MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgr3v3e3cycl Structured version   Visualization version   GIF version

Theorem upgr3v3e3cycl 28540
Description: If there is a cycle of length 3 in a pseudograph, there are three distinct vertices in the graph which are mutually connected by edges. (Contributed by Alexander van der Vekens, 9-Nov-2017.)
Hypotheses
Ref Expression
upgr3v3e3cycl.e 𝐸 = (Edg‘𝐺)
upgr3v3e3cycl.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
upgr3v3e3cycl ((𝐺 ∈ UPGraph ∧ 𝐹(Cycles‘𝐺)𝑃 ∧ (♯‘𝐹) = 3) → ∃𝑎𝑉𝑏𝑉𝑐𝑉 (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑎𝑏𝑏𝑐𝑐𝑎)))
Distinct variable groups:   𝐸,𝑎,𝑏,𝑐   𝑃,𝑎,𝑏,𝑐   𝑉,𝑎,𝑏,𝑐
Allowed substitution hints:   𝐹(𝑎,𝑏,𝑐)   𝐺(𝑎,𝑏,𝑐)

Proof of Theorem upgr3v3e3cycl
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 cyclprop 28157 . . 3 (𝐹(Cycles‘𝐺)𝑃 → (𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))))
2 pthiswlk 28091 . . . . 5 (𝐹(Paths‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
3 upgr3v3e3cycl.e . . . . . . . . . 10 𝐸 = (Edg‘𝐺)
43upgrwlkvtxedg 28009 . . . . . . . . 9 ((𝐺 ∈ UPGraph ∧ 𝐹(Walks‘𝐺)𝑃) → ∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃𝑘), (𝑃‘(𝑘 + 1))} ∈ 𝐸)
5 fveq2 6771 . . . . . . . . . . . . . . 15 ((♯‘𝐹) = 3 → (𝑃‘(♯‘𝐹)) = (𝑃‘3))
65eqeq2d 2751 . . . . . . . . . . . . . 14 ((♯‘𝐹) = 3 → ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ↔ (𝑃‘0) = (𝑃‘3)))
76anbi2d 629 . . . . . . . . . . . . 13 ((♯‘𝐹) = 3 → ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) ↔ (𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘3))))
8 oveq2 7279 . . . . . . . . . . . . . . . 16 ((♯‘𝐹) = 3 → (0..^(♯‘𝐹)) = (0..^3))
9 fzo0to3tp 13471 . . . . . . . . . . . . . . . 16 (0..^3) = {0, 1, 2}
108, 9eqtrdi 2796 . . . . . . . . . . . . . . 15 ((♯‘𝐹) = 3 → (0..^(♯‘𝐹)) = {0, 1, 2})
1110raleqdv 3347 . . . . . . . . . . . . . 14 ((♯‘𝐹) = 3 → (∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃𝑘), (𝑃‘(𝑘 + 1))} ∈ 𝐸 ↔ ∀𝑘 ∈ {0, 1, 2} {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ∈ 𝐸))
12 c0ex 10970 . . . . . . . . . . . . . . 15 0 ∈ V
13 1ex 10972 . . . . . . . . . . . . . . 15 1 ∈ V
14 2ex 12050 . . . . . . . . . . . . . . 15 2 ∈ V
15 fveq2 6771 . . . . . . . . . . . . . . . . 17 (𝑘 = 0 → (𝑃𝑘) = (𝑃‘0))
16 fv0p1e1 12096 . . . . . . . . . . . . . . . . 17 (𝑘 = 0 → (𝑃‘(𝑘 + 1)) = (𝑃‘1))
1715, 16preq12d 4683 . . . . . . . . . . . . . . . 16 (𝑘 = 0 → {(𝑃𝑘), (𝑃‘(𝑘 + 1))} = {(𝑃‘0), (𝑃‘1)})
1817eleq1d 2825 . . . . . . . . . . . . . . 15 (𝑘 = 0 → ({(𝑃𝑘), (𝑃‘(𝑘 + 1))} ∈ 𝐸 ↔ {(𝑃‘0), (𝑃‘1)} ∈ 𝐸))
19 fveq2 6771 . . . . . . . . . . . . . . . . 17 (𝑘 = 1 → (𝑃𝑘) = (𝑃‘1))
20 oveq1 7278 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 1 → (𝑘 + 1) = (1 + 1))
