MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nosgnn0 Structured version   Visualization version   GIF version

Theorem nosgnn0 27607
Description: is not a surreal sign. (Contributed by Scott Fenton, 16-Jun-2011.)
Assertion
Ref Expression
nosgnn0 ¬ ∅ ∈ {1o, 2o}

Proof of Theorem nosgnn0
StepHypRef Expression
1 1n0 8412 . . . 4 1o ≠ ∅
21nesymi 2987 . . 3 ¬ ∅ = 1o
3 nsuceq0 6399 . . . . 5 suc 1o ≠ ∅
4 necom 2983 . . . . . 6 (suc 1o ≠ ∅ ↔ ∅ ≠ suc 1o)
5 df-2o 8395 . . . . . . 7 2o = suc 1o
65neeq2i 2995 . . . . . 6 (∅ ≠ 2o ↔ ∅ ≠ suc 1o)
74, 6bitr4i 278 . . . . 5 (suc 1o ≠ ∅ ↔ ∅ ≠ 2o)
83, 7mpbi 230 . . . 4 ∅ ≠ 2o
98neii 2932 . . 3 ¬ ∅ = 2o
102, 9pm3.2ni 880 . 2 ¬ (∅ = 1o ∨ ∅ = 2o)
11 0ex 5249 . . 3 ∅ ∈ V
1211elpr 4602 . 2 (∅ ∈ {1o, 2o} ↔ (∅ = 1o ∨ ∅ = 2o))
1310, 12mtbir 323 1 ¬ ∅ ∈ {1o, 2o}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wo 847   = wceq 1541  wcel 2113  wne 2930  c0 4284  {cpr 4579  suc csuc 6316  1oc1o 8387  2oc2o 8388
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-nul 5248
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2931  df-v 3440  df-dif 3902  df-un 3904  df-nul 4285  df-sn 4578  df-pr 4580  df-suc 6320  df-1o 8394  df-2o 8395
This theorem is referenced by:  nosgnn0i  27608  sltres  27611  noseponlem  27613  sltso  27625  nosepssdm  27635  nodenselem8  27640  nolt02olem  27643
  Copyright terms: Public domain W3C validator