| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > neeq1i | Structured version Visualization version GIF version | ||
| Description: Inference for inequality. (Contributed by NM, 29-Apr-2005.) (Proof shortened by Wolf Lammen, 19-Nov-2019.) |
| Ref | Expression |
|---|---|
| neeq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| neeq1i | ⊢ (𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neeq1i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 2 | 1 | eqeq1i 2741 | . 2 ⊢ (𝐴 = 𝐶 ↔ 𝐵 = 𝐶) |
| 3 | 2 | necon3bii 2985 | 1 ⊢ (𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ≠ wne 2933 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2728 df-ne 2934 |
| This theorem is referenced by: eqnetri 3003 exss 5443 inisegn0 6090 suppvalbr 8168 brwitnlem 8524 en3lplem2 9632 hta 9916 kmlem3 10172 domtriomlem 10461 zorn2lem6 10520 konigthlem 10587 rpnnen1lem2 12998 rpnnen1lem1 12999 rpnnen1lem3 13000 rpnnen1lem5 13002 fsuppmapnn0fiubex 14015 seqf1olem1 14064 iscyg2 19868 gsumval3lem2 19892 opprirred 20387 ptclsg 23558 iscusp2 24245 dchrptlem1 27232 dchrptlem2 27233 disjex 32578 disjexc 32579 ufdprmidl 33561 constrrtlc1 33771 signsply0 34588 signstfveq0a 34613 bnj1177 35042 bnj1253 35053 fin2so 37636 br2coss 38461 unitscyglem3 42215 stoweidlem36 46032 aovnuoveq 47187 aovovn0oveq 47190 gpg5nbgrvtx03starlem3 48039 ovn0dmfun 48098 rrx2pnedifcoorneor 48663 2itscp 48728 aacllem 49632 |
| Copyright terms: Public domain | W3C validator |