21 1p1e2 12098 . . . . . . . . . . . . . . . . . . 19 (1 + 1) = 2
2220, 21eqtrdi 2796 . . . . . . . . . . . . . . . . . 18 (𝑘 = 1 → (𝑘 + 1) = 2)
2322fveq2d 6775 . . . . . . . . . . . . . . . . 17 (𝑘 = 1 → (𝑃‘(𝑘 + 1)) = (𝑃‘2))
2419, 23preq12d 4683 . . . . . . . . . . . . . . . 16 (𝑘 = 1 → {(𝑃𝑘), (𝑃‘(𝑘 + 1))} = {(𝑃‘1), (𝑃‘2)})
2524eleq1d 2825 . . . . . . . . . . . . . . 15 (𝑘 = 1 → ({(𝑃𝑘), (𝑃‘(𝑘 + 1))} ∈ 𝐸 ↔ {(𝑃‘1), (𝑃‘2)} ∈ 𝐸))
26 fveq2 6771 . . . . . . . . . . . . . . . . 17 (𝑘 = 2 → (𝑃𝑘) = (𝑃‘2))
27 oveq1 7278 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 2 → (𝑘 + 1) = (2 + 1))
28 2p1e3 12115 . . . . . . . . . . . . . . . . . . 19 (2 + 1) = 3
2927, 28eqtrdi 2796 . . . . . . . . . . . . . . . . . 18 (𝑘 = 2 → (𝑘 + 1) = 3)
3029fveq2d 6775 . . . . . . . . . . . . . . . . 17 (𝑘 = 2 → (𝑃‘(𝑘 + 1)) = (𝑃‘3))
3126, 30preq12d 4683 . . . . . . . . . . . . . . . 16 (𝑘 = 2 → {(𝑃𝑘), (𝑃‘(𝑘 + 1))} = {(𝑃‘2), (𝑃‘3)})
3231eleq1d 2825 . . . . . . . . . . . . . . 15 (𝑘 = 2 → ({(𝑃𝑘), (𝑃‘(𝑘 + 1))} ∈ 𝐸 ↔ {(𝑃‘2), (𝑃‘3)} ∈ 𝐸))
3312, 13, 14, 18, 25, 32raltp 4647 . . . . . . . . . . . . . 14 (∀𝑘 ∈ {0, 1, 2} {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ∈ 𝐸 ↔ ({(𝑃‘0), (𝑃‘1)} ∈ 𝐸 ∧ {(𝑃‘1), (𝑃‘2)} ∈ 𝐸 ∧ {(𝑃‘2), (𝑃‘3)} ∈ 𝐸))
3411, 33bitrdi 287 . . . . . . . . . . . . 13 ((♯‘𝐹) = 3 → (∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃𝑘), (𝑃‘(𝑘 + 1))} ∈ 𝐸 ↔ ({(𝑃‘0), (𝑃‘1)} ∈ 𝐸 ∧ {(𝑃‘1), (𝑃‘2)} ∈ 𝐸 ∧ {(𝑃‘2), (𝑃‘3)} ∈ 𝐸)))
357, 34anbi12d 631 . . . . . . . . . . . 12 ((♯‘𝐹) = 3 → (((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃𝑘), (𝑃‘(𝑘 + 1))} ∈ 𝐸) ↔ ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘3)) ∧ ({(𝑃‘0), (𝑃‘1)} ∈ 𝐸 ∧ {(𝑃‘1), (𝑃‘2)} ∈ 𝐸 ∧ {(𝑃‘2), (𝑃‘3)} ∈ 𝐸))))
36 upgr3v3e3cycl.v . . . . . . . . . . . . . . . . . . 19 𝑉 = (Vtx‘𝐺)
3736wlkp 27981 . . . . . . . . . . . . . . . . . 18 (𝐹(Walks‘𝐺)𝑃𝑃:(0...(♯‘𝐹))⟶𝑉)
38 oveq2 7279 . . . . . . . . . . . . . . . . . . . . 21 ((♯‘𝐹) = 3 → (0...(♯‘𝐹)) = (0...3))
3938feq2d 6584 . . . . . . . . . . . . . . . . . . . 20 ((♯‘𝐹) = 3 → (𝑃:(0...(♯‘𝐹))⟶𝑉𝑃:(0...3)⟶𝑉))
40 id 22 . . . . . . . . . . . . . . . . . . . . . 22 (𝑃:(0...3)⟶𝑉𝑃:(0...3)⟶𝑉)
41 3nn0 12251 . . . . . . . . . . . . . . . . . . . . . . 23 3 ∈ ℕ0
42 0elfz 13352 . . . . . . . . . . . . . . . . . . . . . . 23 (3 ∈ ℕ0 → 0 ∈ (0...3))
4341, 42mp1i 13 . . . . . . . . . . . . . . . . . . . . . 22 (𝑃:(0...3)⟶𝑉 → 0 ∈ (0...3))
4440, 43ffvelrnd 6959 . . . . . . . . . . . . . . . . . . . . 21 (𝑃:(0...3)⟶𝑉 → (𝑃‘0) ∈ 𝑉)
45 1nn0 12249 . . . . . . . . . . . . . . . . . . . . . 22 1 ∈ ℕ0
46 1lt3 12146 . . . . . . . . . . . . . . . . . . . . . 22 1 < 3
47 fvffz0 13373 . . . . . . . . . . . . . . . . . . . . . . 23 (((3 ∈ ℕ0 ∧ 1 ∈ ℕ0 ∧ 1 < 3) ∧ 𝑃:(0...3)⟶𝑉) → (𝑃‘1) ∈ 𝑉)
