![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > neeq1i | Structured version Visualization version GIF version |
Description: Inference for inequality. (Contributed by NM, 29-Apr-2005.) (Proof shortened by Wolf Lammen, 19-Nov-2019.) |
Ref | Expression |
---|---|
neeq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
neeq1i | ⊢ (𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neeq1i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
2 | 1 | eqeq1i 2738 | . 2 ⊢ (𝐴 = 𝐶 ↔ 𝐵 = 𝐶) |
3 | 2 | necon3bii 2994 | 1 ⊢ (𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1542 ≠ wne 2941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1783 df-cleq 2725 df-ne 2942 |
This theorem is referenced by: eqnetri 3012 exss 5464 inisegn0 6098 suppvalbr 8150 brwitnlem 8507 en3lplem2 9608 hta 9892 kmlem3 10147 domtriomlem 10437 zorn2lem6 10496 konigthlem 10563 rpnnen1lem2 12961 rpnnen1lem1 12962 rpnnen1lem3 12963 rpnnen1lem5 12965 fsuppmapnn0fiubex 13957 seqf1olem1 14007 iscyg2 19750 gsumval3lem2 19774 opprirred 20236 ptclsg 23119 iscusp2 23807 dchrptlem1 26767 dchrptlem2 26768 disjex 31823 disjexc 31824 signsply0 33562 signstfveq0a 33587 bnj1177 34017 bnj1253 34028 fin2so 36475 br2coss 37308 stoweidlem36 44752 aovnuoveq 45899 aovovn0oveq 45902 ovn0dmfun 46534 rrx2pnedifcoorneor 47402 2itscp 47467 aacllem 47848 |
Copyright terms: Public domain | W3C validator |