MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgr3v3e3cycl Structured version   Visualization version   GIF version

Theorem upgr3v3e3cycl 30010
Description: If there is a cycle of length 3 in a pseudograph, there are three distinct vertices in the graph which are mutually connected by edges. (Contributed by Alexander van der Vekens, 9-Nov-2017.)
Hypotheses
Ref Expression
upgr3v3e3cycl.e 𝐸 = (Edg‘𝐺)
upgr3v3e3cycl.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
upgr3v3e3cycl ((𝐺 ∈ UPGraph ∧ 𝐹(Cycles‘𝐺)𝑃 ∧ (♯‘𝐹) = 3) → ∃𝑎𝑉𝑏𝑉𝑐𝑉 (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑎𝑏𝑏𝑐𝑐𝑎)))
Distinct variable groups:   𝐸,𝑎,𝑏,𝑐   𝑃,𝑎,𝑏,𝑐   𝑉,𝑎,𝑏,𝑐
Allowed substitution hints:   𝐹(𝑎,𝑏,𝑐)   𝐺(𝑎,𝑏,𝑐)

Proof of Theorem upgr3v3e3cycl
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 cyclprop 29627 . . 3 (𝐹(Cycles‘𝐺)𝑃 → (𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))))
2 pthiswlk 29561 . . . . 5 (𝐹(Paths‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
3 upgr3v3e3cycl.e . . . . . . . . . 10 𝐸 = (Edg‘𝐺)
43upgrwlkvtxedg 29479 . . . . . . . . 9 ((𝐺 ∈ UPGraph ∧ 𝐹(Walks‘𝐺)𝑃) → ∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃𝑘), (𝑃‘(𝑘 + 1))} ∈ 𝐸)
5 fveq2 6902 . . . . . . . . . . . . . . 15 ((♯‘𝐹) = 3 → (𝑃‘(♯‘𝐹)) = (𝑃‘3))
65eqeq2d 2739 . . . . . . . . . . . . . 14 ((♯‘𝐹) = 3 → ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ↔ (𝑃‘0) = (𝑃‘3)))
76anbi2d 628 . . . . . . . . . . . . 13 ((♯‘𝐹) = 3 → ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) ↔ (𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘3))))
8 oveq2 7434 . . . . . . . . . . . . . . . 16 ((♯‘𝐹) = 3 → (0..^(♯‘𝐹)) = (0..^3))
9 fzo0to3tp 13758 . . . . . . . . . . . . . . . 16 (0..^3) = {0, 1, 2}
108, 9eqtrdi 2784 . . . . . . . . . . . . . . 15 ((♯‘𝐹) = 3 → (0..^(♯‘𝐹)) = {0, 1, 2})
1110raleqdv 3323 . . . . . . . . . . . . . 14 ((♯‘𝐹) = 3 → (∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃𝑘), (𝑃‘(𝑘 + 1))} ∈ 𝐸 ↔ ∀𝑘 ∈ {0, 1, 2} {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ∈ 𝐸))
12 c0ex 11246 . . . . . . . . . . . . . . 15 0 ∈ V
13 1ex 11248 . . . . . . . . . . . . . . 15 1 ∈ V
14 2ex 12327 . . . . . . . . . . . . . . 15 2 ∈ V
15 fveq2 6902 . . . . . . . . . . . . . . . . 17 (𝑘 = 0 → (𝑃𝑘) = (𝑃‘0))
16 fv0p1e1 12373 . . . . . . . . . . . . . . . . 17 (𝑘 = 0 → (𝑃‘(𝑘 + 1)) = (𝑃‘1))
1715, 16preq12d 4750 . . . . . . . . . . . . . . . 16 (𝑘 = 0 → {(𝑃𝑘), (𝑃‘(𝑘 + 1))} = {(𝑃‘0), (𝑃‘1)})
1817eleq1d 2814 . . . . . . . . . . . . . . 15 (𝑘 = 0 → ({(𝑃𝑘), (𝑃‘(𝑘 + 1))} ∈ 𝐸 ↔ {(𝑃‘0), (𝑃‘1)} ∈ 𝐸))
19 fveq2 6902 . . . . . . . . . . . . . . . . 17 (𝑘 = 1 → (𝑃𝑘) = (𝑃‘1))
20 oveq1 7433 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 1 → (𝑘 + 1) = (1 + 1))