4847ex 413 . . . . . . . . . . . . . . . . . . . . . 22 ((3 ∈ ℕ0 ∧ 1 ∈ ℕ0 ∧ 1 < 3) → (𝑃:(0...3)⟶𝑉 → (𝑃‘1) ∈ 𝑉))
4941, 45, 46, 48mp3an 1460 . . . . . . . . . . . . . . . . . . . . 21 (𝑃:(0...3)⟶𝑉 → (𝑃‘1) ∈ 𝑉)
50 2nn0 12250 . . . . . . . . . . . . . . . . . . . . . 22 2 ∈ ℕ0
51 2lt3 12145 . . . . . . . . . . . . . . . . . . . . . 22 2 < 3
52 fvffz0 13373 . . . . . . . . . . . . . . . . . . . . . . 23 (((3 ∈ ℕ0 ∧ 2 ∈ ℕ0 ∧ 2 < 3) ∧ 𝑃:(0...3)⟶𝑉) → (𝑃‘2) ∈ 𝑉)
5352ex 413 . . . . . . . . . . . . . . . . . . . . . 22 ((3 ∈ ℕ0 ∧ 2 ∈ ℕ0 ∧ 2 < 3) → (𝑃:(0...3)⟶𝑉 → (𝑃‘2) ∈ 𝑉))
5441, 50, 51, 53mp3an 1460 . . . . . . . . . . . . . . . . . . . . 21 (𝑃:(0...3)⟶𝑉 → (𝑃‘2) ∈ 𝑉)
5544, 49, 543jca 1127 . . . . . . . . . . . . . . . . . . . 20 (𝑃:(0...3)⟶𝑉 → ((𝑃‘0) ∈ 𝑉 ∧ (𝑃‘1) ∈ 𝑉 ∧ (𝑃‘2) ∈ 𝑉))
5639, 55syl6bi 252 . . . . . . . . . . . . . . . . . . 19 ((♯‘𝐹) = 3 → (𝑃:(0...(♯‘𝐹))⟶𝑉 → ((𝑃‘0) ∈ 𝑉 ∧ (𝑃‘1) ∈ 𝑉 ∧ (𝑃‘2) ∈ 𝑉)))
5756com12 32 . . . . . . . . . . . . . . . . . 18 (𝑃:(0...(♯‘𝐹))⟶𝑉 → ((♯‘𝐹) = 3 → ((𝑃‘0) ∈ 𝑉 ∧ (𝑃‘1) ∈ 𝑉 ∧ (𝑃‘2) ∈ 𝑉)))
582, 37, 573syl 18 . . . . . . . . . . . . . . . . 17 (𝐹(Paths‘𝐺)𝑃 → ((♯‘𝐹) = 3 → ((𝑃‘0) ∈ 𝑉 ∧ (𝑃‘1) ∈ 𝑉 ∧ (𝑃‘2) ∈ 𝑉)))
5958adantr 481 . . . . . . . . . . . . . . . 16 ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘3)) → ((♯‘𝐹) = 3 → ((𝑃‘0) ∈ 𝑉 ∧ (𝑃‘1) ∈ 𝑉 ∧ (𝑃‘2) ∈ 𝑉)))
6059adantr 481 . . . . . . . . . . . . . . 15 (((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘3)) ∧ ({(𝑃‘0), (𝑃‘1)} ∈ 𝐸 ∧ {(𝑃‘1), (𝑃‘2)} ∈ 𝐸 ∧ {(𝑃‘2), (𝑃‘3)} ∈ 𝐸)) → ((♯‘𝐹) = 3 → ((𝑃‘0) ∈ 𝑉 ∧ (𝑃‘1) ∈ 𝑉 ∧ (𝑃‘2) ∈ 𝑉)))
6160impcom 408 . . . . . . . . . . . . . 14 (((♯‘𝐹) = 3 ∧ ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘3)) ∧ ({(𝑃‘0), (𝑃‘1)} ∈ 𝐸 ∧ {(𝑃‘1), (𝑃‘2)} ∈ 𝐸 ∧ {(𝑃‘2), (𝑃‘3)} ∈ 𝐸))) → ((𝑃‘0) ∈ 𝑉 ∧ (𝑃‘1) ∈ 𝑉 ∧ (𝑃‘2) ∈ 𝑉))
62 preq2 4676 . . . . . . . . . . . . . . . . . . . 20 ((𝑃‘3) = (𝑃‘0) → {(𝑃‘2), (𝑃‘3)} = {(𝑃‘2), (𝑃‘0)})
6362eqcoms 2748 . . . . . . . . . . . . . . . . . . 19 ((𝑃‘0) = (𝑃‘3) → {(𝑃‘2), (𝑃‘3)} = {(𝑃‘2), (𝑃‘0)})
6463adantl 482 . . . . . . . . . . . . . . . . . 18 ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘3)) → {(𝑃‘2), (𝑃‘3)} = {(𝑃‘2), (𝑃‘0)})
6564eleq1d 2825 . . . . . . . . . . . . . . . . 17 ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘3)) → ({(𝑃‘2), (𝑃‘3)} ∈ 𝐸 ↔ {(𝑃‘2), (𝑃‘0)} ∈ 𝐸))
66653anbi3d 1441 . . . . . . . . . . . . . . . 16 ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘3)) → (({(𝑃‘0), (𝑃‘1)} ∈ 𝐸 ∧ {(𝑃‘1), (𝑃‘2)} ∈ 𝐸 ∧ {(𝑃‘2), (𝑃‘3)} ∈ 𝐸) ↔ ({(𝑃‘0), (𝑃‘1)} ∈ 𝐸 ∧ {(𝑃‘1), (𝑃‘2)} ∈ 𝐸 ∧ {(𝑃‘2), (𝑃‘0)} ∈ 𝐸)))
6766biimpa 477 . . . . . . . . . . . . . . 15 (((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘3)) ∧ ({(𝑃‘0), (𝑃‘1)} ∈ 𝐸 ∧ {(𝑃‘1), (𝑃‘2)} ∈ 𝐸 ∧ {(𝑃‘2), (𝑃‘3)} ∈ 𝐸)) → ({(𝑃‘0), (𝑃‘1)} ∈ 𝐸 ∧ {(𝑃‘1), (𝑃‘2)} ∈ 𝐸 ∧ {(𝑃‘2), (𝑃‘0)} ∈ 𝐸))
