MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unisn2 Structured version   Visualization version   GIF version

Theorem unisn2 5231
Description: A version of unisn 4858 without the 𝐴 ∈ V hypothesis. (Contributed by Stefan Allan, 14-Mar-2006.)
Assertion
Ref Expression
unisn2 {𝐴} ∈ {∅, 𝐴}

Proof of Theorem unisn2
StepHypRef Expression
1 unisng 4857 . . 3 (𝐴 ∈ V → {𝐴} = 𝐴)
2 prid2g 4694 . . 3 (𝐴 ∈ V → 𝐴 ∈ {∅, 𝐴})
31, 2eqeltrd 2839 . 2 (𝐴 ∈ V → {𝐴} ∈ {∅, 𝐴})
4 snprc 4650 . . . . 5 𝐴 ∈ V ↔ {𝐴} = ∅)
54biimpi 215 . . . 4 𝐴 ∈ V → {𝐴} = ∅)
65unieqd 4850 . . 3 𝐴 ∈ V → {𝐴} = ∅)
7 uni0 4866 . . . 4 ∅ = ∅
8 0ex 5226 . . . . 5 ∅ ∈ V
98prid1 4695 . . . 4 ∅ ∈ {∅, 𝐴}
107, 9eqeltri 2835 . . 3 ∅ ∈ {∅, 𝐴}
116, 10eqeltrdi 2847 . 2 𝐴 ∈ V → {𝐴} ∈ {∅, 𝐴})
123, 11pm2.61i 182 1 {𝐴} ∈ {∅, 𝐴}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1539  wcel 2108  Vcvv 3422  c0 4253  {csn 4558  {cpr 4560   cuni 4836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-11 2156  ax-ext 2709  ax-nul 5225
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-sn 4559  df-pr 4561  df-uni 4837
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator