Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > neeq1i | Structured version Visualization version GIF version |
Description: Inference for inequality. (Contributed by NM, 29-Apr-2005.) (Proof shortened by Wolf Lammen, 19-Nov-2019.) |
Ref | Expression |
---|---|
neeq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
neeq1i | ⊢ (𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neeq1i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
2 | 1 | eqeq1i 2743 | . 2 ⊢ (𝐴 = 𝐶 ↔ 𝐵 = 𝐶) |
3 | 2 | necon3bii 2995 | 1 ⊢ (𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ≠ wne 2942 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-cleq 2730 df-ne 2943 |
This theorem is referenced by: eqnetri 3013 exss 5372 inisegn0 5995 suppvalbr 7952 brwitnlem 8299 en3lplem2 9301 hta 9586 kmlem3 9839 domtriomlem 10129 zorn2lem6 10188 konigthlem 10255 rpnnen1lem2 12646 rpnnen1lem1 12647 rpnnen1lem3 12648 rpnnen1lem5 12650 fsuppmapnn0fiubex 13640 seqf1olem1 13690 iscyg2 19397 gsumval3lem2 19422 opprirred 19859 ptclsg 22674 iscusp2 23362 dchrptlem1 26317 dchrptlem2 26318 disjex 30832 disjexc 30833 signsply0 32430 signstfveq0a 32455 bnj1177 32886 bnj1253 32897 fin2so 35691 br2coss 36488 stoweidlem36 43467 aovnuoveq 44570 aovovn0oveq 44573 ovn0dmfun 45206 rrx2pnedifcoorneor 45950 2itscp 46015 aacllem 46391 |
Copyright terms: Public domain | W3C validator |