Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nd4 | Structured version Visualization version GIF version |
Description: A lemma for proving conditionless ZFC axioms. Usage of this theorem is discouraged because it depends on ax-13 2373. (Contributed by NM, 2-Jan-2002.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nd4 | ⊢ (∀𝑥 𝑥 = 𝑦 → ¬ ∀𝑧 𝑦 ∈ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nd3 10329 | . 2 ⊢ (∀𝑦 𝑦 = 𝑥 → ¬ ∀𝑧 𝑦 ∈ 𝑥) | |
2 | 1 | aecoms 2429 | 1 ⊢ (∀𝑥 𝑥 = 𝑦 → ¬ ∀𝑧 𝑦 ∈ 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1539 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-12 2174 ax-13 2373 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 ax-reg 9312 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-ral 3070 df-rex 3071 df-v 3432 df-dif 3894 df-un 3896 df-nul 4262 df-sn 4567 df-pr 4569 |
This theorem is referenced by: axrepnd 10334 |
Copyright terms: Public domain | W3C validator |