21 1p1e2 12375 . . . . . . . . . . . . . . . . . . 19 (1 + 1) = 2
2220, 21eqtrdi 2784 . . . . . . . . . . . . . . . . . 18 (𝑘 = 1 → (𝑘 + 1) = 2)
2322fveq2d 6906 . . . . . . . . . . . . . . . . 17 (𝑘 = 1 → (𝑃‘(𝑘 + 1)) = (𝑃‘2))
2419, 23preq12d 4750 . . . . . . . . . . . . . . . 16 (𝑘 = 1 → {(𝑃𝑘), (𝑃‘(𝑘 + 1))} = {(𝑃‘1), (𝑃‘2)})
2524eleq1d 2814 . . . . . . . . . . . . . . 15 (𝑘 = 1 → ({(𝑃𝑘), (𝑃‘(𝑘 + 1))} ∈ 𝐸 ↔ {(𝑃‘1), (𝑃‘2)} ∈ 𝐸))
26 fveq2 6902 . . . . . . . . . . . . . . . . 17 (𝑘 = 2 → (𝑃𝑘) = (𝑃‘2))
27 oveq1 7433 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 2 → (𝑘 + 1) = (2 + 1))
28 2p1e3 12392 . . . . . . . . . . . . . . . . . . 19 (2 + 1) = 3
2927, 28eqtrdi 2784 . . . . . . . . . . . . . . . . . 18 (𝑘 = 2 → (𝑘 + 1) = 3)
3029fveq2d 6906 . . . . . . . . . . . . . . . . 17 (𝑘 = 2 → (𝑃‘(𝑘 + 1)) = (𝑃‘3))
3126, 30preq12d 4750 . . . . . . . . . . . . . . . 16 (𝑘 = 2 → {(𝑃𝑘), (𝑃‘(𝑘 + 1))} = {(𝑃‘2), (𝑃‘3)})
3231eleq1d 2814 . . . . . . . . . . . . . . 15 (𝑘 = 2 → ({(𝑃𝑘), (𝑃‘(𝑘 + 1))} ∈ 𝐸 ↔ {(𝑃‘2), (𝑃‘3)} ∈ 𝐸))
3312, 13, 14, 18, 25, 32raltp 4714 . . . . . . . . . . . . . 14 (∀𝑘 ∈ {0, 1, 2} {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ∈ 𝐸 ↔ ({(𝑃‘0), (𝑃‘1)} ∈ 𝐸 ∧ {(𝑃‘1), (𝑃‘2)} ∈ 𝐸 ∧ {(𝑃‘2), (𝑃‘3)} ∈ 𝐸))
3411, 33bitrdi 286 . . . . . . . . . . . . 13 ((♯‘𝐹) = 3 → (∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃𝑘), (𝑃‘(𝑘 + 1))} ∈ 𝐸 ↔ ({(𝑃‘0), (𝑃‘1)} ∈ 𝐸 ∧ {(𝑃‘1), (𝑃‘2)} ∈ 𝐸 ∧ {(𝑃‘2), (𝑃‘3)} ∈ 𝐸)))
357, 34anbi12d 630 . . . . . . . . . . . 12 ((♯‘𝐹) = 3 → (((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃𝑘), (𝑃‘(𝑘 + 1))} ∈ 𝐸) ↔ ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘3)) ∧ ({(𝑃‘0), (𝑃‘1)} ∈ 𝐸 ∧ {(𝑃‘1), (𝑃‘2)} ∈ 𝐸 ∧ {(𝑃‘2), (𝑃‘3)} ∈ 𝐸))))
36 upgr3v3e3cycl.v . . . . . . . . . . . . . . . . . . 19 𝑉 = (Vtx‘𝐺)
3736wlkp 29450 . . . . . . . . . . . . . . . . . 18 (𝐹(Walks‘𝐺)𝑃𝑃:(0...(♯‘𝐹))⟶𝑉)
38 oveq2 7434 . . . . . . . . . . . . . . . . . . . . 21 ((♯‘𝐹) = 3 → (0...(♯‘𝐹)) = (0...3))
3938feq2d 6713 . . . . . . . . . . . . . . . . . . . 20 ((♯‘𝐹) = 3 → (𝑃:(0...(♯‘𝐹))⟶𝑉𝑃:(0...3)⟶𝑉))
40 id 22 . . . . . . . . . . . . . . . . . . . . . 22 (𝑃:(0...3)⟶𝑉𝑃:(0...3)⟶𝑉)
41 3nn0 12528 . . . . . . . . . . . . . . . . . . . . . . 23 3 ∈ ℕ0
42 0elfz 13638 . . . . . . . . . . . . . . . . . . . . . . 23 (3 ∈ ℕ0 → 0 ∈ (0...3))
4341, 42mp1i 13 . . . . . . . . . . . . . . . . . . . . . 22 (𝑃:(0...3)⟶𝑉 → 0 ∈ (0...3))
4440, 43ffvelcdmd 7100 . . . . . . . . . . . . . . . . . . . . 21 (𝑃:(0...3)⟶𝑉 → (𝑃‘0) ∈ 𝑉)
45 1nn0 12526 . . . . . . . . . . . . . . . . . . . . . 22 1 ∈ ℕ0
46 1lt3 12423 . . . . . . . . . . . . . . . . . . . . . 22 1 < 3
47 fvffz0 13659 . . . . . . . . . . . . . . . . . . . . . . 23 (((3 ∈ ℕ0 ∧ 1 ∈ ℕ0 ∧ 1 < 3) ∧ 𝑃:(0...3)⟶𝑉) → (𝑃‘1) ∈ 𝑉)
