|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > neeq1i | Structured version Visualization version GIF version | ||
| Description: Inference for inequality. (Contributed by NM, 29-Apr-2005.) (Proof shortened by Wolf Lammen, 19-Nov-2019.) | 
| Ref | Expression | 
|---|---|
| neeq1i.1 | ⊢ 𝐴 = 𝐵 | 
| Ref | Expression | 
|---|---|
| neeq1i | ⊢ (𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐶) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | neeq1i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 2 | 1 | eqeq1i 2741 | . 2 ⊢ (𝐴 = 𝐶 ↔ 𝐵 = 𝐶) | 
| 3 | 2 | necon3bii 2992 | 1 ⊢ (𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐶) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 206 = wceq 1539 ≠ wne 2939 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-9 2117 ax-ext 2707 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-cleq 2728 df-ne 2940 | 
| This theorem is referenced by: eqnetri 3010 exss 5467 inisegn0 6115 suppvalbr 8190 brwitnlem 8546 en3lplem2 9654 hta 9938 kmlem3 10194 domtriomlem 10483 zorn2lem6 10542 konigthlem 10609 rpnnen1lem2 13020 rpnnen1lem1 13021 rpnnen1lem3 13022 rpnnen1lem5 13024 fsuppmapnn0fiubex 14034 seqf1olem1 14083 iscyg2 19901 gsumval3lem2 19925 opprirred 20423 ptclsg 23624 iscusp2 24312 dchrptlem1 27309 dchrptlem2 27310 disjex 32606 disjexc 32607 ufdprmidl 33570 constrrtlc1 33774 signsply0 34567 signstfveq0a 34592 bnj1177 35021 bnj1253 35032 fin2so 37615 br2coss 38440 unitscyglem3 42199 stoweidlem36 46056 aovnuoveq 47208 aovovn0oveq 47211 gpg5nbgrvtx03starlem3 48031 ovn0dmfun 48077 rrx2pnedifcoorneor 48642 2itscp 48707 aacllem 49375 | 
| Copyright terms: Public domain | W3C validator |