6867adantl 482 . . . . . . . . . . . . . 14 (((♯‘𝐹) = 3 ∧ ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘3)) ∧ ({(𝑃‘0), (𝑃‘1)} ∈ 𝐸 ∧ {(𝑃‘1), (𝑃‘2)} ∈ 𝐸 ∧ {(𝑃‘2), (𝑃‘3)} ∈ 𝐸))) → ({(𝑃‘0), (𝑃‘1)} ∈ 𝐸 ∧ {(𝑃‘1), (𝑃‘2)} ∈ 𝐸 ∧ {(𝑃‘2), (𝑃‘0)} ∈ 𝐸))
69 simpll 764 . . . . . . . . . . . . . . . . . . 19 (((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘3)) ∧ (♯‘𝐹) = 3) → 𝐹(Paths‘𝐺)𝑃)
70 breq2 5083 . . . . . . . . . . . . . . . . . . . . 21 ((♯‘𝐹) = 3 → (1 < (♯‘𝐹) ↔ 1 < 3))
7146, 70mpbiri 257 . . . . . . . . . . . . . . . . . . . 20 ((♯‘𝐹) = 3 → 1 < (♯‘𝐹))
7271adantl 482 . . . . . . . . . . . . . . . . . . 19 (((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘3)) ∧ (♯‘𝐹) = 3) → 1 < (♯‘𝐹))
73 3nn 12052 . . . . . . . . . . . . . . . . . . . . . 22 3 ∈ ℕ
74 lbfzo0 13425 . . . . . . . . . . . . . . . . . . . . . 22 (0 ∈ (0..^3) ↔ 3 ∈ ℕ)
7573, 74mpbir 230 . . . . . . . . . . . . . . . . . . . . 21 0 ∈ (0..^3)
7675, 8eleqtrrid 2848 . . . . . . . . . . . . . . . . . . . 20 ((♯‘𝐹) = 3 → 0 ∈ (0..^(♯‘𝐹)))
7776adantl 482 . . . . . . . . . . . . . . . . . . 19 (((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘3)) ∧ (♯‘𝐹) = 3) → 0 ∈ (0..^(♯‘𝐹)))
78 pthdadjvtx 28094 . . . . . . . . . . . . . . . . . . . 20 ((𝐹(Paths‘𝐺)𝑃 ∧ 1 < (♯‘𝐹) ∧ 0 ∈ (0..^(♯‘𝐹))) → (𝑃‘0) ≠ (𝑃‘(0 + 1)))
79 1e0p1 12478 . . . . . . . . . . . . . . . . . . . . . 22 1 = (0 + 1)
8079fveq2i 6774 . . . . . . . . . . . . . . . . . . . . 21 (𝑃‘1) = (𝑃‘(0 + 1))
8180neeq2i 3011 . . . . . . . . . . . . . . . . . . . 20 ((𝑃‘0) ≠ (𝑃‘1) ↔ (𝑃‘0) ≠ (𝑃‘(0 + 1)))
8278, 81sylibr 233 . . . . . . . . . . . . . . . . . . 19 ((𝐹(Paths‘𝐺)𝑃 ∧ 1 < (♯‘𝐹) ∧ 0 ∈ (0..^(♯‘𝐹))) → (𝑃‘0) ≠ (𝑃‘1))
8369, 72, 77, 82syl3anc 1370 . . . . . . . . . . . . . . . . . 18 (((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘3)) ∧ (♯‘𝐹) = 3) → (𝑃‘0) ≠ (𝑃‘1))
84 elfzo0 13426 . . . . . . . . . . . . . . . . . . . . . 22 (1 ∈ (0..^3) ↔ (1 ∈ ℕ0 ∧ 3 ∈ ℕ ∧ 1 < 3))
8545, 73, 46, 84mpbir3an 1340 . . . . . . . . . . . . . . . . . . . . 21 1 ∈ (0..^3)
8685, 8eleqtrrid 2848 . . . . . . . . . . . . . . . . . . . 20 ((♯‘𝐹) = 3 → 1 ∈ (0..^(♯‘𝐹)))
8786adantl 482 . . . . . . . . . . . . . . . . . . 19 (((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘3)) ∧ (♯‘𝐹) = 3) → 1 ∈ (0..^(♯‘𝐹)))
88 pthdadjvtx 28094 . . . . . . . . . . . . . . . . . . . 20 ((𝐹(Paths‘𝐺)𝑃 ∧ 1 < (♯‘𝐹) ∧ 1 ∈ (0..^(♯‘𝐹))) → (𝑃‘1) ≠ (𝑃‘(1 + 1)))
89 df-2 12036 . . . . . . . . . . . . . . . . . . . . . 22 2 = (1 + 1)
9089fveq2i 6774 . . . . . . . . . . . . . . . . . . . . 21 (𝑃‘2) = (𝑃‘(1 + 1))
9190neeq2i 3011 . . . . . . . . . . . . . . . . . . . 20 ((𝑃‘1) ≠ (𝑃‘2) ↔ (𝑃‘1) ≠ (𝑃‘(1 + 1)))