4847ex 411 . . . . . . . . . . . . . . . . . . . . . 22 ((3 ∈ ℕ0 ∧ 1 ∈ ℕ0 ∧ 1 < 3) → (𝑃:(0...3)⟶𝑉 → (𝑃‘1) ∈ 𝑉))
4941, 45, 46, 48mp3an 1457 . . . . . . . . . . . . . . . . . . . . 21 (𝑃:(0...3)⟶𝑉 → (𝑃‘1) ∈ 𝑉)
50 2nn0 12527 . . . . . . . . . . . . . . . . . . . . . 22 2 ∈ ℕ0
51 2lt3 12422 . . . . . . . . . . . . . . . . . . . . . 22 2 < 3
52 fvffz0 13659 . . . . . . . . . . . . . . . . . . . . . . 23 (((3 ∈ ℕ0 ∧ 2 ∈ ℕ0 ∧ 2 < 3) ∧ 𝑃:(0...3)⟶𝑉) → (𝑃‘2) ∈ 𝑉)
5352ex 411 . . . . . . . . . . . . . . . . . . . . . 22 ((3 ∈ ℕ0 ∧ 2 ∈ ℕ0 ∧ 2 < 3) → (𝑃:(0...3)⟶𝑉 → (𝑃‘2) ∈ 𝑉))
5441, 50, 51, 53mp3an 1457 . . . . . . . . . . . . . . . . . . . . 21 (𝑃:(0...3)⟶𝑉 → (𝑃‘2) ∈ 𝑉)
5544, 49, 543jca 1125 . . . . . . . . . . . . . . . . . . . 20 (𝑃:(0...3)⟶𝑉 → ((𝑃‘0) ∈ 𝑉 ∧ (𝑃‘1) ∈ 𝑉 ∧ (𝑃‘2) ∈ 𝑉))
5639, 55biimtrdi 252 . . . . . . . . . . . . . . . . . . 19 ((♯‘𝐹) = 3 → (𝑃:(0...(♯‘𝐹))⟶𝑉 → ((𝑃‘0) ∈ 𝑉 ∧ (𝑃‘1) ∈ 𝑉 ∧ (𝑃‘2) ∈ 𝑉)))
5756com12 32 . . . . . . . . . . . . . . . . . 18 (𝑃:(0...(♯‘𝐹))⟶𝑉 → ((♯‘𝐹) = 3 → ((𝑃‘0) ∈ 𝑉 ∧ (𝑃‘1) ∈ 𝑉 ∧ (𝑃‘2) ∈ 𝑉)))
582, 37, 573syl 18 . . . . . . . . . . . . . . . . 17 (𝐹(Paths‘𝐺)𝑃 → ((♯‘𝐹) = 3 → ((𝑃‘0) ∈ 𝑉 ∧ (𝑃‘1) ∈ 𝑉 ∧ (𝑃‘2) ∈ 𝑉)))
5958adantr 479 . . . . . . . . . . . . . . . 16 ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘3)) → ((♯‘𝐹) = 3 → ((𝑃‘0) ∈ 𝑉 ∧ (𝑃‘1) ∈ 𝑉 ∧ (𝑃‘2) ∈ 𝑉)))
6059adantr 479 . . . . . . . . . . . . . . 15 (((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘3)) ∧ ({(𝑃‘0), (𝑃‘1)} ∈ 𝐸 ∧ {(𝑃‘1), (𝑃‘2)} ∈ 𝐸 ∧ {(𝑃‘2), (𝑃‘3)} ∈ 𝐸)) → ((♯‘𝐹) = 3 → ((𝑃‘0) ∈ 𝑉 ∧ (𝑃‘1) ∈ 𝑉 ∧ (𝑃‘2) ∈ 𝑉)))
6160impcom 406 . . . . . . . . . . . . . 14 (((♯‘𝐹) = 3 ∧ ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘3)) ∧ ({(𝑃‘0), (𝑃‘1)} ∈ 𝐸 ∧ {(𝑃‘1), (𝑃‘2)} ∈ 𝐸 ∧ {(𝑃‘2), (𝑃‘3)} ∈ 𝐸))) → ((𝑃‘0) ∈ 𝑉 ∧ (𝑃‘1) ∈ 𝑉 ∧ (𝑃‘2) ∈ 𝑉))
62 preq2 4743 . . . . . . . . . . . . . . . . . . . 20 ((𝑃‘3) = (𝑃‘0) → {(𝑃‘2), (𝑃‘3)} = {(𝑃‘2), (𝑃‘0)})
6362eqcoms 2736 . . . . . . . . . . . . . . . . . . 19 ((𝑃‘0) = (𝑃‘3) → {(𝑃‘2), (𝑃‘3)} = {(𝑃‘2), (𝑃‘0)})
6463adantl 480 . . . . . . . . . . . . . . . . . 18 ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘3)) → {(𝑃‘2), (𝑃‘3)} = {(𝑃‘2), (𝑃‘0)})
6564eleq1d 2814 . . . . . . . . . . . . . . . . 17 ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘3)) → ({(𝑃‘2), (𝑃‘3)} ∈ 𝐸 ↔ {(𝑃‘2), (𝑃‘0)} ∈ 𝐸))
66653anbi3d 1438 . . . . . . . . . . . . . . . 16 ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘3)) → (({(𝑃‘0), (𝑃‘1)} ∈ 𝐸 ∧ {(𝑃‘1), (𝑃‘2)} ∈ 𝐸 ∧ {(𝑃‘2), (𝑃‘3)} ∈ 𝐸) ↔ ({(𝑃‘0), (𝑃‘1)} ∈ 𝐸 ∧ {(𝑃‘1), (𝑃‘2)} ∈ 𝐸 ∧ {(𝑃‘2), (𝑃‘0)} ∈ 𝐸)))
6766biimpa 475 . . . . . . . . . . . . . . 15 (((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘3)) ∧ ({(𝑃‘0), (𝑃‘1)} ∈ 𝐸 ∧ {(𝑃‘1), (𝑃‘2)} ∈ 𝐸 ∧ {(𝑃‘2), (𝑃‘3)} ∈ 𝐸)) → ({(𝑃‘0), (𝑃‘1)} ∈ 𝐸 ∧ {(𝑃‘1), (𝑃‘2)} ∈ 𝐸 ∧ {(𝑃‘2), (𝑃‘0)} ∈ 𝐸))
