MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nosgnn0 Structured version   Visualization version   GIF version

Theorem nosgnn0 27158
Description: is not a surreal sign. (Contributed by Scott Fenton, 16-Jun-2011.)
Assertion
Ref Expression
nosgnn0 ¬ ∅ ∈ {1o, 2o}

Proof of Theorem nosgnn0
StepHypRef Expression
1 1n0 8487 . . . 4 1o ≠ ∅
21nesymi 2998 . . 3 ¬ ∅ = 1o
3 nsuceq0 6447 . . . . 5 suc 1o ≠ ∅
4 necom 2994 . . . . . 6 (suc 1o ≠ ∅ ↔ ∅ ≠ suc 1o)
5 df-2o 8466 . . . . . . 7 2o = suc 1o
65neeq2i 3006 . . . . . 6 (∅ ≠ 2o ↔ ∅ ≠ suc 1o)
74, 6bitr4i 277 . . . . 5 (suc 1o ≠ ∅ ↔ ∅ ≠ 2o)
83, 7mpbi 229 . . . 4 ∅ ≠ 2o
98neii 2942 . . 3 ¬ ∅ = 2o
102, 9pm3.2ni 879 . 2 ¬ (∅ = 1o ∨ ∅ = 2o)
11 0ex 5307 . . 3 ∅ ∈ V
1211elpr 4651 . 2 (∅ ∈ {1o, 2o} ↔ (∅ = 1o ∨ ∅ = 2o))
1310, 12mtbir 322 1 ¬ ∅ ∈ {1o, 2o}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wo 845   = wceq 1541  wcel 2106  wne 2940  c0 4322  {cpr 4630  suc csuc 6366  1oc1o 8458  2oc2o 8459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-nul 5306
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-v 3476  df-dif 3951  df-un 3953  df-nul 4323  df-sn 4629  df-pr 4631  df-suc 6370  df-1o 8465  df-2o 8466
This theorem is referenced by:  nosgnn0i  27159  sltres  27162  noseponlem  27164  sltso  27176  nosepssdm  27186  nodenselem8  27191  nolt02olem  27194
  Copyright terms: Public domain W3C validator