9288, 91sylibr 233 . . . . . . . . . . . . . . . . . . 19 ((𝐹(Paths‘𝐺)𝑃 ∧ 1 < (♯‘𝐹) ∧ 1 ∈ (0..^(♯‘𝐹))) → (𝑃‘1) ≠ (𝑃‘2))
9369, 72, 87, 92syl3anc 1370 . . . . . . . . . . . . . . . . . 18 (((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘3)) ∧ (♯‘𝐹) = 3) → (𝑃‘1) ≠ (𝑃‘2))
94 elfzo0 13426 . . . . . . . . . . . . . . . . . . . . . . 23 (2 ∈ (0..^3) ↔ (2 ∈ ℕ0 ∧ 3 ∈ ℕ ∧ 2 < 3))
9550, 73, 51, 94mpbir3an 1340 . . . . . . . . . . . . . . . . . . . . . 22 2 ∈ (0..^3)
9695, 8eleqtrrid 2848 . . . . . . . . . . . . . . . . . . . . 21 ((♯‘𝐹) = 3 → 2 ∈ (0..^(♯‘𝐹)))
9796adantl 482 . . . . . . . . . . . . . . . . . . . 20 (((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘3)) ∧ (♯‘𝐹) = 3) → 2 ∈ (0..^(♯‘𝐹)))
98 pthdadjvtx 28094 . . . . . . . . . . . . . . . . . . . 20 ((𝐹(Paths‘𝐺)𝑃 ∧ 1 < (♯‘𝐹) ∧ 2 ∈ (0..^(♯‘𝐹))) → (𝑃‘2) ≠ (𝑃‘(2 + 1)))
9969, 72, 97, 98syl3anc 1370 . . . . . . . . . . . . . . . . . . 19 (((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘3)) ∧ (♯‘𝐹) = 3) → (𝑃‘2) ≠ (𝑃‘(2 + 1)))
100 neeq2 3009 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑃‘0) = (𝑃‘3) → ((𝑃‘2) ≠ (𝑃‘0) ↔ (𝑃‘2) ≠ (𝑃‘3)))
101 df-3 12037 . . . . . . . . . . . . . . . . . . . . . . . 24 3 = (2 + 1)
102101fveq2i 6774 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑃‘3) = (𝑃‘(2 + 1))
103102neeq2i 3011 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑃‘2) ≠ (𝑃‘3) ↔ (𝑃‘2) ≠ (𝑃‘(2 + 1)))
104100, 103bitrdi 287 . . . . . . . . . . . . . . . . . . . . 21 ((𝑃‘0) = (𝑃‘3) → ((𝑃‘2) ≠ (𝑃‘0) ↔ (𝑃‘2) ≠ (𝑃‘(2 + 1))))
105104adantl 482 . . . . . . . . . . . . . . . . . . . 20 ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘3)) → ((𝑃‘2) ≠ (𝑃‘0) ↔ (𝑃‘2) ≠ (𝑃‘(2 + 1))))
106105adantr 481 . . . . . . . . . . . . . . . . . . 19 (((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘3)) ∧ (♯‘𝐹) = 3) → ((𝑃‘2) ≠ (𝑃‘0) ↔ (𝑃‘2) ≠ (𝑃‘(2 + 1))))
10799, 106mpbird 256 . . . . . . . . . . . . . . . . . 18 (((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘3)) ∧ (♯‘𝐹) = 3) → (𝑃‘2) ≠ (𝑃‘0))
10883, 93, 1073jca 1127 . . . . . . . . . . . . . . . . 17 (((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘3)) ∧ (♯‘𝐹) = 3) → ((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2) ∧ (𝑃‘2) ≠ (𝑃‘0)))
109108ex 413 . . . . . . . . . . . . . . . 16 ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘3)) → ((♯‘𝐹) = 3 → ((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2) ∧ (𝑃‘2) ≠ (𝑃‘0))))
110109adantr 481 . . . . . . . . . . . . . . 15 (((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘3)) ∧ ({(𝑃‘0), (𝑃‘1)} ∈ 𝐸 ∧ {(𝑃‘1), (𝑃‘2)} ∈ 𝐸 ∧ {(𝑃‘2), (𝑃‘3)} ∈ 𝐸)) → ((♯‘𝐹) = 3 → ((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2) ∧ (𝑃‘2) ≠ (𝑃‘0))))