6867adantl 480 . . . . . . . . . . . . . 14 (((♯‘𝐹) = 3 ∧ ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘3)) ∧ ({(𝑃‘0), (𝑃‘1)} ∈ 𝐸 ∧ {(𝑃‘1), (𝑃‘2)} ∈ 𝐸 ∧ {(𝑃‘2), (𝑃‘3)} ∈ 𝐸))) → ({(𝑃‘0), (𝑃‘1)} ∈ 𝐸 ∧ {(𝑃‘1), (𝑃‘2)} ∈ 𝐸 ∧ {(𝑃‘2), (𝑃‘0)} ∈ 𝐸))
69 simpll 765 . . . . . . . . . . . . . . . . . . 19 (((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘3)) ∧ (♯‘𝐹) = 3) → 𝐹(Paths‘𝐺)𝑃)
70 breq2 5156 . . . . . . . . . . . . . . . . . . . . 21 ((♯‘𝐹) = 3 → (1 < (♯‘𝐹) ↔ 1 < 3))
7146, 70mpbiri 257 . . . . . . . . . . . . . . . . . . . 20 ((♯‘𝐹) = 3 → 1 < (♯‘𝐹))
7271adantl 480 . . . . . . . . . . . . . . . . . . 19 (((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘3)) ∧ (♯‘𝐹) = 3) → 1 < (♯‘𝐹))
73 3nn 12329 . . . . . . . . . . . . . . . . . . . . . 22 3 ∈ ℕ
74 lbfzo0 13712 . . . . . . . . . . . . . . . . . . . . . 22 (0 ∈ (0..^3) ↔ 3 ∈ ℕ)
7573, 74mpbir 230 . . . . . . . . . . . . . . . . . . . . 21 0 ∈ (0..^3)
7675, 8eleqtrrid 2836 . . . . . . . . . . . . . . . . . . . 20 ((♯‘𝐹) = 3 → 0 ∈ (0..^(♯‘𝐹)))
7776adantl 480 . . . . . . . . . . . . . . . . . . 19 (((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘3)) ∧ (♯‘𝐹) = 3) → 0 ∈ (0..^(♯‘𝐹)))
78 pthdadjvtx 29564 . . . . . . . . . . . . . . . . . . . 20 ((𝐹(Paths‘𝐺)𝑃 ∧ 1 < (♯‘𝐹) ∧ 0 ∈ (0..^(♯‘𝐹))) → (𝑃‘0) ≠ (𝑃‘(0 + 1)))
79 1e0p1 12757 . . . . . . . . . . . . . . . . . . . . . 22 1 = (0 + 1)
8079fveq2i 6905 . . . . . . . . . . . . . . . . . . . . 21 (𝑃‘1) = (𝑃‘(0 + 1))
8180neeq2i 3003 . . . . . . . . . . . . . . . . . . . 20 ((𝑃‘0) ≠ (𝑃‘1) ↔ (𝑃‘0) ≠ (𝑃‘(0 + 1)))
8278, 81sylibr 233 . . . . . . . . . . . . . . . . . . 19 ((𝐹(Paths‘𝐺)𝑃 ∧ 1 < (♯‘𝐹) ∧ 0 ∈ (0..^(♯‘𝐹))) → (𝑃‘0) ≠ (𝑃‘1))
8369, 72, 77, 82syl3anc 1368 . . . . . . . . . . . . . . . . . 18 (((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘3)) ∧ (♯‘𝐹) = 3) → (𝑃‘0) ≠ (𝑃‘1))
84 elfzo0 13713 . . . . . . . . . . . . . . . . . . . . . 22 (1 ∈ (0..^3) ↔ (1 ∈ ℕ0 ∧ 3 ∈ ℕ ∧ 1 < 3))
8545, 73, 46, 84mpbir3an 1338 . . . . . . . . . . . . . . . . . . . . 21 1 ∈ (0..^3)
8685, 8eleqtrrid 2836 . . . . . . . . . . . . . . . . . . . 20 ((♯‘𝐹) = 3 → 1 ∈ (0..^(♯‘𝐹)))
8786adantl 480 . . . . . . . . . . . . . . . . . . 19 (((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘3)) ∧ (♯‘𝐹) = 3) → 1 ∈ (0..^(♯‘𝐹)))
88 pthdadjvtx 29564 . . . . . . . . . . . . . . . . . . . 20 ((𝐹(Paths‘𝐺)𝑃 ∧ 1 < (♯‘𝐹) ∧ 1 ∈ (0..^(♯‘𝐹))) → (𝑃‘1) ≠ (𝑃‘(1 + 1)))
89 df-2 12313 . . . . . . . . . . . . . . . . . . . . . 22 2 = (1 + 1)
9089fveq2i 6905 . . . . . . . . . . . . . . . . . . . . 21 (𝑃‘2) = (𝑃‘(1 + 1))
9190neeq2i 3003 . . . . . . . . . . . . . . . . . . . 20 ((𝑃‘1) ≠ (𝑃‘2) ↔ (𝑃‘1) ≠ (𝑃‘(1 + 1)))
