| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > neeq1i | Structured version Visualization version GIF version | ||
| Description: Inference for inequality. (Contributed by NM, 29-Apr-2005.) (Proof shortened by Wolf Lammen, 19-Nov-2019.) |
| Ref | Expression |
|---|---|
| neeq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| neeq1i | ⊢ (𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neeq1i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 2 | 1 | eqeq1i 2736 | . 2 ⊢ (𝐴 = 𝐶 ↔ 𝐵 = 𝐶) |
| 3 | 2 | necon3bii 2980 | 1 ⊢ (𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ≠ wne 2928 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2723 df-ne 2929 |
| This theorem is referenced by: eqnetri 2998 exss 5403 inisegn0 6047 suppvalbr 8094 brwitnlem 8422 en3lplem2 9503 hta 9790 kmlem3 10044 domtriomlem 10333 zorn2lem6 10392 konigthlem 10459 rpnnen1lem2 12875 rpnnen1lem1 12876 rpnnen1lem3 12877 rpnnen1lem5 12879 fsuppmapnn0fiubex 13899 seqf1olem1 13948 iscyg2 19795 gsumval3lem2 19819 opprirred 20341 ptclsg 23531 iscusp2 24217 dchrptlem1 27203 dchrptlem2 27204 disjex 32570 disjexc 32571 ufdprmidl 33504 constrrtlc1 33743 signsply0 34562 signstfveq0a 34587 bnj1177 35016 bnj1253 35027 vonf1owev 35150 fin2so 37653 br2coss 38481 unitscyglem3 42236 stoweidlem36 46080 aovnuoveq 47228 aovovn0oveq 47231 modm1p1ne 47407 gpg5nbgrvtx03starlem3 48107 ovn0dmfun 48193 rrx2pnedifcoorneor 48754 2itscp 48819 sectrcl 49060 invrcl 49062 isorcl 49071 aacllem 49839 |
| Copyright terms: Public domain | W3C validator |