Proof of Theorem divnumden2
Step | Hyp | Ref
| Expression |
1 | | zssq 12625 |
. . . . . . . 8
⊢ ℤ
⊆ ℚ |
2 | | simp1 1134 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → 𝐴 ∈
ℤ) |
3 | 1, 2 | sselid 3915 |
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → 𝐴 ∈
ℚ) |
4 | | simp2 1135 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → 𝐵 ∈
ℤ) |
5 | 1, 4 | sselid 3915 |
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → 𝐵 ∈
ℚ) |
6 | | nnne0 11937 |
. . . . . . . . . . . 12
⊢ (-𝐵 ∈ ℕ → -𝐵 ≠ 0) |
7 | 6 | 3ad2ant3 1133 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → -𝐵 ≠ 0) |
8 | | neg0 11197 |
. . . . . . . . . . . 12
⊢ -0 =
0 |
9 | 8 | neeq2i 3008 |
. . . . . . . . . . 11
⊢ (-𝐵 ≠ -0 ↔ -𝐵 ≠ 0) |
10 | 7, 9 | sylibr 233 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → -𝐵 ≠ -0) |
11 | 10 | neneqd 2947 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → ¬
-𝐵 = -0) |
12 | 4 | zcnd 12356 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → 𝐵 ∈
ℂ) |
13 | | 0cnd 10899 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → 0 ∈
ℂ) |
14 | 12, 13 | neg11ad 11258 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (-𝐵 = -0 ↔ 𝐵 = 0)) |
15 | 11, 14 | mtbid 323 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → ¬
𝐵 = 0) |
16 | 15 | neqned 2949 |
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → 𝐵 ≠ 0) |
17 | | qdivcl 12639 |
. . . . . . 7
⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) ∈ ℚ) |
18 | 3, 5, 16, 17 | syl3anc 1369 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (𝐴 / 𝐵) ∈ ℚ) |
19 | | qnumcl 16372 |
. . . . . 6
⊢ ((𝐴 / 𝐵) ∈ ℚ → (numer‘(𝐴 / 𝐵)) ∈ ℤ) |
20 | 18, 19 | syl 17 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) →
(numer‘(𝐴 / 𝐵)) ∈
ℤ) |
21 | 20 | zcnd 12356 |
. . . 4
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) →
(numer‘(𝐴 / 𝐵)) ∈
ℂ) |
22 | | simpl 482 |
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ -𝐵 ∈ ℕ) → 𝐴 ∈
ℤ) |
23 | 22 | zcnd 12356 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ -𝐵 ∈ ℕ) → 𝐴 ∈
ℂ) |
24 | 23 | 3adant2 1129 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → 𝐴 ∈
ℂ) |
25 | 2, 4 | gcdcld 16143 |
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ∈
ℕ0) |
26 | 25 | nn0cnd 12225 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ∈ ℂ) |
27 | 26 | negcld 11249 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → -(𝐴 gcd 𝐵) ∈ ℂ) |
28 | 15 | intnand 488 |
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → ¬
(𝐴 = 0 ∧ 𝐵 = 0)) |
29 | | gcdeq0 16152 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) = 0 ↔ (𝐴 = 0 ∧ 𝐵 = 0))) |
30 | 29 | necon3abid 2979 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ≠ 0 ↔ ¬ (𝐴 = 0 ∧ 𝐵 = 0))) |
31 | 30 | 3adant3 1130 |
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → ((𝐴 gcd 𝐵) ≠ 0 ↔ ¬ (𝐴 = 0 ∧ 𝐵 = 0))) |
32 | 28, 31 | mpbird 256 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ≠ 0) |
33 | 26, 32 | negne0d 11260 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → -(𝐴 gcd 𝐵) ≠ 0) |
34 | 24, 27, 33 | divcld 11681 |
. . . 4
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (𝐴 / -(𝐴 gcd 𝐵)) ∈ ℂ) |
35 | 24, 12, 16 | divneg2d 11695 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → -(𝐴 / 𝐵) = (𝐴 / -𝐵)) |
36 | 35 | fveq2d 6760 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) →
(numer‘-(𝐴 / 𝐵)) = (numer‘(𝐴 / -𝐵))) |
37 | | numdenneg 31033 |
. . . . . . 7
⊢ ((𝐴 / 𝐵) ∈ ℚ →
((numer‘-(𝐴 / 𝐵)) = -(numer‘(𝐴 / 𝐵)) ∧ (denom‘-(𝐴 / 𝐵)) = (denom‘(𝐴 / 𝐵)))) |
38 | 37 | simpld 494 |
. . . . . 6
⊢ ((𝐴 / 𝐵) ∈ ℚ → (numer‘-(𝐴 / 𝐵)) = -(numer‘(𝐴 / 𝐵))) |
