![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > neeq1i | Structured version Visualization version GIF version |
Description: Inference for inequality. (Contributed by NM, 29-Apr-2005.) (Proof shortened by Wolf Lammen, 19-Nov-2019.) |
Ref | Expression |
---|---|
neeq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
neeq1i | ⊢ (𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neeq1i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
2 | 1 | eqeq1i 2745 | . 2 ⊢ (𝐴 = 𝐶 ↔ 𝐵 = 𝐶) |
3 | 2 | necon3bii 2999 | 1 ⊢ (𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 ≠ wne 2946 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 df-ne 2947 |
This theorem is referenced by: eqnetri 3017 exss 5483 inisegn0 6128 suppvalbr 8205 brwitnlem 8563 en3lplem2 9682 hta 9966 kmlem3 10222 domtriomlem 10511 zorn2lem6 10570 konigthlem 10637 rpnnen1lem2 13042 rpnnen1lem1 13043 rpnnen1lem3 13044 rpnnen1lem5 13046 fsuppmapnn0fiubex 14043 seqf1olem1 14092 iscyg2 19924 gsumval3lem2 19948 opprirred 20448 ptclsg 23644 iscusp2 24332 dchrptlem1 27326 dchrptlem2 27327 disjex 32614 disjexc 32615 ufdprmidl 33534 constrrtlc1 33723 signsply0 34528 signstfveq0a 34553 bnj1177 34982 bnj1253 34993 fin2so 37567 br2coss 38394 unitscyglem3 42154 stoweidlem36 45957 aovnuoveq 47106 aovovn0oveq 47109 ovn0dmfun 47879 rrx2pnedifcoorneor 48450 2itscp 48515 aacllem 48895 |
Copyright terms: Public domain | W3C validator |