MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nd3 Structured version   Visualization version   GIF version

Theorem nd3 10487
Description: A lemma for proving conditionless ZFC axioms. (Contributed by NM, 2-Jan-2002.)
Assertion
Ref Expression
nd3 (∀𝑥 𝑥 = 𝑦 → ¬ ∀𝑧 𝑥𝑦)

Proof of Theorem nd3
StepHypRef Expression
1 elirrv 9490 . . . 4 ¬ 𝑥𝑥
2 elequ2 2128 . . . 4 (𝑥 = 𝑦 → (𝑥𝑥𝑥𝑦))
31, 2mtbii 326 . . 3 (𝑥 = 𝑦 → ¬ 𝑥𝑦)
43sps 2190 . 2 (∀𝑥 𝑥 = 𝑦 → ¬ 𝑥𝑦)
5 sp 2188 . 2 (∀𝑧 𝑥𝑦𝑥𝑦)
64, 5nsyl 140 1 (∀𝑥 𝑥 = 𝑦 → ¬ ∀𝑧 𝑥𝑦)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-12 2182  ax-sep 5236  ax-pr 5372  ax-reg 9485
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ex 1781
This theorem is referenced by:  nd4  10488  axrepnd  10492  axpowndlem3  10497  axinfnd  10504  axacndlem3  10507  axacnd  10510
  Copyright terms: Public domain W3C validator