Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > neeq1i | Structured version Visualization version GIF version |
Description: Inference for inequality. (Contributed by NM, 29-Apr-2005.) (Proof shortened by Wolf Lammen, 19-Nov-2019.) |
Ref | Expression |
---|---|
neeq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
neeq1i | ⊢ (𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neeq1i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
2 | 1 | eqeq1i 2743 | . 2 ⊢ (𝐴 = 𝐶 ↔ 𝐵 = 𝐶) |
3 | 2 | necon3bii 2996 | 1 ⊢ (𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ≠ wne 2943 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-cleq 2730 df-ne 2944 |
This theorem is referenced by: eqnetri 3014 exss 5378 inisegn0 6006 suppvalbr 7981 brwitnlem 8337 en3lplem2 9371 hta 9655 kmlem3 9908 domtriomlem 10198 zorn2lem6 10257 konigthlem 10324 rpnnen1lem2 12717 rpnnen1lem1 12718 rpnnen1lem3 12719 rpnnen1lem5 12721 fsuppmapnn0fiubex 13712 seqf1olem1 13762 iscyg2 19482 gsumval3lem2 19507 opprirred 19944 ptclsg 22766 iscusp2 23454 dchrptlem1 26412 dchrptlem2 26413 disjex 30931 disjexc 30932 signsply0 32530 signstfveq0a 32555 bnj1177 32986 bnj1253 32997 fin2so 35764 br2coss 36561 stoweidlem36 43577 aovnuoveq 44683 aovovn0oveq 44686 ovn0dmfun 45318 rrx2pnedifcoorneor 46062 2itscp 46127 aacllem 46505 |
Copyright terms: Public domain | W3C validator |