Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  divnumden2 Structured version   Visualization version   GIF version

Theorem divnumden2 30274
Description: Calculate the reduced form of a quotient using gcd. This version extends divnumden 15938 for the negative integers. (Contributed by Thierry Arnoux, 25-Oct-2017.)
Assertion
Ref Expression
divnumden2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → ((numer‘(𝐴 / 𝐵)) = -(𝐴 / (𝐴 gcd 𝐵)) ∧ (denom‘(𝐴 / 𝐵)) = -(𝐵 / (𝐴 gcd 𝐵))))

Proof of Theorem divnumden2
StepHypRef Expression
1 zssq 12167 . . . . . . . 8 ℤ ⊆ ℚ
2 simp1 1116 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → 𝐴 ∈ ℤ)
31, 2sseldi 3855 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → 𝐴 ∈ ℚ)
4 simp2 1117 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → 𝐵 ∈ ℤ)
51, 4sseldi 3855 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → 𝐵 ∈ ℚ)
6 nnne0 11471 . . . . . . . . . . . 12 (-𝐵 ∈ ℕ → -𝐵 ≠ 0)
763ad2ant3 1115 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → -𝐵 ≠ 0)
8 neg0 10729 . . . . . . . . . . . 12 -0 = 0
98neeq2i 3029 . . . . . . . . . . 11 (-𝐵 ≠ -0 ↔ -𝐵 ≠ 0)
107, 9sylibr 226 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → -𝐵 ≠ -0)
1110neneqd 2969 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → ¬ -𝐵 = -0)
124zcnd 11898 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → 𝐵 ∈ ℂ)
13 0cnd 10428 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → 0 ∈ ℂ)
1412, 13neg11ad 10790 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (-𝐵 = -0 ↔ 𝐵 = 0))
1511, 14mtbid 316 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → ¬ 𝐵 = 0)
1615neqned 2971 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → 𝐵 ≠ 0)
17 qdivcl 12181 . . . . . . 7 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) ∈ ℚ)
183, 5, 16, 17syl3anc 1351 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (𝐴 / 𝐵) ∈ ℚ)
19 qnumcl 15930 . . . . . 6 ((𝐴 / 𝐵) ∈ ℚ → (numer‘(𝐴 / 𝐵)) ∈ ℤ)
2018, 19syl 17 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (numer‘(𝐴 / 𝐵)) ∈ ℤ)
2120zcnd 11898 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (numer‘(𝐴 / 𝐵)) ∈ ℂ)
22 simpl 475 . . . . . . 7 ((𝐴 ∈ ℤ ∧ -𝐵 ∈ ℕ) → 𝐴 ∈ ℤ)
2322zcnd 11898 . . . . . 6 ((𝐴 ∈ ℤ ∧ -𝐵 ∈ ℕ) → 𝐴 ∈ ℂ)
24233adant2 1111 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → 𝐴 ∈ ℂ)
252, 4gcdcld 15711 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ∈ ℕ0)
2625nn0cnd 11766 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ∈ ℂ)
2726negcld 10781 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → -(𝐴 gcd 𝐵) ∈ ℂ)
2815intnand 481 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → ¬ (𝐴 = 0 ∧ 𝐵 = 0))
29 gcdeq0 15719 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) = 0 ↔ (𝐴 = 0 ∧ 𝐵 = 0)))
3029necon3abid 3000 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ≠ 0 ↔ ¬ (𝐴 = 0 ∧ 𝐵 = 0)))
31303adant3 1112 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → ((𝐴 gcd 𝐵) ≠ 0 ↔ ¬ (𝐴 = 0 ∧ 𝐵 = 0)))
3228, 31mpbird 249 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ≠ 0)
