| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nosgnn0 | Structured version Visualization version GIF version | ||
| Description: ∅ is not a surreal sign. (Contributed by Scott Fenton, 16-Jun-2011.) |
| Ref | Expression |
|---|---|
| nosgnn0 | ⊢ ¬ ∅ ∈ {1o, 2o} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1n0 8412 | . . . 4 ⊢ 1o ≠ ∅ | |
| 2 | 1 | nesymi 2987 | . . 3 ⊢ ¬ ∅ = 1o |
| 3 | nsuceq0 6399 | . . . . 5 ⊢ suc 1o ≠ ∅ | |
| 4 | necom 2983 | . . . . . 6 ⊢ (suc 1o ≠ ∅ ↔ ∅ ≠ suc 1o) | |
| 5 | df-2o 8395 | . . . . . . 7 ⊢ 2o = suc 1o | |
| 6 | 5 | neeq2i 2995 | . . . . . 6 ⊢ (∅ ≠ 2o ↔ ∅ ≠ suc 1o) |
| 7 | 4, 6 | bitr4i 278 | . . . . 5 ⊢ (suc 1o ≠ ∅ ↔ ∅ ≠ 2o) |
| 8 | 3, 7 | mpbi 230 | . . . 4 ⊢ ∅ ≠ 2o |
| 9 | 8 | neii 2932 | . . 3 ⊢ ¬ ∅ = 2o |
| 10 | 2, 9 | pm3.2ni 880 | . 2 ⊢ ¬ (∅ = 1o ∨ ∅ = 2o) |
| 11 | 0ex 5249 | . . 3 ⊢ ∅ ∈ V | |
| 12 | 11 | elpr 4602 | . 2 ⊢ (∅ ∈ {1o, 2o} ↔ (∅ = 1o ∨ ∅ = 2o)) |
| 13 | 10, 12 | mtbir 323 | 1 ⊢ ¬ ∅ ∈ {1o, 2o} |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∨ wo 847 = wceq 1541 ∈ wcel 2113 ≠ wne 2930 ∅c0 4284 {cpr 4579 suc csuc 6316 1oc1o 8387 2oc2o 8388 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-nul 5248 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2931 df-v 3440 df-dif 3902 df-un 3904 df-nul 4285 df-sn 4578 df-pr 4580 df-suc 6320 df-1o 8394 df-2o 8395 |
| This theorem is referenced by: nosgnn0i 27608 sltres 27611 noseponlem 27613 sltso 27625 nosepssdm 27635 nodenselem8 27640 nolt02olem 27643 |
| Copyright terms: Public domain | W3C validator |