| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nd3 | Structured version Visualization version GIF version | ||
| Description: A lemma for proving conditionless ZFC axioms. (Contributed by NM, 2-Jan-2002.) |
| Ref | Expression |
|---|---|
| nd3 | ⊢ (∀𝑥 𝑥 = 𝑦 → ¬ ∀𝑧 𝑥 ∈ 𝑦) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elirrv 9615 | . . . 4 ⊢ ¬ 𝑥 ∈ 𝑥 | |
| 2 | elequ2 2124 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑥 ↔ 𝑥 ∈ 𝑦)) | |
| 3 | 1, 2 | mtbii 326 | . . 3 ⊢ (𝑥 = 𝑦 → ¬ 𝑥 ∈ 𝑦) |
| 4 | 3 | sps 2186 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → ¬ 𝑥 ∈ 𝑦) |
| 5 | sp 2184 | . 2 ⊢ (∀𝑧 𝑥 ∈ 𝑦 → 𝑥 ∈ 𝑦) | |
| 6 | 4, 5 | nsyl 140 | 1 ⊢ (∀𝑥 𝑥 = 𝑦 → ¬ ∀𝑧 𝑥 ∈ 𝑦) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-pr 5407 ax-reg 9611 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-v 3466 df-un 3936 df-sn 4607 df-pr 4609 |
| This theorem is referenced by: nd4 10609 axrepnd 10613 axpowndlem3 10618 axinfnd 10625 axacndlem3 10628 axacnd 10631 |
| Copyright terms: Public domain | W3C validator |