
StepHypRef Expression
1 unisng 4877 . . 3 (𝐴 ∈ V → {𝐴} = 𝐴)
2 prid2g 4714 . . 3 (𝐴 ∈ V → 𝐴 ∈ {∅, 𝐴})
31, 2eqeltrd 2831 . 2 (𝐴 ∈ V → {𝐴} ∈ {∅, 𝐴})
4 snprc 4670 . . . . 5 𝐴 ∈ V ↔ {𝐴} = ∅)
54biimpi 216 . . . 4 𝐴 ∈ V → {𝐴} = ∅)
65unieqd 4872 . . 3 𝐴 ∈ V → {𝐴} = ∅)
7 uni0 4887 . . . 4 ∅ = ∅
8 0ex 5245 . . . . 5 ∅ ∈ V
98prid1 4715 . . . 4 ∅ ∈ {∅, 𝐴}
107, 9eqeltri 2827 . . 3 ∅ ∈ {∅, 𝐴}
116, 10eqeltrdi 2839 . 2 𝐴 ∈ V → {𝐴} ∈ {∅, 𝐴})
123, 11pm2.61i 182 1 {𝐴} ∈ {∅, 𝐴}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1541  wcel 2111  Vcvv 3436  c0 4283  {csn 4576  {cpr 4578   cuni 4859
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-11 2160  ax-ext 2703  ax-nul 5244
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-sn 4577  df-pr 4579  df-uni 4860
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator