Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nosgnn0 Structured version   Visualization version   GIF version

Theorem nosgnn0 33788
Description: is not a surreal sign. (Contributed by Scott Fenton, 16-Jun-2011.)
Assertion
Ref Expression
nosgnn0 ¬ ∅ ∈ {1o, 2o}

Proof of Theorem nosgnn0
StepHypRef Expression
1 1n0 8286 . . . 4 1o ≠ ∅
21nesymi 3000 . . 3 ¬ ∅ = 1o
3 nsuceq0 6331 . . . . 5 suc 1o ≠ ∅
4 necom 2996 . . . . . 6 (suc 1o ≠ ∅ ↔ ∅ ≠ suc 1o)
5 df-2o 8268 . . . . . . 7 2o = suc 1o
65neeq2i 3008 . . . . . 6 (∅ ≠ 2o ↔ ∅ ≠ suc 1o)
74, 6bitr4i 277 . . . . 5 (suc 1o ≠ ∅ ↔ ∅ ≠ 2o)
83, 7mpbi 229 . . . 4 ∅ ≠ 2o
98neii 2944 . . 3 ¬ ∅ = 2o
102, 9pm3.2ni 877 . 2 ¬ (∅ = 1o ∨ ∅ = 2o)
11 0ex 5226 . . 3 ∅ ∈ V
1211elpr 4581 . 2 (∅ ∈ {1o, 2o} ↔ (∅ = 1o ∨ ∅ = 2o))
1310, 12mtbir 322 1 ¬ ∅ ∈ {1o, 2o}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wo 843   = wceq 1539  wcel 2108  wne 2942  c0 4253  {cpr 4560  suc csuc 6253  1oc1o 8260  2oc2o 8261
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-nul 5225
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-v 3424  df-dif 3886  df-un 3888  df-nul 4254  df-sn 4559  df-pr 4561  df-suc 6257  df-1o 8267  df-2o 8268
This theorem is referenced by:  nosgnn0i  33789  sltres  33792  noseponlem  33794  sltso  33806  nosepssdm  33816  nodenselem8  33821  nolt02olem  33824
  Copyright terms: Public domain W3C validator