Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > neeq1i | Structured version Visualization version GIF version |
Description: Inference for inequality. (Contributed by NM, 29-Apr-2005.) (Proof shortened by Wolf Lammen, 19-Nov-2019.) |
Ref | Expression |
---|---|
neeq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
neeq1i | ⊢ (𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neeq1i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
2 | 1 | eqeq1i 2742 | . 2 ⊢ (𝐴 = 𝐶 ↔ 𝐵 = 𝐶) |
3 | 2 | necon3bii 2994 | 1 ⊢ (𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1540 ≠ wne 2941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-9 2115 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1781 df-cleq 2729 df-ne 2942 |
This theorem is referenced by: eqnetri 3012 exss 5397 inisegn0 6024 suppvalbr 8030 brwitnlem 8387 en3lplem2 9449 hta 9733 kmlem3 9988 domtriomlem 10278 zorn2lem6 10337 konigthlem 10404 rpnnen1lem2 12797 rpnnen1lem1 12798 rpnnen1lem3 12799 rpnnen1lem5 12801 fsuppmapnn0fiubex 13792 seqf1olem1 13842 iscyg2 19557 gsumval3lem2 19582 opprirred 20019 ptclsg 22849 iscusp2 23537 dchrptlem1 26495 dchrptlem2 26496 disjex 31066 disjexc 31067 signsply0 32670 signstfveq0a 32695 bnj1177 33125 bnj1253 33136 fin2so 35836 br2coss 36672 stoweidlem36 43827 aovnuoveq 44948 aovovn0oveq 44951 ovn0dmfun 45583 rrx2pnedifcoorneor 46327 2itscp 46392 aacllem 46770 |
Copyright terms: Public domain | W3C validator |