Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > unisn2 | Structured version Visualization version GIF version |
Description: A version of unisn 4815 without the 𝐴 ∈ V hypothesis. (Contributed by Stefan Allan, 14-Mar-2006.) |
Ref | Expression |
---|---|
unisn2 | ⊢ ∪ {𝐴} ∈ {∅, 𝐴} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unisng 4814 | . . 3 ⊢ (𝐴 ∈ V → ∪ {𝐴} = 𝐴) | |
2 | prid2g 4649 | . . 3 ⊢ (𝐴 ∈ V → 𝐴 ∈ {∅, 𝐴}) | |
3 | 1, 2 | eqeltrd 2833 | . 2 ⊢ (𝐴 ∈ V → ∪ {𝐴} ∈ {∅, 𝐴}) |
4 | snprc 4605 | . . . . 5 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
5 | 4 | biimpi 219 | . . . 4 ⊢ (¬ 𝐴 ∈ V → {𝐴} = ∅) |
6 | 5 | unieqd 4807 | . . 3 ⊢ (¬ 𝐴 ∈ V → ∪ {𝐴} = ∪ ∅) |
7 | uni0 4823 | . . . 4 ⊢ ∪ ∅ = ∅ | |
8 | 0ex 5172 | . . . . 5 ⊢ ∅ ∈ V | |
9 | 8 | prid1 4650 | . . . 4 ⊢ ∅ ∈ {∅, 𝐴} |
10 | 7, 9 | eqeltri 2829 | . . 3 ⊢ ∪ ∅ ∈ {∅, 𝐴} |
11 | 6, 10 | eqeltrdi 2841 | . 2 ⊢ (¬ 𝐴 ∈ V → ∪ {𝐴} ∈ {∅, 𝐴}) |
12 | 3, 11 | pm2.61i 185 | 1 ⊢ ∪ {𝐴} ∈ {∅, 𝐴} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1542 ∈ wcel 2113 Vcvv 3397 ∅c0 4209 {csn 4513 {cpr 4515 ∪ cuni 4793 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-11 2161 ax-ext 2710 ax-nul 5171 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-tru 1545 df-fal 1555 df-ex 1787 df-sb 2074 df-clab 2717 df-cleq 2730 df-clel 2811 df-ral 3058 df-rex 3059 df-v 3399 df-dif 3844 df-un 3846 df-in 3848 df-ss 3858 df-nul 4210 df-sn 4514 df-pr 4516 df-uni 4794 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |