| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > neeq1i | Structured version Visualization version GIF version | ||
| Description: Inference for inequality. (Contributed by NM, 29-Apr-2005.) (Proof shortened by Wolf Lammen, 19-Nov-2019.) |
| Ref | Expression |
|---|---|
| neeq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| neeq1i | ⊢ (𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neeq1i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 2 | 1 | eqeq1i 2735 | . 2 ⊢ (𝐴 = 𝐶 ↔ 𝐵 = 𝐶) |
| 3 | 2 | necon3bii 2978 | 1 ⊢ (𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ≠ wne 2926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2722 df-ne 2927 |
| This theorem is referenced by: eqnetri 2996 exss 5426 inisegn0 6072 suppvalbr 8146 brwitnlem 8474 en3lplem2 9573 hta 9857 kmlem3 10113 domtriomlem 10402 zorn2lem6 10461 konigthlem 10528 rpnnen1lem2 12943 rpnnen1lem1 12944 rpnnen1lem3 12945 rpnnen1lem5 12947 fsuppmapnn0fiubex 13964 seqf1olem1 14013 iscyg2 19819 gsumval3lem2 19843 opprirred 20338 ptclsg 23509 iscusp2 24196 dchrptlem1 27182 dchrptlem2 27183 disjex 32528 disjexc 32529 ufdprmidl 33519 constrrtlc1 33729 signsply0 34549 signstfveq0a 34574 bnj1177 35003 bnj1253 35014 vonf1owev 35102 fin2so 37608 br2coss 38436 unitscyglem3 42192 stoweidlem36 46041 aovnuoveq 47196 aovovn0oveq 47199 modm1p1ne 47375 gpg5nbgrvtx03starlem3 48065 ovn0dmfun 48148 rrx2pnedifcoorneor 48709 2itscp 48774 sectrcl 49015 invrcl 49017 isorcl 49026 aacllem 49794 |
| Copyright terms: Public domain | W3C validator |