![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nosgnn0 | Structured version Visualization version GIF version |
Description: ∅ is not a surreal sign. (Contributed by Scott Fenton, 16-Jun-2011.) |
Ref | Expression |
---|---|
nosgnn0 | ⊢ ¬ ∅ ∈ {1o, 2o} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1n0 8544 | . . . 4 ⊢ 1o ≠ ∅ | |
2 | 1 | nesymi 3004 | . . 3 ⊢ ¬ ∅ = 1o |
3 | nsuceq0 6478 | . . . . 5 ⊢ suc 1o ≠ ∅ | |
4 | necom 3000 | . . . . . 6 ⊢ (suc 1o ≠ ∅ ↔ ∅ ≠ suc 1o) | |
5 | df-2o 8523 | . . . . . . 7 ⊢ 2o = suc 1o | |
6 | 5 | neeq2i 3012 | . . . . . 6 ⊢ (∅ ≠ 2o ↔ ∅ ≠ suc 1o) |
7 | 4, 6 | bitr4i 278 | . . . . 5 ⊢ (suc 1o ≠ ∅ ↔ ∅ ≠ 2o) |
8 | 3, 7 | mpbi 230 | . . . 4 ⊢ ∅ ≠ 2o |
9 | 8 | neii 2948 | . . 3 ⊢ ¬ ∅ = 2o |
10 | 2, 9 | pm3.2ni 879 | . 2 ⊢ ¬ (∅ = 1o ∨ ∅ = 2o) |
11 | 0ex 5325 | . . 3 ⊢ ∅ ∈ V | |
12 | 11 | elpr 4672 | . 2 ⊢ (∅ ∈ {1o, 2o} ↔ (∅ = 1o ∨ ∅ = 2o)) |
13 | 10, 12 | mtbir 323 | 1 ⊢ ¬ ∅ ∈ {1o, 2o} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∨ wo 846 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∅c0 4352 {cpr 4650 suc csuc 6397 1oc1o 8515 2oc2o 8516 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-nul 5324 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-v 3490 df-dif 3979 df-un 3981 df-nul 4353 df-sn 4649 df-pr 4651 df-suc 6401 df-1o 8522 df-2o 8523 |
This theorem is referenced by: nosgnn0i 27722 sltres 27725 noseponlem 27727 sltso 27739 nosepssdm 27749 nodenselem8 27754 nolt02olem 27757 |
Copyright terms: Public domain | W3C validator |