Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > nosgnn0 | Structured version Visualization version GIF version |
Description: ∅ is not a surreal sign. (Contributed by Scott Fenton, 16-Jun-2011.) |
Ref | Expression |
---|---|
nosgnn0 | ⊢ ¬ ∅ ∈ {1o, 2o} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1n0 8286 | . . . 4 ⊢ 1o ≠ ∅ | |
2 | 1 | nesymi 3000 | . . 3 ⊢ ¬ ∅ = 1o |
3 | nsuceq0 6331 | . . . . 5 ⊢ suc 1o ≠ ∅ | |
4 | necom 2996 | . . . . . 6 ⊢ (suc 1o ≠ ∅ ↔ ∅ ≠ suc 1o) | |
5 | df-2o 8268 | . . . . . . 7 ⊢ 2o = suc 1o | |
6 | 5 | neeq2i 3008 | . . . . . 6 ⊢ (∅ ≠ 2o ↔ ∅ ≠ suc 1o) |
7 | 4, 6 | bitr4i 277 | . . . . 5 ⊢ (suc 1o ≠ ∅ ↔ ∅ ≠ 2o) |
8 | 3, 7 | mpbi 229 | . . . 4 ⊢ ∅ ≠ 2o |
9 | 8 | neii 2944 | . . 3 ⊢ ¬ ∅ = 2o |
10 | 2, 9 | pm3.2ni 877 | . 2 ⊢ ¬ (∅ = 1o ∨ ∅ = 2o) |
11 | 0ex 5226 | . . 3 ⊢ ∅ ∈ V | |
12 | 11 | elpr 4581 | . 2 ⊢ (∅ ∈ {1o, 2o} ↔ (∅ = 1o ∨ ∅ = 2o)) |
13 | 10, 12 | mtbir 322 | 1 ⊢ ¬ ∅ ∈ {1o, 2o} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∨ wo 843 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∅c0 4253 {cpr 4560 suc csuc 6253 1oc1o 8260 2oc2o 8261 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-nul 5225 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-sn 4559 df-pr 4561 df-suc 6257 df-1o 8267 df-2o 8268 |
This theorem is referenced by: nosgnn0i 33789 sltres 33792 noseponlem 33794 sltso 33806 nosepssdm 33816 nodenselem8 33821 nolt02olem 33824 |
Copyright terms: Public domain | W3C validator |