9288, 91sylibr 233 . . . . . . . . . . . . . . . . . . 19 ((𝐹(Paths‘𝐺)𝑃 ∧ 1 < (♯‘𝐹) ∧ 1 ∈ (0..^(♯‘𝐹))) → (𝑃‘1) ≠ (𝑃‘2))
9369, 72, 87, 92syl3anc 1368 . . . . . . . . . . . . . . . . . 18 (((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘3)) ∧ (♯‘𝐹) = 3) → (𝑃‘1) ≠ (𝑃‘2))
94 elfzo0 13713 . . . . . . . . . . . . . . . . . . . . . . 23 (2 ∈ (0..^3) ↔ (2 ∈ ℕ0 ∧ 3 ∈ ℕ ∧ 2 < 3))
9550, 73, 51, 94mpbir3an 1338 . . . . . . . . . . . . . . . . . . . . . 22 2 ∈ (0..^3)
9695, 8eleqtrrid 2836 . . . . . . . . . . . . . . . . . . . . 21 ((♯‘𝐹) = 3 → 2 ∈ (0..^(♯‘𝐹)))
9796adantl 480 . . . . . . . . . . . . . . . . . . . 20 (((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘3)) ∧ (♯‘𝐹) = 3) → 2 ∈ (0..^(♯‘𝐹)))
98 pthdadjvtx 29564 . . . . . . . . . . . . . . . . . . . 20 ((𝐹(Paths‘𝐺)𝑃 ∧ 1 < (♯‘𝐹) ∧ 2 ∈ (0..^(♯‘𝐹))) → (𝑃‘2) ≠ (𝑃‘(2 + 1)))
9969, 72, 97, 98syl3anc 1368 . . . . . . . . . . . . . . . . . . 19 (((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘3)) ∧ (♯‘𝐹) = 3) → (𝑃‘2) ≠ (𝑃‘(2 + 1)))
100 neeq2 3001 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑃‘0) = (𝑃‘3) → ((𝑃‘2) ≠ (𝑃‘0) ↔ (𝑃‘2) ≠ (𝑃‘3)))
101 df-3 12314 . . . . . . . . . . . . . . . . . . . . . . . 24 3 = (2 + 1)
102101fveq2i 6905 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑃‘3) = (𝑃‘(2 + 1))
103102neeq2i 3003 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑃‘2) ≠ (𝑃‘3) ↔ (𝑃‘2) ≠ (𝑃‘(2 + 1)))
104100, 103bitrdi 286 . . . . . . . . . . . . . . . . . . . . 21 ((𝑃‘0) = (𝑃‘3) → ((𝑃‘2) ≠ (𝑃‘0) ↔ (𝑃‘2) ≠ (𝑃‘(2 + 1))))
105104adantl 480 . . . . . . . . . . . . . . . . . . . 20 ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘3)) → ((𝑃‘2) ≠ (𝑃‘0) ↔ (𝑃‘2) ≠ (𝑃‘(2 + 1))))
106105adantr 479 . . . . . . . . . . . . . . . . . . 19 (((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘3)) ∧ (♯‘𝐹) = 3) → ((𝑃‘2) ≠ (𝑃‘0) ↔ (𝑃‘2) ≠ (𝑃‘(2 + 1))))
10799, 106mpbird 256 . . . . . . . . . . . . . . . . . 18 (((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘3)) ∧ (♯‘𝐹) = 3) → (𝑃‘2) ≠ (𝑃‘0))
10883, 93, 1073jca 1125 . . . . . . . . . . . . . . . . 17 (((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘3)) ∧ (♯‘𝐹) = 3) → ((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2) ∧ (𝑃‘2) ≠ (𝑃‘0)))
109108ex 411 . . . . . . . . . . . . . . . 16 ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘3)) → ((♯‘𝐹) = 3 → ((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2) ∧ (𝑃‘2) ≠ (𝑃‘0))))
110109adantr 479 . . . . . . . . . . . . . . 15 (((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘3)) ∧ ({(𝑃‘0), (𝑃‘1)} ∈ 𝐸 ∧ {(𝑃‘1), (𝑃‘2)} ∈ 𝐸 ∧ {(𝑃‘2), (𝑃‘3)} ∈ 𝐸)) → ((♯‘𝐹) = 3 → ((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2) ∧ (𝑃‘2) ≠ (𝑃‘0))))
