![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nd3 | Structured version Visualization version GIF version |
Description: A lemma for proving conditionless ZFC axioms. (Contributed by NM, 2-Jan-2002.) |
Ref | Expression |
---|---|
nd3 | ⊢ (∀𝑥 𝑥 = 𝑦 → ¬ ∀𝑧 𝑥 ∈ 𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elirrv 9587 | . . . 4 ⊢ ¬ 𝑥 ∈ 𝑥 | |
2 | elequ2 2113 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑥 ↔ 𝑥 ∈ 𝑦)) | |
3 | 1, 2 | mtbii 326 | . . 3 ⊢ (𝑥 = 𝑦 → ¬ 𝑥 ∈ 𝑦) |
4 | 3 | sps 2170 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → ¬ 𝑥 ∈ 𝑦) |
5 | sp 2168 | . 2 ⊢ (∀𝑧 𝑥 ∈ 𝑦 → 𝑥 ∈ 𝑦) | |
6 | 4, 5 | nsyl 140 | 1 ⊢ (∀𝑥 𝑥 = 𝑦 → ¬ ∀𝑧 𝑥 ∈ 𝑦) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1531 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-pr 5417 ax-reg 9583 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1536 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-ral 3054 df-rex 3063 df-v 3468 df-un 3945 df-sn 4621 df-pr 4623 |
This theorem is referenced by: nd4 10581 axrepnd 10585 axpowndlem3 10590 axinfnd 10597 axacndlem3 10600 axacnd 10603 |
Copyright terms: Public domain | W3C validator |