111110impcom 408 . . . . . . . . . . . . . 14 (((♯‘𝐹) = 3 ∧ ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘3)) ∧ ({(𝑃‘0), (𝑃‘1)} ∈ 𝐸 ∧ {(𝑃‘1), (𝑃‘2)} ∈ 𝐸 ∧ {(𝑃‘2), (𝑃‘3)} ∈ 𝐸))) → ((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2) ∧ (𝑃‘2) ≠ (𝑃‘0)))
112 preq1 4675 . . . . . . . . . . . . . . . . . 18 (𝑎 = (𝑃‘0) → {𝑎, 𝑏} = {(𝑃‘0), 𝑏})
113112eleq1d 2825 . . . . . . . . . . . . . . . . 17 (𝑎 = (𝑃‘0) → ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝑃‘0), 𝑏} ∈ 𝐸))
114 preq2 4676 . . . . . . . . . . . . . . . . . 18 (𝑎 = (𝑃‘0) → {𝑐, 𝑎} = {𝑐, (𝑃‘0)})
115114eleq1d 2825 . . . . . . . . . . . . . . . . 17 (𝑎 = (𝑃‘0) → ({𝑐, 𝑎} ∈ 𝐸 ↔ {𝑐, (𝑃‘0)} ∈ 𝐸))
116113, 1153anbi13d 1437 . . . . . . . . . . . . . . . 16 (𝑎 = (𝑃‘0) → (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ↔ ({(𝑃‘0), 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, (𝑃‘0)} ∈ 𝐸)))
117 neeq1 3008 . . . . . . . . . . . . . . . . 17 (𝑎 = (𝑃‘0) → (𝑎𝑏 ↔ (𝑃‘0) ≠ 𝑏))
118 neeq2 3009 . . . . . . . . . . . . . . . . 17 (𝑎 = (𝑃‘0) → (𝑐𝑎𝑐 ≠ (𝑃‘0)))
119117, 1183anbi13d 1437 . . . . . . . . . . . . . . . 16 (𝑎 = (𝑃‘0) → ((𝑎𝑏𝑏𝑐𝑐𝑎) ↔ ((𝑃‘0) ≠ 𝑏𝑏𝑐𝑐 ≠ (𝑃‘0))))
120116, 119anbi12d 631 . . . . . . . . . . . . . . 15 (𝑎 = (𝑃‘0) → ((({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑎𝑏𝑏𝑐𝑐𝑎)) ↔ (({(𝑃‘0), 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, (𝑃‘0)} ∈ 𝐸) ∧ ((𝑃‘0) ≠ 𝑏𝑏𝑐𝑐 ≠ (𝑃‘0)))))
121 preq2 4676 . . . . . . . . . . . . . . . . . 18 (𝑏 = (𝑃‘1) → {(𝑃‘0), 𝑏} = {(𝑃‘0), (𝑃‘1)})
122121eleq1d 2825 . . . . . . . . . . . . . . . . 17 (𝑏 = (𝑃‘1) → ({(𝑃‘0), 𝑏} ∈ 𝐸 ↔ {(𝑃‘0), (𝑃‘1)} ∈ 𝐸))
123 preq1 4675 . . . . . . . . . . . . . . . . . 18 (𝑏 = (𝑃‘1) → {𝑏, 𝑐} = {(𝑃‘1), 𝑐})
124123eleq1d 2825 . . . . . . . . . . . . . . . . 17 (𝑏 = (𝑃‘1) → ({𝑏, 𝑐} ∈ 𝐸 ↔ {(𝑃‘1), 𝑐} ∈ 𝐸))
125122, 1243anbi12d 1436 . . . . . . . . . . . . . . . 16 (𝑏 = (𝑃‘1) → (({(𝑃‘0), 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, (𝑃‘0)} ∈ 𝐸) ↔ ({(𝑃‘0), (𝑃‘1)} ∈ 𝐸 ∧ {(𝑃‘1), 𝑐} ∈ 𝐸 ∧ {𝑐, (𝑃‘0)} ∈ 𝐸)))
126 neeq2 3009 . . . . . . . . . . . . . . . . 17 (𝑏 = (𝑃‘1) → ((𝑃‘0) ≠ 𝑏 ↔ (𝑃‘0) ≠ (𝑃‘1)))
127 neeq1 3008 . . . . . . . . . . . . . . . . 17 (𝑏 = (𝑃‘1) → (𝑏𝑐 ↔ (𝑃‘1) ≠ 𝑐))
128126, 1273anbi12d 1436 . . . . . . . . . . . . . . . 16 (𝑏 = (𝑃‘1) → (((𝑃‘0) ≠ 𝑏𝑏𝑐𝑐 ≠ (𝑃‘0)) ↔ ((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ 𝑐𝑐 ≠ (𝑃‘0))))
129125, 128anbi12d 631 . . . . . . . . . . . . . . 15 (𝑏 = (𝑃‘1) → ((({(𝑃‘0), 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, (𝑃‘0)} ∈ 𝐸) ∧ ((𝑃‘0) ≠ 𝑏𝑏𝑐𝑐 ≠ (𝑃‘0))) ↔ (({(𝑃‘0), (𝑃‘1)} ∈ 𝐸 ∧ {(𝑃‘1), 𝑐} ∈ 𝐸 ∧ {𝑐, (𝑃‘0)} ∈ 𝐸) ∧ ((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ 𝑐𝑐 ≠ (𝑃‘0)))))
