| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > neeq1i | Structured version Visualization version GIF version | ||
| Description: Inference for inequality. (Contributed by NM, 29-Apr-2005.) (Proof shortened by Wolf Lammen, 19-Nov-2019.) |
| Ref | Expression |
|---|---|
| neeq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| neeq1i | ⊢ (𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neeq1i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 2 | 1 | eqeq1i 2738 | . 2 ⊢ (𝐴 = 𝐶 ↔ 𝐵 = 𝐶) |
| 3 | 2 | necon3bii 2981 | 1 ⊢ (𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ≠ wne 2929 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2725 df-ne 2930 |
| This theorem is referenced by: eqnetri 2999 exss 5406 inisegn0 6051 suppvalbr 8100 brwitnlem 8428 en3lplem2 9510 hta 9797 kmlem3 10051 domtriomlem 10340 zorn2lem6 10399 konigthlem 10466 rpnnen1lem2 12877 rpnnen1lem1 12878 rpnnen1lem3 12879 rpnnen1lem5 12881 fsuppmapnn0fiubex 13901 seqf1olem1 13950 iscyg2 19796 gsumval3lem2 19820 opprirred 20342 ptclsg 23531 iscusp2 24217 dchrptlem1 27203 dchrptlem2 27204 disjex 32574 disjexc 32575 ufdprmidl 33513 constrrtlc1 33766 signsply0 34585 signstfveq0a 34610 bnj1177 35039 bnj1253 35050 vonf1owev 35173 fin2so 37668 br2coss 38561 unitscyglem3 42311 stoweidlem36 46159 aovnuoveq 47316 aovovn0oveq 47319 modm1p1ne 47495 gpg5nbgrvtx03starlem3 48195 ovn0dmfun 48281 rrx2pnedifcoorneor 48842 2itscp 48907 sectrcl 49148 invrcl 49150 isorcl 49159 aacllem 49927 |
| Copyright terms: Public domain | W3C validator |