| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nd3 | Structured version Visualization version GIF version | ||
| Description: A lemma for proving conditionless ZFC axioms. (Contributed by NM, 2-Jan-2002.) |
| Ref | Expression |
|---|---|
| nd3 | ⊢ (∀𝑥 𝑥 = 𝑦 → ¬ ∀𝑧 𝑥 ∈ 𝑦) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elirrv 9508 | . . . 4 ⊢ ¬ 𝑥 ∈ 𝑥 | |
| 2 | elequ2 2124 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑥 ↔ 𝑥 ∈ 𝑦)) | |
| 3 | 1, 2 | mtbii 326 | . . 3 ⊢ (𝑥 = 𝑦 → ¬ 𝑥 ∈ 𝑦) |
| 4 | 3 | sps 2186 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → ¬ 𝑥 ∈ 𝑦) |
| 5 | sp 2184 | . 2 ⊢ (∀𝑧 𝑥 ∈ 𝑦 → 𝑥 ∈ 𝑦) | |
| 6 | 4, 5 | nsyl 140 | 1 ⊢ (∀𝑥 𝑥 = 𝑦 → ¬ ∀𝑧 𝑥 ∈ 𝑦) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-12 2178 ax-sep 5238 ax-pr 5374 ax-reg 9503 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 |
| This theorem is referenced by: nd4 10503 axrepnd 10507 axpowndlem3 10512 axinfnd 10519 axacndlem3 10522 axacnd 10525 |
| Copyright terms: Public domain | W3C validator |