111110impcom 406 . . . . . . . . . . . . . 14 (((♯‘𝐹) = 3 ∧ ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘3)) ∧ ({(𝑃‘0), (𝑃‘1)} ∈ 𝐸 ∧ {(𝑃‘1), (𝑃‘2)} ∈ 𝐸 ∧ {(𝑃‘2), (𝑃‘3)} ∈ 𝐸))) → ((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2) ∧ (𝑃‘2) ≠ (𝑃‘0)))
112 preq1 4742 . . . . . . . . . . . . . . . . . 18 (𝑎 = (𝑃‘0) → {𝑎, 𝑏} = {(𝑃‘0), 𝑏})
113112eleq1d 2814 . . . . . . . . . . . . . . . . 17 (𝑎 = (𝑃‘0) → ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝑃‘0), 𝑏} ∈ 𝐸))
114 preq2 4743 . . . . . . . . . . . . . . . . . 18 (𝑎 = (𝑃‘0) → {𝑐, 𝑎} = {𝑐, (𝑃‘0)})
115114eleq1d 2814 . . . . . . . . . . . . . . . . 17 (𝑎 = (𝑃‘0) → ({𝑐, 𝑎} ∈ 𝐸 ↔ {𝑐, (𝑃‘0)} ∈ 𝐸))
116113, 1153anbi13d 1434 . . . . . . . . . . . . . . . 16 (𝑎 = (𝑃‘0) → (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ↔ ({(𝑃‘0), 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, (𝑃‘0)} ∈ 𝐸)))
117 neeq1 3000 . . . . . . . . . . . . . . . . 17 (𝑎 = (𝑃‘0) → (𝑎𝑏 ↔ (𝑃‘0) ≠ 𝑏))
118 neeq2 3001 . . . . . . . . . . . . . . . . 17 (𝑎 = (𝑃‘0) → (𝑐𝑎𝑐 ≠ (𝑃‘0)))
119117, 1183anbi13d 1434 . . . . . . . . . . . . . . . 16 (𝑎 = (𝑃‘0) → ((𝑎𝑏𝑏𝑐𝑐𝑎) ↔ ((𝑃‘0) ≠ 𝑏𝑏𝑐𝑐 ≠ (𝑃‘0))))
120116, 119anbi12d 630 . . . . . . . . . . . . . . 15 (𝑎 = (𝑃‘0) → ((({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑎𝑏𝑏𝑐𝑐𝑎)) ↔ (({(𝑃‘0), 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, (𝑃‘0)} ∈ 𝐸) ∧ ((𝑃‘0) ≠ 𝑏𝑏𝑐𝑐 ≠ (𝑃‘0)))))
121 preq2 4743 . . . . . . . . . . . . . . . . . 18 (𝑏 = (𝑃‘1) → {(𝑃‘0), 𝑏} = {(𝑃‘0), (𝑃‘1)})
122121eleq1d 2814 . . . . . . . . . . . . . . . . 17 (𝑏 = (𝑃‘1) → ({(𝑃‘0), 𝑏} ∈ 𝐸 ↔ {(𝑃‘0), (𝑃‘1)} ∈ 𝐸))
123 preq1 4742 . . . . . . . . . . . . . . . . . 18 (𝑏 = (𝑃‘1) → {𝑏, 𝑐} = {(𝑃‘1), 𝑐})
124123eleq1d 2814 . . . . . . . . . . . . . . . . 17 (𝑏 = (𝑃‘1) → ({𝑏, 𝑐} ∈ 𝐸 ↔ {(𝑃‘1), 𝑐} ∈ 𝐸))
125122, 1243anbi12d 1433 . . . . . . . . . . . . . . . 16 (𝑏 = (𝑃‘1) → (({(𝑃‘0), 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, (𝑃‘0)} ∈ 𝐸) ↔ ({(𝑃‘0), (𝑃‘1)} ∈ 𝐸 ∧ {(𝑃‘1), 𝑐} ∈ 𝐸 ∧ {𝑐, (𝑃‘0)} ∈ 𝐸)))
126 neeq2 3001 . . . . . . . . . . . . . . . . 17 (𝑏 = (𝑃‘1) → ((𝑃‘0) ≠ 𝑏 ↔ (𝑃‘0) ≠ (𝑃‘1)))
127 neeq1 3000 . . . . . . . . . . . . . . . . 17 (𝑏 = (𝑃‘1) → (𝑏𝑐 ↔ (𝑃‘1) ≠ 𝑐))
128126, 1273anbi12d 1433 . . . . . . . . . . . . . . . 16 (𝑏 = (𝑃‘1) → (((𝑃‘0) ≠ 𝑏𝑏𝑐𝑐 ≠ (𝑃‘0)) ↔ ((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ 𝑐𝑐 ≠ (𝑃‘0))))
129125, 128anbi12d 630 . . . . . . . . . . . . . . 15 (𝑏 = (𝑃‘1) → ((({(𝑃‘0), 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, (𝑃‘0)} ∈ 𝐸) ∧ ((𝑃‘0) ≠ 𝑏𝑏𝑐𝑐 ≠ (𝑃‘0))) ↔ (({(𝑃‘0), (𝑃‘1)} ∈ 𝐸 ∧ {(𝑃‘1), 𝑐} ∈ 𝐸 ∧ {𝑐, (𝑃‘0)} ∈ 𝐸) ∧ ((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ 𝑐𝑐 ≠ (𝑃‘0)))))
130 preq2 4743 . . . . . . . . . . . . . . . . . 18 (𝑐 = (𝑃‘2) → {(𝑃‘1), 𝑐} = {(𝑃‘1), (𝑃‘2)})
