![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > neeq1i | Structured version Visualization version GIF version |
Description: Inference for inequality. (Contributed by NM, 29-Apr-2005.) (Proof shortened by Wolf Lammen, 19-Nov-2019.) |
Ref | Expression |
---|---|
neeq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
neeq1i | ⊢ (𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neeq1i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
2 | 1 | eqeq1i 2735 | . 2 ⊢ (𝐴 = 𝐶 ↔ 𝐵 = 𝐶) |
3 | 2 | necon3bii 2991 | 1 ⊢ (𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ≠ wne 2938 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-9 2114 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-ex 1780 df-cleq 2722 df-ne 2939 |
This theorem is referenced by: eqnetri 3009 exss 5464 inisegn0 6098 suppvalbr 8154 brwitnlem 8511 en3lplem2 9612 hta 9896 kmlem3 10151 domtriomlem 10441 zorn2lem6 10500 konigthlem 10567 rpnnen1lem2 12967 rpnnen1lem1 12968 rpnnen1lem3 12969 rpnnen1lem5 12971 fsuppmapnn0fiubex 13963 seqf1olem1 14013 iscyg2 19793 gsumval3lem2 19817 opprirred 20315 ptclsg 23341 iscusp2 24029 dchrptlem1 27001 dchrptlem2 27002 disjex 32088 disjexc 32089 signsply0 33858 signstfveq0a 33883 bnj1177 34313 bnj1253 34324 fin2so 36780 br2coss 37613 stoweidlem36 45052 aovnuoveq 46199 aovovn0oveq 46202 ovn0dmfun 46834 rrx2pnedifcoorneor 47491 2itscp 47556 aacllem 47937 |
Copyright terms: Public domain | W3C validator |