MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nosgnn0 Structured version   Visualization version   GIF version

Theorem nosgnn0 27627
Description: is not a surreal sign. (Contributed by Scott Fenton, 16-Jun-2011.)
Assertion
Ref Expression
nosgnn0 ¬ ∅ ∈ {1o, 2o}

Proof of Theorem nosgnn0
StepHypRef Expression
1 1n0 8505 . . . 4 1o ≠ ∅
21nesymi 2990 . . 3 ¬ ∅ = 1o
3 nsuceq0 6442 . . . . 5 suc 1o ≠ ∅
4 necom 2986 . . . . . 6 (suc 1o ≠ ∅ ↔ ∅ ≠ suc 1o)
5 df-2o 8486 . . . . . . 7 2o = suc 1o
65neeq2i 2998 . . . . . 6 (∅ ≠ 2o ↔ ∅ ≠ suc 1o)
74, 6bitr4i 278 . . . . 5 (suc 1o ≠ ∅ ↔ ∅ ≠ 2o)
83, 7mpbi 230 . . . 4 ∅ ≠ 2o
98neii 2935 . . 3 ¬ ∅ = 2o
102, 9pm3.2ni 880 . 2 ¬ (∅ = 1o ∨ ∅ = 2o)
11 0ex 5282 . . 3 ∅ ∈ V
1211elpr 4631 . 2 (∅ ∈ {1o, 2o} ↔ (∅ = 1o ∨ ∅ = 2o))
1310, 12mtbir 323 1 ¬ ∅ ∈ {1o, 2o}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wo 847   = wceq 1540  wcel 2109  wne 2933  c0 4313  {cpr 4608  suc csuc 6359  1oc1o 8478  2oc2o 8479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708  ax-nul 5281
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ne 2934  df-v 3466  df-dif 3934  df-un 3936  df-nul 4314  df-sn 4607  df-pr 4609  df-suc 6363  df-1o 8485  df-2o 8486
This theorem is referenced by:  nosgnn0i  27628  sltres  27631  noseponlem  27633  sltso  27645  nosepssdm  27655  nodenselem8  27660  nolt02olem  27663
  Copyright terms: Public domain W3C validator