![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nosgnn0 | Structured version Visualization version GIF version |
Description: ∅ is not a surreal sign. (Contributed by Scott Fenton, 16-Jun-2011.) |
Ref | Expression |
---|---|
nosgnn0 | ⊢ ¬ ∅ ∈ {1o, 2o} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1n0 8487 | . . . 4 ⊢ 1o ≠ ∅ | |
2 | 1 | nesymi 2998 | . . 3 ⊢ ¬ ∅ = 1o |
3 | nsuceq0 6447 | . . . . 5 ⊢ suc 1o ≠ ∅ | |
4 | necom 2994 | . . . . . 6 ⊢ (suc 1o ≠ ∅ ↔ ∅ ≠ suc 1o) | |
5 | df-2o 8466 | . . . . . . 7 ⊢ 2o = suc 1o | |
6 | 5 | neeq2i 3006 | . . . . . 6 ⊢ (∅ ≠ 2o ↔ ∅ ≠ suc 1o) |
7 | 4, 6 | bitr4i 277 | . . . . 5 ⊢ (suc 1o ≠ ∅ ↔ ∅ ≠ 2o) |
8 | 3, 7 | mpbi 229 | . . . 4 ⊢ ∅ ≠ 2o |
9 | 8 | neii 2942 | . . 3 ⊢ ¬ ∅ = 2o |
10 | 2, 9 | pm3.2ni 879 | . 2 ⊢ ¬ (∅ = 1o ∨ ∅ = 2o) |
11 | 0ex 5307 | . . 3 ⊢ ∅ ∈ V | |
12 | 11 | elpr 4651 | . 2 ⊢ (∅ ∈ {1o, 2o} ↔ (∅ = 1o ∨ ∅ = 2o)) |
13 | 10, 12 | mtbir 322 | 1 ⊢ ¬ ∅ ∈ {1o, 2o} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∨ wo 845 = wceq 1541 ∈ wcel 2106 ≠ wne 2940 ∅c0 4322 {cpr 4630 suc csuc 6366 1oc1o 8458 2oc2o 8459 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-nul 5306 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-v 3476 df-dif 3951 df-un 3953 df-nul 4323 df-sn 4629 df-pr 4631 df-suc 6370 df-1o 8465 df-2o 8466 |
This theorem is referenced by: nosgnn0i 27159 sltres 27162 noseponlem 27164 sltso 27176 nosepssdm 27186 nodenselem8 27191 nolt02olem 27194 |
Copyright terms: Public domain | W3C validator |