130 preq2 4676 . . . . . . . . . . . . . . . . . 18 (𝑐 = (𝑃‘2) → {(𝑃‘1), 𝑐} = {(𝑃‘1), (𝑃‘2)})
131130eleq1d 2825 . . . . . . . . . . . . . . . . 17 (𝑐 = (𝑃‘2) → ({(𝑃‘1), 𝑐} ∈ 𝐸 ↔ {(𝑃‘1), (𝑃‘2)} ∈ 𝐸))
132 preq1 4675 . . . . . . . . . . . . . . . . . 18 (𝑐 = (𝑃‘2) → {𝑐, (𝑃‘0)} = {(𝑃‘2), (𝑃‘0)})
133132eleq1d 2825 . . . . . . . . . . . . . . . . 17 (𝑐 = (𝑃‘2) → ({𝑐, (𝑃‘0)} ∈ 𝐸 ↔ {(𝑃‘2), (𝑃‘0)} ∈ 𝐸))
134131, 1333anbi23d 1438 . . . . . . . . . . . . . . . 16 (𝑐 = (𝑃‘2) → (({(𝑃‘0), (𝑃‘1)} ∈ 𝐸 ∧ {(𝑃‘1), 𝑐} ∈ 𝐸 ∧ {𝑐, (𝑃‘0)} ∈ 𝐸) ↔ ({(𝑃‘0), (𝑃‘1)} ∈ 𝐸 ∧ {(𝑃‘1), (𝑃‘2)} ∈ 𝐸 ∧ {(𝑃‘2), (𝑃‘0)} ∈ 𝐸)))
135 neeq2 3009 . . . . . . . . . . . . . . . . 17 (𝑐 = (𝑃‘2) → ((𝑃‘1) ≠ 𝑐 ↔ (𝑃‘1) ≠ (𝑃‘2)))
136 neeq1 3008 . . . . . . . . . . . . . . . . 17 (𝑐 = (𝑃‘2) → (𝑐 ≠ (𝑃‘0) ↔ (𝑃‘2) ≠ (𝑃‘0)))
137135, 1363anbi23d 1438 . . . . . . . . . . . . . . . 16 (𝑐 = (𝑃‘2) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ 𝑐𝑐 ≠ (𝑃‘0)) ↔ ((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2) ∧ (𝑃‘2) ≠ (𝑃‘0))))
138134, 137anbi12d 631 . . . . . . . . . . . . . . 15 (𝑐 = (𝑃‘2) → ((({(𝑃‘0), (𝑃‘1)} ∈ 𝐸 ∧ {(𝑃‘1), 𝑐} ∈ 𝐸 ∧ {𝑐, (𝑃‘0)} ∈ 𝐸) ∧ ((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ 𝑐𝑐 ≠ (𝑃‘0))) ↔ (({(𝑃‘0), (𝑃‘1)} ∈ 𝐸 ∧ {(𝑃‘1), (𝑃‘2)} ∈ 𝐸 ∧ {(𝑃‘2), (𝑃‘0)} ∈ 𝐸) ∧ ((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2) ∧ (𝑃‘2) ≠ (𝑃‘0)))))
139120, 129, 138rspc3ev 3575 . . . . . . . . . . . . . 14 ((((𝑃‘0) ∈ 𝑉 ∧ (𝑃‘1) ∈ 𝑉 ∧ (𝑃‘2) ∈ 𝑉) ∧ (({(𝑃‘0), (𝑃‘1)} ∈ 𝐸 ∧ {(𝑃‘1), (𝑃‘2)} ∈ 𝐸 ∧ {(𝑃‘2), (𝑃‘0)} ∈ 𝐸) ∧ ((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2) ∧ (𝑃‘2) ≠ (𝑃‘0)))) → ∃𝑎𝑉𝑏𝑉𝑐𝑉 (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑎𝑏𝑏𝑐𝑐𝑎)))
14061, 68, 111, 139syl12anc 834 . . . . . . . . . . . . 13 (((♯‘𝐹) = 3 ∧ ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘3)) ∧ ({(𝑃‘0), (𝑃‘1)} ∈ 𝐸 ∧ {(𝑃‘1), (𝑃‘2)} ∈ 𝐸 ∧ {(𝑃‘2), (𝑃‘3)} ∈ 𝐸))) → ∃𝑎𝑉𝑏𝑉𝑐𝑉 (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑎𝑏𝑏𝑐𝑐𝑎)))
141140ex 413 . . . . . . . . . . . 12 ((♯‘𝐹) = 3 → (((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘3)) ∧ ({(𝑃‘0), (𝑃‘1)} ∈ 𝐸 ∧ {(𝑃‘1), (𝑃‘2)} ∈ 𝐸 ∧ {(𝑃‘2), (𝑃‘3)} ∈ 𝐸)) → ∃𝑎𝑉𝑏𝑉𝑐𝑉 (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑎𝑏𝑏𝑐𝑐𝑎))))
14235, 141sylbid 239 . . . . . . . . . . 11 ((♯‘𝐹) = 3 → (((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃𝑘), (𝑃‘(𝑘 + 1))} ∈ 𝐸) → ∃𝑎𝑉𝑏𝑉𝑐𝑉 (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑎𝑏𝑏𝑐𝑐𝑎))))
143142expd 416 . . . . . . . . . 10 ((♯‘𝐹) = 3 → ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃𝑘), (𝑃‘(𝑘 + 1))} ∈ 𝐸 → ∃𝑎𝑉𝑏𝑉𝑐𝑉 (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑎𝑏𝑏𝑐𝑐𝑎)))))
144143com13 88 . . . . . . . . 9 (∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃𝑘), (𝑃‘(𝑘 + 1))} ∈ 𝐸 → ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → ((♯‘𝐹) = 3 → ∃𝑎𝑉𝑏𝑉𝑐𝑉 (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑎𝑏𝑏𝑐𝑐𝑎)))))