3326, 32negne0d 10792 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → -(𝐴 gcd 𝐵) ≠ 0)
3424, 27, 33divcld 11213 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (𝐴 / -(𝐴 gcd 𝐵)) ∈ ℂ)
3524, 12, 16divneg2d 11227 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → -(𝐴 / 𝐵) = (𝐴 / -𝐵))
3635fveq2d 6501 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (numer‘-(𝐴 / 𝐵)) = (numer‘(𝐴 / -𝐵)))
37 numdenneg 30273 . . . . . . 7 ((𝐴 / 𝐵) ∈ ℚ → ((numer‘-(𝐴 / 𝐵)) = -(numer‘(𝐴 / 𝐵)) ∧ (denom‘-(𝐴 / 𝐵)) = (denom‘(𝐴 / 𝐵))))
3837simpld 487 . . . . . 6 ((𝐴 / 𝐵) ∈ ℚ → (numer‘-(𝐴 / 𝐵)) = -(numer‘(𝐴 / 𝐵)))
3918, 38syl 17 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (numer‘-(𝐴 / 𝐵)) = -(numer‘(𝐴 / 𝐵)))
40 gcdneg 15724 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd -𝐵) = (𝐴 gcd 𝐵))
41403adant3 1112 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (𝐴 gcd -𝐵) = (𝐴 gcd 𝐵))
4241oveq2d 6990 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (𝐴 / (𝐴 gcd -𝐵)) = (𝐴 / (𝐴 gcd 𝐵)))
43 divnumden 15938 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ -𝐵 ∈ ℕ) → ((numer‘(𝐴 / -𝐵)) = (𝐴 / (𝐴 gcd -𝐵)) ∧ (denom‘(𝐴 / -𝐵)) = (-𝐵 / (𝐴 gcd -𝐵))))
4443simpld 487 . . . . . . 7 ((𝐴 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (numer‘(𝐴 / -𝐵)) = (𝐴 / (𝐴 gcd -𝐵)))
45443adant2 1111 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (numer‘(𝐴 / -𝐵)) = (𝐴 / (𝐴 gcd -𝐵)))
4624, 27, 33divnegd 11226 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → -(𝐴 / -(𝐴 gcd 𝐵)) = (-𝐴 / -(𝐴 gcd 𝐵)))
4724, 26, 32div2negd 11228 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (-𝐴 / -(𝐴 gcd 𝐵)) = (𝐴 / (𝐴 gcd 𝐵)))
4846, 47eqtrd 2811 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → -(𝐴 / -(𝐴 gcd 𝐵)) = (𝐴 / (𝐴 gcd 𝐵)))
4942, 45, 483eqtr4d 2821 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (numer‘(𝐴 / -𝐵)) = -(𝐴 / -(𝐴 gcd 𝐵)))
5036, 39, 493eqtr3d 2819 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → -(numer‘(𝐴 / 𝐵)) = -(𝐴 / -(𝐴 gcd 𝐵)))
5121, 34, 50neg11d 10806 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (numer‘(𝐴 / 𝐵)) = (𝐴 / -(𝐴 gcd 𝐵)))
5224, 26, 32divneg2d 11227 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → -(𝐴 / (𝐴 gcd 𝐵)) = (𝐴 / -(𝐴 gcd 𝐵)))
5351, 52eqtr4d 2814 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (numer‘(𝐴 / 𝐵)) = -(𝐴 / (𝐴 gcd 𝐵)))
5435fveq2d 6501 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (denom‘-(𝐴 / 𝐵)) = (denom‘(𝐴 / -𝐵)))
5537simprd 488 . . . . 5 ((𝐴 / 𝐵) ∈ ℚ → (denom‘-(𝐴 / 𝐵)) = (denom‘(𝐴 / 𝐵)))
5618, 55syl 17 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (denom‘-(𝐴 / 𝐵)) = (denom‘(𝐴 / 𝐵)))
5741oveq2d 6990 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (-𝐵 / (𝐴 gcd -𝐵)) = (-𝐵 / (𝐴 gcd 𝐵)))
5843simprd 488 . . . . . 6 ((𝐴 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (denom‘(𝐴 / -𝐵)) = (-𝐵 / (𝐴 gcd -𝐵)))
59583adant2 1111 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (denom‘(𝐴 / -𝐵)) = (-𝐵 / (𝐴 gcd -𝐵)))
6012, 26, 32divneg2d 11227 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → -(𝐵 / (𝐴 gcd 𝐵)) = (𝐵 / -(𝐴 gcd 𝐵)))
