MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nd4 Structured version   Visualization version   GIF version

Theorem nd4 10581
Description: A lemma for proving conditionless ZFC axioms. Usage of this theorem is discouraged because it depends on ax-13 2363. (Contributed by NM, 2-Jan-2002.) (New usage is discouraged.)
Assertion
Ref Expression
nd4 (∀𝑥 𝑥 = 𝑦 → ¬ ∀𝑧 𝑦𝑥)

Proof of Theorem nd4
StepHypRef Expression
1 nd3 10580 . 2 (∀𝑦 𝑦 = 𝑥 → ¬ ∀𝑧 𝑦𝑥)
21aecoms 2419 1 (∀𝑥 𝑥 = 𝑦 → ¬ ∀𝑧 𝑦𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-12 2163  ax-13 2363  ax-ext 2695  ax-sep 5289  ax-pr 5417  ax-reg 9583
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-tru 1536  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-ral 3054  df-rex 3063  df-v 3468  df-un 3945  df-sn 4621  df-pr 4623
This theorem is referenced by:  axrepnd  10585
  Copyright terms: Public domain W3C validator