Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iota0ndef Structured version   Visualization version   GIF version

Theorem iota0ndef 42804
Description: Example for an undefined iota being the empty set, i.e., 𝑦𝑦𝑥 is a wff not satisfied by a (unique) value 𝑥 (there is no set, and therefore certainly no unique set, which contains every set). (Contributed by AV, 24-Aug-2022.)
Assertion
Ref Expression
iota0ndef (℩𝑥𝑦 𝑦𝑥) = ∅
Distinct variable group:   𝑥,𝑦

Proof of Theorem iota0ndef
StepHypRef Expression
1 nalset 5111 . . . 4 ¬ ∃𝑥𝑦 𝑦𝑥
21intnanr 488 . . 3 ¬ (∃𝑥𝑦 𝑦𝑥 ∧ ∃*𝑥𝑦 𝑦𝑥)
3 df-eu 2611 . . 3 (∃!𝑥𝑦 𝑦𝑥 ↔ (∃𝑥𝑦 𝑦𝑥 ∧ ∃*𝑥𝑦 𝑦𝑥))
42, 3mtbir 324 . 2 ¬ ∃!𝑥𝑦 𝑦𝑥
5 iotanul 6207 . 2 (¬ ∃!𝑥𝑦 𝑦𝑥 → (℩𝑥𝑦 𝑦𝑥) = ∅)
64, 5ax-mp 5 1 (℩𝑥𝑦 𝑦𝑥) = ∅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 396  wal 1520   = wceq 1522  wex 1762  ∃*wmo 2573  ∃!weu 2610  c0 4213  cio 6190
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1778  ax-4 1792  ax-5 1889  ax-6 1948  ax-7 1993  ax-8 2082  ax-9 2090  ax-10 2111  ax-11 2125  ax-12 2140  ax-ext 2768  ax-sep 5097
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-tru 1525  df-ex 1763  df-nf 1767  df-sb 2042  df-mo 2575  df-eu 2611  df-clab 2775  df-cleq 2787  df-clel 2862  df-nfc 2934  df-ral 3109  df-rex 3110  df-v 3438  df-dif 3864  df-in 3868  df-ss 3876  df-nul 4214  df-sn 4475  df-uni 4748  df-iota 6192
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator