Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > iota0ndef | Structured version Visualization version GIF version |
Description: Example for an undefined iota being the empty set, i.e., ∀𝑦𝑦 ∈ 𝑥 is a wff not satisfied by a (unique) value 𝑥 (there is no set, and therefore certainly no unique set, which contains every set). (Contributed by AV, 24-Aug-2022.) |
Ref | Expression |
---|---|
iota0ndef | ⊢ (℩𝑥∀𝑦 𝑦 ∈ 𝑥) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nalset 5240 | . . . 4 ⊢ ¬ ∃𝑥∀𝑦 𝑦 ∈ 𝑥 | |
2 | 1 | intnanr 487 | . . 3 ⊢ ¬ (∃𝑥∀𝑦 𝑦 ∈ 𝑥 ∧ ∃*𝑥∀𝑦 𝑦 ∈ 𝑥) |
3 | df-eu 2564 | . . 3 ⊢ (∃!𝑥∀𝑦 𝑦 ∈ 𝑥 ↔ (∃𝑥∀𝑦 𝑦 ∈ 𝑥 ∧ ∃*𝑥∀𝑦 𝑦 ∈ 𝑥)) | |
4 | 2, 3 | mtbir 322 | . 2 ⊢ ¬ ∃!𝑥∀𝑦 𝑦 ∈ 𝑥 |
5 | iotanul 6425 | . 2 ⊢ (¬ ∃!𝑥∀𝑦 𝑦 ∈ 𝑥 → (℩𝑥∀𝑦 𝑦 ∈ 𝑥) = ∅) | |
6 | 4, 5 | ax-mp 5 | 1 ⊢ (℩𝑥∀𝑦 𝑦 ∈ 𝑥) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 395 ∀wal 1535 = wceq 1537 ∃wex 1777 ∃*wmo 2533 ∃!weu 2563 ∅c0 4259 ℩cio 6397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-10 2132 ax-11 2149 ax-12 2166 ax-ext 2704 ax-sep 5226 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2063 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3060 df-rex 3069 df-v 3436 df-dif 3892 df-in 3896 df-ss 3906 df-nul 4260 df-sn 4565 df-uni 4842 df-iota 6399 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |