| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > neeq1i | Structured version Visualization version GIF version | ||
| Description: Inference for inequality. (Contributed by NM, 29-Apr-2005.) (Proof shortened by Wolf Lammen, 19-Nov-2019.) |
| Ref | Expression |
|---|---|
| neeq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| neeq1i | ⊢ (𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neeq1i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 2 | 1 | eqeq1i 2734 | . 2 ⊢ (𝐴 = 𝐶 ↔ 𝐵 = 𝐶) |
| 3 | 2 | necon3bii 2977 | 1 ⊢ (𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ≠ wne 2925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-ne 2926 |
| This theorem is referenced by: eqnetri 2995 exss 5423 inisegn0 6069 suppvalbr 8143 brwitnlem 8471 en3lplem2 9566 hta 9850 kmlem3 10106 domtriomlem 10395 zorn2lem6 10454 konigthlem 10521 rpnnen1lem2 12936 rpnnen1lem1 12937 rpnnen1lem3 12938 rpnnen1lem5 12940 fsuppmapnn0fiubex 13957 seqf1olem1 14006 iscyg2 19812 gsumval3lem2 19836 opprirred 20331 ptclsg 23502 iscusp2 24189 dchrptlem1 27175 dchrptlem2 27176 disjex 32521 disjexc 32522 ufdprmidl 33512 constrrtlc1 33722 signsply0 34542 signstfveq0a 34567 bnj1177 34996 bnj1253 35007 vonf1owev 35095 fin2so 37601 br2coss 38429 unitscyglem3 42185 stoweidlem36 46034 aovnuoveq 47192 aovovn0oveq 47195 modm1p1ne 47371 gpg5nbgrvtx03starlem3 48061 ovn0dmfun 48144 rrx2pnedifcoorneor 48705 2itscp 48770 sectrcl 49011 invrcl 49013 isorcl 49022 aacllem 49790 |
| Copyright terms: Public domain | W3C validator |