![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nd4 | Structured version Visualization version GIF version |
Description: A lemma for proving conditionless ZFC axioms. Usage of this theorem is discouraged because it depends on ax-13 2380. (Contributed by NM, 2-Jan-2002.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nd4 | ⊢ (∀𝑥 𝑥 = 𝑦 → ¬ ∀𝑧 𝑦 ∈ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nd3 10660 | . 2 ⊢ (∀𝑦 𝑦 = 𝑥 → ¬ ∀𝑧 𝑦 ∈ 𝑥) | |
2 | 1 | aecoms 2436 | 1 ⊢ (∀𝑥 𝑥 = 𝑦 → ¬ ∀𝑧 𝑦 ∈ 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1535 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2178 ax-13 2380 ax-ext 2711 ax-sep 5317 ax-pr 5447 ax-reg 9663 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-v 3490 df-un 3981 df-sn 4649 df-pr 4651 |
This theorem is referenced by: axrepnd 10665 |
Copyright terms: Public domain | W3C validator |