| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > neeq1i | Structured version Visualization version GIF version | ||
| Description: Inference for inequality. (Contributed by NM, 29-Apr-2005.) (Proof shortened by Wolf Lammen, 19-Nov-2019.) |
| Ref | Expression |
|---|---|
| neeq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| neeq1i | ⊢ (𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neeq1i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 2 | 1 | eqeq1i 2734 | . 2 ⊢ (𝐴 = 𝐶 ↔ 𝐵 = 𝐶) |
| 3 | 2 | necon3bii 2977 | 1 ⊢ (𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ≠ wne 2925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-ne 2926 |
| This theorem is referenced by: eqnetri 2995 exss 5410 inisegn0 6053 suppvalbr 8104 brwitnlem 8432 en3lplem2 9528 hta 9812 kmlem3 10066 domtriomlem 10355 zorn2lem6 10414 konigthlem 10481 rpnnen1lem2 12896 rpnnen1lem1 12897 rpnnen1lem3 12898 rpnnen1lem5 12900 fsuppmapnn0fiubex 13917 seqf1olem1 13966 iscyg2 19779 gsumval3lem2 19803 opprirred 20325 ptclsg 23518 iscusp2 24205 dchrptlem1 27191 dchrptlem2 27192 disjex 32554 disjexc 32555 ufdprmidl 33488 constrrtlc1 33698 signsply0 34518 signstfveq0a 34543 bnj1177 34972 bnj1253 34983 vonf1owev 35080 fin2so 37586 br2coss 38414 unitscyglem3 42170 stoweidlem36 46018 aovnuoveq 47176 aovovn0oveq 47179 modm1p1ne 47355 gpg5nbgrvtx03starlem3 48055 ovn0dmfun 48141 rrx2pnedifcoorneor 48702 2itscp 48767 sectrcl 49008 invrcl 49010 isorcl 49019 aacllem 49787 |
| Copyright terms: Public domain | W3C validator |