6112, 26, 32divnegd 11226 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → -(𝐵 / (𝐴 gcd 𝐵)) = (-𝐵 / (𝐴 gcd 𝐵)))
6260, 61eqtr3d 2813 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (𝐵 / -(𝐴 gcd 𝐵)) = (-𝐵 / (𝐴 gcd 𝐵)))
6357, 59, 623eqtr4d 2821 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (denom‘(𝐴 / -𝐵)) = (𝐵 / -(𝐴 gcd 𝐵)))
6454, 56, 633eqtr3d 2819 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (denom‘(𝐴 / 𝐵)) = (𝐵 / -(𝐴 gcd 𝐵)))
6564, 60eqtr4d 2814 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (denom‘(𝐴 / 𝐵)) = -(𝐵 / (𝐴 gcd 𝐵)))
6653, 65jca 504 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → ((numer‘(𝐴 / 𝐵)) = -(𝐴 / (𝐴 gcd 𝐵)) ∧ (denom‘(𝐴 / 𝐵)) = -(𝐵 / (𝐴 gcd 𝐵))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 387  w3a 1068   = wceq 1507  wcel 2048  wne 2964  cfv 6186  (class class class)co 6974  cc 10329  0cc0 10331  -cneg 10667   / cdiv 11094  cn 11435  cz 11790  cq 12159   gcd cgcd 15697  numercnumer 15923  denomcdenom 15924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1964  ax-8 2050  ax-9 2057  ax-10 2077  ax-11 2091  ax-12 2104  ax-13 2299  ax-ext 2747  ax-sep 5058  ax-nul 5065  ax-pow 5117  ax-pr 5184  ax-un 7277  ax-cnex 10387  ax-resscn 10388  ax-1cn 10389  ax-icn 10390  ax-addcl 10391  ax-addrcl 10392  ax-mulcl 10393  ax-mulrcl 10394  ax-mulcom 10395  ax-addass 10396  ax-mulass 10397  ax-distr 10398  ax-i2m1 10399  ax-1ne0 10400  ax-1rid 10401  ax-rnegex 10402  ax-rrecex 10403  ax-cnre 10404  ax-pre-lttri 10405  ax-pre-lttrn 10406  ax-pre-ltadd 10407  ax-pre-mulgt0 10408  ax-pre-sup 10409
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2014  df-mo 2544  df-eu 2580  df-clab 2756  df-cleq 2768  df-clel 2843  df-nfc 2915  df-ne 2965  df-nel 3071  df-ral 3090  df-rex 3091  df-reu 3092  df-rmo 3093  df-rab 3094  df-v 3414  df-sbc 3681  df-csb 3786  df-dif 3831  df-un 3833  df-in 3835  df-ss 3842  df-pss 3844  df-nul 4178  df-if 4349  df-pw 4422  df-sn 4440  df-pr 4442  df-tp 4444  df-op 4446  df-uni 4711  df-iun 4792  df-br 4928  df-opab 4990  df-mpt 5007  df-tr 5029  df-id 5309  df-eprel 5314  df-po 5323  df-so 5324  df-fr 5363  df-we 5365  df-xp 5410  df-rel 5411  df-cnv 5412  df-co 5413  df-dm 5414  df-rn 5415  df-res 5416  df-ima 5417  df-pred 5984  df-ord 6030  df-on 6031  df-lim 6032  df-suc 6033  df-iota 6150  df-fun 6188  df-fn 6189  df-f 6190  df-f1 6191  df-fo 6192  df-f1o 6193  df-fv 6194  df-riota 6935  df-ov 6977  df-oprab 6978  df-mpo 6979  df-om 7395  df-1st 7498  df-2nd 7499  df-wrecs 7747  df-recs 7809  df-rdg 7847  df-er 8085  df-en 8303  df-dom 8304  df-sdom 8305  df-sup 8697  df-inf 8698  df-pnf 10472  df-mnf 10473  df-xr 10474  df-ltxr 10475  df-le 10476  df-sub 10668  df-neg 10669  df-div 11095  df-nn 11436  df-2 11500  df-3 11501  df-n0 11705  df-z 11791  df-uz 12056  df-q 12160  df-rp 12202  df-fl 12974  df-mod 13050  df-seq 13182  df-exp 13242  df-cj 14313  df-re 14314  df-im 14315  df-sqrt 14449  df-abs 14450  df-dvds 15462  df-gcd 15698  df-numer 15925  df-denom 15926
This theorem is referenced by:  qqhval2lem  30857
  Copyright terms: Public domain W3C validator