131130eleq1d 2814 . . . . . . . . . . . . . . . . 17 (𝑐 = (𝑃‘2) → ({(𝑃‘1), 𝑐} ∈ 𝐸 ↔ {(𝑃‘1), (𝑃‘2)} ∈ 𝐸))
132 preq1 4742 . . . . . . . . . . . . . . . . . 18 (𝑐 = (𝑃‘2) → {𝑐, (𝑃‘0)} = {(𝑃‘2), (𝑃‘0)})
133132eleq1d 2814 . . . . . . . . . . . . . . . . 17 (𝑐 = (𝑃‘2) → ({𝑐, (𝑃‘0)} ∈ 𝐸 ↔ {(𝑃‘2), (𝑃‘0)} ∈ 𝐸))
134131, 1333anbi23d 1435 . . . . . . . . . . . . . . . 16 (𝑐 = (𝑃‘2) → (({(𝑃‘0), (𝑃‘1)} ∈ 𝐸 ∧ {(𝑃‘1), 𝑐} ∈ 𝐸 ∧ {𝑐, (𝑃‘0)} ∈ 𝐸) ↔ ({(𝑃‘0), (𝑃‘1)} ∈ 𝐸 ∧ {(𝑃‘1), (𝑃‘2)} ∈ 𝐸 ∧ {(𝑃‘2), (𝑃‘0)} ∈ 𝐸)))
135 neeq2 3001 . . . . . . . . . . . . . . . . 17 (𝑐 = (𝑃‘2) → ((𝑃‘1) ≠ 𝑐 ↔ (𝑃‘1) ≠ (𝑃‘2)))
136 neeq1 3000 . . . . . . . . . . . . . . . . 17 (𝑐 = (𝑃‘2) → (𝑐 ≠ (𝑃‘0) ↔ (𝑃‘2) ≠ (𝑃‘0)))
137135, 1363anbi23d 1435 . . . . . . . . . . . . . . . 16 (𝑐 = (𝑃‘2) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ 𝑐𝑐 ≠ (𝑃‘0)) ↔ ((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2) ∧ (𝑃‘2) ≠ (𝑃‘0))))
138134, 137anbi12d 630 . . . . . . . . . . . . . . 15 (𝑐 = (𝑃‘2) → ((({(𝑃‘0), (𝑃‘1)} ∈ 𝐸 ∧ {(𝑃‘1), 𝑐} ∈ 𝐸 ∧ {𝑐, (𝑃‘0)} ∈ 𝐸) ∧ ((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ 𝑐𝑐 ≠ (𝑃‘0))) ↔ (({(𝑃‘0), (𝑃‘1)} ∈ 𝐸 ∧ {(𝑃‘1), (𝑃‘2)} ∈ 𝐸 ∧ {(𝑃‘2), (𝑃‘0)} ∈ 𝐸) ∧ ((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2) ∧ (𝑃‘2) ≠ (𝑃‘0)))))
139120, 129, 138rspc3ev 3628 . . . . . . . . . . . . . 14 ((((𝑃‘0) ∈ 𝑉 ∧ (𝑃‘1) ∈ 𝑉 ∧ (𝑃‘2) ∈ 𝑉) ∧ (({(𝑃‘0), (𝑃‘1)} ∈ 𝐸 ∧ {(𝑃‘1), (𝑃‘2)} ∈ 𝐸 ∧ {(𝑃‘2), (𝑃‘0)} ∈ 𝐸) ∧ ((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘1) ≠ (𝑃‘2) ∧ (𝑃‘2) ≠ (𝑃‘0)))) → ∃𝑎𝑉𝑏𝑉𝑐𝑉 (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑎𝑏𝑏𝑐𝑐𝑎)))
14061, 68, 111, 139syl12anc 835 . . . . . . . . . . . . 13 (((♯‘𝐹) = 3 ∧ ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘3)) ∧ ({(𝑃‘0), (𝑃‘1)} ∈ 𝐸 ∧ {(𝑃‘1), (𝑃‘2)} ∈ 𝐸 ∧ {(𝑃‘2), (𝑃‘3)} ∈ 𝐸))) → ∃𝑎𝑉𝑏𝑉𝑐𝑉 (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑎𝑏𝑏𝑐𝑐𝑎)))
141140ex 411 . . . . . . . . . . . 12 ((♯‘𝐹) = 3 → (((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘3)) ∧ ({(𝑃‘0), (𝑃‘1)} ∈ 𝐸 ∧ {(𝑃‘1), (𝑃‘2)} ∈ 𝐸 ∧ {(𝑃‘2), (𝑃‘3)} ∈ 𝐸)) → ∃𝑎𝑉𝑏𝑉𝑐𝑉 (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑎𝑏𝑏𝑐𝑐𝑎))))
14235, 141sylbid 239 . . . . . . . . . . 11 ((♯‘𝐹) = 3 → (((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃𝑘), (𝑃‘(𝑘 + 1))} ∈ 𝐸) → ∃𝑎𝑉𝑏𝑉𝑐𝑉 (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑎𝑏𝑏𝑐𝑐𝑎))))
143142expd 414 . . . . . . . . . 10 ((♯‘𝐹) = 3 → ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃𝑘), (𝑃‘(𝑘 + 1))} ∈ 𝐸 → ∃𝑎𝑉𝑏𝑉𝑐𝑉 (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑎𝑏𝑏𝑐𝑐𝑎)))))
144143com13 88 . . . . . . . . 9 (∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃𝑘), (𝑃‘(𝑘 + 1))} ∈ 𝐸 → ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → ((♯‘𝐹) = 3 → ∃𝑎𝑉𝑏𝑉𝑐𝑉 (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑎𝑏𝑏𝑐𝑐𝑎)))))