1454, 144syl 17 . . . . . . . 8 ((𝐺 ∈ UPGraph ∧ 𝐹(Walks‘𝐺)𝑃) → ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → ((♯‘𝐹) = 3 → ∃𝑎𝑉𝑏𝑉𝑐𝑉 (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑎𝑏𝑏𝑐𝑐𝑎)))))
146145expcom 414 . . . . . . 7 (𝐹(Walks‘𝐺)𝑃 → (𝐺 ∈ UPGraph → ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → ((♯‘𝐹) = 3 → ∃𝑎𝑉𝑏𝑉𝑐𝑉 (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑎𝑏𝑏𝑐𝑐𝑎))))))
147146com23 86 . . . . . 6 (𝐹(Walks‘𝐺)𝑃 → ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (𝐺 ∈ UPGraph → ((♯‘𝐹) = 3 → ∃𝑎𝑉𝑏𝑉𝑐𝑉 (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑎𝑏𝑏𝑐𝑐𝑎))))))
148147expd 416 . . . . 5 (𝐹(Walks‘𝐺)𝑃 → (𝐹(Paths‘𝐺)𝑃 → ((𝑃‘0) = (𝑃‘(♯‘𝐹)) → (𝐺 ∈ UPGraph → ((♯‘𝐹) = 3 → ∃𝑎𝑉𝑏𝑉𝑐𝑉 (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑎𝑏𝑏𝑐𝑐𝑎)))))))
1492, 148mpcom 38 . . . 4 (𝐹(Paths‘𝐺)𝑃 → ((𝑃‘0) = (𝑃‘(♯‘𝐹)) → (𝐺 ∈ UPGraph → ((♯‘𝐹) = 3 → ∃𝑎𝑉𝑏𝑉𝑐𝑉 (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑎𝑏𝑏𝑐𝑐𝑎))))))
150149imp 407 . . 3 ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (𝐺 ∈ UPGraph → ((♯‘𝐹) = 3 → ∃𝑎𝑉𝑏𝑉𝑐𝑉 (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑎𝑏𝑏𝑐𝑐𝑎)))))
1511, 150syl 17 . 2 (𝐹(Cycles‘𝐺)𝑃 → (𝐺 ∈ UPGraph → ((♯‘𝐹) = 3 → ∃𝑎𝑉𝑏𝑉𝑐𝑉 (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑎𝑏𝑏𝑐𝑐𝑎)))))
1521513imp21 1113 1 ((𝐺 ∈ UPGraph ∧ 𝐹(Cycles‘𝐺)𝑃 ∧ (♯‘𝐹) = 3) → ∃𝑎𝑉𝑏𝑉𝑐𝑉 (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑎𝑏𝑏𝑐𝑐𝑎)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1542  wcel 2110  wne 2945  wral 3066  wrex 3067  {cpr 4569  {ctp 4571   class class class wbr 5079  wf 6428  cfv 6432  (class class class)co 7271  0cc0 10872  1c1 10873   + caddc 10875   < clt 11010  cn 11973  2c2 12028  3c3 12029  0cn0 12233  ...cfz 13238  ..^cfzo 13381  chash 14042  Vtxcvtx 27364  Edgcedg 27415  UPGraphcupgr 27448  Walkscwlks 27961  Pathscpths 28076  Cyclesccycls 28149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-ifp 1061  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-om 7707  df-1st 7824  df-2nd 7825  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-1o 8288  df-2o 8289  df-oadd 8292  df-er 8481  df-map 8600  df-pm 8601  df-en 8717  df-dom 8718  df-sdom 8719  df-fin 8720  df-dju 9660  df-card 9698  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-xnn0 12306  df-z 12320  df-uz 12582  df-fz 13239  df-fzo 13382  df-hash 14043  df-word 14216  df-edg 27416  df-uhgr 27426  df-upgr 27450  df-wlks 27964  df-trls 28057  df-pths 28080  df-cycls 28151
This theorem is referenced by:  umgr3v3e3cycl  28544
  Copyright terms: Public domain W3C validator