MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nd3 Structured version   Visualization version   GIF version

Theorem nd3 10276
Description: A lemma for proving conditionless ZFC axioms. (Contributed by NM, 2-Jan-2002.)
Assertion
Ref Expression
nd3 (∀𝑥 𝑥 = 𝑦 → ¬ ∀𝑧 𝑥𝑦)

Proof of Theorem nd3
StepHypRef Expression
1 elirrv 9285 . . . 4 ¬ 𝑥𝑥
2 elequ2 2123 . . . 4 (𝑥 = 𝑦 → (𝑥𝑥𝑥𝑦))
31, 2mtbii 325 . . 3 (𝑥 = 𝑦 → ¬ 𝑥𝑦)
43sps 2180 . 2 (∀𝑥 𝑥 = 𝑦 → ¬ 𝑥𝑦)
5 sp 2178 . 2 (∀𝑧 𝑥𝑦𝑥𝑦)
64, 5nsyl 140 1 (∀𝑥 𝑥 = 𝑦 → ¬ ∀𝑧 𝑥𝑦)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-reg 9281
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-v 3424  df-dif 3886  df-un 3888  df-nul 4254  df-sn 4559  df-pr 4561
This theorem is referenced by:  nd4  10277  axrepnd  10281  axpowndlem3  10286  axinfnd  10293  axacndlem3  10296  axacnd  10299
  Copyright terms: Public domain W3C validator