1454, 144syl 17 . . . . . . . 8 ((𝐺 ∈ UPGraph ∧ 𝐹(Walks‘𝐺)𝑃) → ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → ((♯‘𝐹) = 3 → ∃𝑎𝑉𝑏𝑉𝑐𝑉 (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑎𝑏𝑏𝑐𝑐𝑎)))))
146145expcom 412 . . . . . . 7 (𝐹(Walks‘𝐺)𝑃 → (𝐺 ∈ UPGraph → ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → ((♯‘𝐹) = 3 → ∃𝑎𝑉𝑏𝑉𝑐𝑉 (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑎𝑏𝑏𝑐𝑐𝑎))))))
147146com23 86 . . . . . 6 (𝐹(Walks‘𝐺)𝑃 → ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (𝐺 ∈ UPGraph → ((♯‘𝐹) = 3 → ∃𝑎𝑉𝑏𝑉𝑐𝑉 (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑎𝑏𝑏𝑐𝑐𝑎))))))
148147expd 414 . . . . 5 (𝐹(Walks‘𝐺)𝑃 → (𝐹(Paths‘𝐺)𝑃 → ((𝑃‘0) = (𝑃‘(♯‘𝐹)) → (𝐺 ∈ UPGraph → ((♯‘𝐹) = 3 → ∃𝑎𝑉𝑏𝑉𝑐𝑉 (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑎𝑏𝑏𝑐𝑐𝑎)))))))
1492, 148mpcom 38 . . . 4 (𝐹(Paths‘𝐺)𝑃 → ((𝑃‘0) = (𝑃‘(♯‘𝐹)) → (𝐺 ∈ UPGraph → ((♯‘𝐹) = 3 → ∃𝑎𝑉𝑏𝑉𝑐𝑉 (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑎𝑏𝑏𝑐𝑐𝑎))))))
150149imp 405 . . 3 ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (𝐺 ∈ UPGraph → ((♯‘𝐹) = 3 → ∃𝑎𝑉𝑏𝑉𝑐𝑉 (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑎𝑏𝑏𝑐𝑐𝑎)))))
1511, 150syl 17 . 2 (𝐹(Cycles‘𝐺)𝑃 → (𝐺 ∈ UPGraph → ((♯‘𝐹) = 3 → ∃𝑎𝑉𝑏𝑉𝑐𝑉 (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑎𝑏𝑏𝑐𝑐𝑎)))))
1521513imp21 1111 1 ((𝐺 ∈ UPGraph ∧ 𝐹(Cycles‘𝐺)𝑃 ∧ (♯‘𝐹) = 3) → ∃𝑎𝑉𝑏𝑉𝑐𝑉 (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑎𝑏𝑏𝑐𝑐𝑎)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  wne 2937  wral 3058  wrex 3067  {cpr 4634  {ctp 4636   class class class wbr 5152  wf 6549  cfv 6553  (class class class)co 7426  0cc0 11146  1c1 11147   + caddc 11149   < clt 11286  cn 12250  2c2 12305  3c3 12306  0cn0 12510  ...cfz 13524  ..^cfzo 13667  chash 14329  Vtxcvtx 28829  Edgcedg 28880  UPGraphcupgr 28913  Walkscwlks 29430  Pathscpths 29546  Cyclesccycls 29619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-ifp 1061  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-tp 4637  df-op 4639  df-uni 4913  df-int 4954  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7877  df-1st 7999  df-2nd 8000  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-1o 8493  df-2o 8494  df-oadd 8497  df-er 8731  df-map 8853  df-pm 8854  df-en 8971  df-dom 8972  df-sdom 8973  df-fin 8974  df-dju 9932  df-card 9970  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-nn 12251  df-2 12313  df-3 12314  df-n0 12511  df-xnn0 12583  df-z 12597  df-uz 12861  df-fz 13525  df-fzo 13668  df-hash 14330  df-word 14505  df-edg 28881  df-uhgr 28891  df-upgr 28915  df-wlks 29433  df-trls 29526  df-pths 29550  df-cycls 29621
This theorem is referenced by:  umgr3v3e3cycl  30014
  Copyright terms: Public domain W3C validator