MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nd4 Structured version   Visualization version   GIF version

Theorem nd4 10607
Description: A lemma for proving conditionless ZFC axioms. Usage of this theorem is discouraged because it depends on ax-13 2366. (Contributed by NM, 2-Jan-2002.) (New usage is discouraged.)
Assertion
Ref Expression
nd4 (∀𝑥 𝑥 = 𝑦 → ¬ ∀𝑧 𝑦𝑥)

Proof of Theorem nd4
StepHypRef Expression
1 nd3 10606 . 2 (∀𝑦 𝑦 = 𝑥 → ¬ ∀𝑧 𝑦𝑥)
21aecoms 2422 1 (∀𝑥 𝑥 = 𝑦 → ¬ ∀𝑧 𝑦𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-12 2164  ax-13 2366  ax-ext 2698  ax-sep 5293  ax-pr 5423  ax-reg 9609
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-tru 1537  df-ex 1775  df-nf 1779  df-sb 2061  df-clab 2705  df-cleq 2719  df-clel 2805  df-ral 3057  df-rex 3066  df-v 3471  df-un 3949  df-sn 4625  df-pr 4627
This theorem is referenced by:  axrepnd  10611
  Copyright terms: Public domain W3C validator