39 | 18, 38 | syl 17 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) →
(numer‘-(𝐴 / 𝐵)) = -(numer‘(𝐴 / 𝐵))) |
40 | | gcdneg 16157 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd -𝐵) = (𝐴 gcd 𝐵)) |
41 | 40 | 3adant3 1130 |
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (𝐴 gcd -𝐵) = (𝐴 gcd 𝐵)) |
42 | 41 | oveq2d 7271 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (𝐴 / (𝐴 gcd -𝐵)) = (𝐴 / (𝐴 gcd 𝐵))) |
43 | | divnumden 16380 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℤ ∧ -𝐵 ∈ ℕ) →
((numer‘(𝐴 / -𝐵)) = (𝐴 / (𝐴 gcd -𝐵)) ∧ (denom‘(𝐴 / -𝐵)) = (-𝐵 / (𝐴 gcd -𝐵)))) |
44 | 43 | simpld 494 |
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ -𝐵 ∈ ℕ) →
(numer‘(𝐴 / -𝐵)) = (𝐴 / (𝐴 gcd -𝐵))) |
45 | 44 | 3adant2 1129 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) →
(numer‘(𝐴 / -𝐵)) = (𝐴 / (𝐴 gcd -𝐵))) |
46 | 24, 27, 33 | divnegd 11694 |
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → -(𝐴 / -(𝐴 gcd 𝐵)) = (-𝐴 / -(𝐴 gcd 𝐵))) |
47 | 24, 26, 32 | div2negd 11696 |
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (-𝐴 / -(𝐴 gcd 𝐵)) = (𝐴 / (𝐴 gcd 𝐵))) |
48 | 46, 47 | eqtrd 2778 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → -(𝐴 / -(𝐴 gcd 𝐵)) = (𝐴 / (𝐴 gcd 𝐵))) |
49 | 42, 45, 48 | 3eqtr4d 2788 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) →
(numer‘(𝐴 / -𝐵)) = -(𝐴 / -(𝐴 gcd 𝐵))) |
50 | 36, 39, 49 | 3eqtr3d 2786 |
. . . 4
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) →
-(numer‘(𝐴 / 𝐵)) = -(𝐴 / -(𝐴 gcd 𝐵))) |
51 | 21, 34, 50 | neg11d 11274 |
. . 3
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) →
(numer‘(𝐴 / 𝐵)) = (𝐴 / -(𝐴 gcd 𝐵))) |
52 | 24, 26, 32 | divneg2d 11695 |
. . 3
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → -(𝐴 / (𝐴 gcd 𝐵)) = (𝐴 / -(𝐴 gcd 𝐵))) |
53 | 51, 52 | eqtr4d 2781 |
. 2
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) →
(numer‘(𝐴 / 𝐵)) = -(𝐴 / (𝐴 gcd 𝐵))) |
54 | 35 | fveq2d 6760 |
. . . 4
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) →
(denom‘-(𝐴 / 𝐵)) = (denom‘(𝐴 / -𝐵))) |
55 | 37 | simprd 495 |
. . . . 5
⊢ ((𝐴 / 𝐵) ∈ ℚ → (denom‘-(𝐴 / 𝐵)) = (denom‘(𝐴 / 𝐵))) |
56 | 18, 55 | syl 17 |
. . . 4
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) →
(denom‘-(𝐴 / 𝐵)) = (denom‘(𝐴 / 𝐵))) |
57 | 41 | oveq2d 7271 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (-𝐵 / (𝐴 gcd -𝐵)) = (-𝐵 / (𝐴 gcd 𝐵))) |
58 | 43 | simprd 495 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ -𝐵 ∈ ℕ) →
(denom‘(𝐴 / -𝐵)) = (-𝐵 / (𝐴 gcd -𝐵))) |
59 | 58 | 3adant2 1129 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) →
(denom‘(𝐴 / -𝐵)) = (-𝐵 / (𝐴 gcd -𝐵))) |
60 | 12, 26, 32 | divneg2d 11695 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → -(𝐵 / (𝐴 gcd 𝐵)) = (𝐵 / -(𝐴 gcd 𝐵))) |
61 | 12, 26, 32 | divnegd 11694 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → -(𝐵 / (𝐴 gcd 𝐵)) = (-𝐵 / (𝐴 gcd 𝐵))) |
62 | 60, 61 | eqtr3d 2780 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (𝐵 / -(𝐴 gcd 𝐵)) = (-𝐵 / (𝐴 gcd 𝐵))) |
63 | 57, 59, 62 | 3eqtr4d 2788 |
. . . 4
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) →
(denom‘(𝐴 / -𝐵)) = (𝐵 / -(𝐴 gcd 𝐵))) |
64 | 54, 56, 63 | 3eqtr3d 2786 |
. . 3
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) →
(denom‘(𝐴 / 𝐵)) = (𝐵 / -(𝐴 gcd 𝐵))) |
65 | 64, 60 | eqtr4d 2781 |
. 2
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) →
(denom‘(𝐴 / 𝐵)) = -(𝐵 / (𝐴 gcd 𝐵))) |
66 | 53, 65 | jca 511 |
1
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) →
((numer‘(𝐴 / 𝐵)) = -(𝐴 / (𝐴 gcd 𝐵)) ∧ (denom‘(𝐴 / 𝐵)) = -(𝐵 / (𝐴 gcd 𝐵)))) |