MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nd4 Structured version   Visualization version   GIF version

Theorem nd4 10612
Description: A lemma for proving conditionless ZFC axioms. Usage of this theorem is discouraged because it depends on ax-13 2375. (Contributed by NM, 2-Jan-2002.) (New usage is discouraged.)
Assertion
Ref Expression
nd4 (∀𝑥 𝑥 = 𝑦 → ¬ ∀𝑧 𝑦𝑥)

Proof of Theorem nd4
StepHypRef Expression
1 nd3 10611 . 2 (∀𝑦 𝑦 = 𝑥 → ¬ ∀𝑧 𝑦𝑥)
21aecoms 2431 1 (∀𝑥 𝑥 = 𝑦 → ¬ ∀𝑧 𝑦𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-12 2176  ax-13 2375  ax-ext 2706  ax-sep 5276  ax-pr 5412  ax-reg 9614
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1542  df-ex 1779  df-nf 1783  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ral 3051  df-rex 3060  df-v 3465  df-un 3936  df-sn 4607  df-pr 4609
This theorem is referenced by:  axrepnd  10616
  Copyright terms: Public domain W3C validator