MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nosgnn0 Structured version   Visualization version   GIF version

Theorem nosgnn0 27721
Description: is not a surreal sign. (Contributed by Scott Fenton, 16-Jun-2011.)
Assertion
Ref Expression
nosgnn0 ¬ ∅ ∈ {1o, 2o}

Proof of Theorem nosgnn0
StepHypRef Expression
1 1n0 8544 . . . 4 1o ≠ ∅
21nesymi 3004 . . 3 ¬ ∅ = 1o
3 nsuceq0 6478 . . . . 5 suc 1o ≠ ∅
4 necom 3000 . . . . . 6 (suc 1o ≠ ∅ ↔ ∅ ≠ suc 1o)
5 df-2o 8523 . . . . . . 7 2o = suc 1o
65neeq2i 3012 . . . . . 6 (∅ ≠ 2o ↔ ∅ ≠ suc 1o)
74, 6bitr4i 278 . . . . 5 (suc 1o ≠ ∅ ↔ ∅ ≠ 2o)
83, 7mpbi 230 . . . 4 ∅ ≠ 2o
98neii 2948 . . 3 ¬ ∅ = 2o
102, 9pm3.2ni 879 . 2 ¬ (∅ = 1o ∨ ∅ = 2o)
11 0ex 5325 . . 3 ∅ ∈ V
1211elpr 4672 . 2 (∅ ∈ {1o, 2o} ↔ (∅ = 1o ∨ ∅ = 2o))
1310, 12mtbir 323 1 ¬ ∅ ∈ {1o, 2o}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wo 846   = wceq 1537  wcel 2108  wne 2946  c0 4352  {cpr 4650  suc csuc 6397  1oc1o 8515  2oc2o 8516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-nul 5324
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-v 3490  df-dif 3979  df-un 3981  df-nul 4353  df-sn 4649  df-pr 4651  df-suc 6401  df-1o 8522  df-2o 8523
This theorem is referenced by:  nosgnn0i  27722  sltres  27725  noseponlem  27727  sltso  27739  nosepssdm  27749  nodenselem8  27754  nolt02olem  27757
  Copyright terms: Public domain W3C validator