![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > iota0ndef | Structured version Visualization version GIF version |
Description: Example for an undefined iota being the empty set, i.e., ∀𝑦𝑦 ∈ 𝑥 is a wff not satisfied by a (unique) value 𝑥 (there is no set, and therefore certainly no unique set, which contains every set). (Contributed by AV, 24-Aug-2022.) |
Ref | Expression |
---|---|
iota0ndef | ⊢ (℩𝑥∀𝑦 𝑦 ∈ 𝑥) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nalset 5111 | . . . 4 ⊢ ¬ ∃𝑥∀𝑦 𝑦 ∈ 𝑥 | |
2 | 1 | intnanr 488 | . . 3 ⊢ ¬ (∃𝑥∀𝑦 𝑦 ∈ 𝑥 ∧ ∃*𝑥∀𝑦 𝑦 ∈ 𝑥) |
3 | df-eu 2611 | . . 3 ⊢ (∃!𝑥∀𝑦 𝑦 ∈ 𝑥 ↔ (∃𝑥∀𝑦 𝑦 ∈ 𝑥 ∧ ∃*𝑥∀𝑦 𝑦 ∈ 𝑥)) | |
4 | 2, 3 | mtbir 324 | . 2 ⊢ ¬ ∃!𝑥∀𝑦 𝑦 ∈ 𝑥 |
5 | iotanul 6207 | . 2 ⊢ (¬ ∃!𝑥∀𝑦 𝑦 ∈ 𝑥 → (℩𝑥∀𝑦 𝑦 ∈ 𝑥) = ∅) | |
6 | 4, 5 | ax-mp 5 | 1 ⊢ (℩𝑥∀𝑦 𝑦 ∈ 𝑥) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 396 ∀wal 1520 = wceq 1522 ∃wex 1762 ∃*wmo 2573 ∃!weu 2610 ∅c0 4213 ℩cio 6190 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1778 ax-4 1792 ax-5 1889 ax-6 1948 ax-7 1993 ax-8 2082 ax-9 2090 ax-10 2111 ax-11 2125 ax-12 2140 ax-ext 2768 ax-sep 5097 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-tru 1525 df-ex 1763 df-nf 1767 df-sb 2042 df-mo 2575 df-eu 2611 df-clab 2775 df-cleq 2787 df-clel 2862 df-nfc 2934 df-ral 3109 df-rex 3110 df-v 3438 df-dif 3864 df-in 3868 df-ss 3876 df-nul 4214 df-sn 4475 df-uni 4748 df-iota 6192 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |