Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  divnumden2 Structured version   Visualization version   GIF version

Theorem divnumden2 32794
Description: Calculate the reduced form of a quotient using gcd. This version extends divnumden 16767 for the negative integers. (Contributed by Thierry Arnoux, 25-Oct-2017.)
Assertion
Ref Expression
divnumden2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → ((numer‘(𝐴 / 𝐵)) = -(𝐴 / (𝐴 gcd 𝐵)) ∧ (denom‘(𝐴 / 𝐵)) = -(𝐵 / (𝐴 gcd 𝐵))))

Proof of Theorem divnumden2
StepHypRef Expression
1 zssq 12972 . . . . . . . 8 ℤ ⊆ ℚ
2 simp1 1136 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → 𝐴 ∈ ℤ)
31, 2sselid 3956 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → 𝐴 ∈ ℚ)
4 simp2 1137 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → 𝐵 ∈ ℤ)
51, 4sselid 3956 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → 𝐵 ∈ ℚ)
6 nnne0 12274 . . . . . . . . . . . 12 (-𝐵 ∈ ℕ → -𝐵 ≠ 0)
763ad2ant3 1135 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → -𝐵 ≠ 0)
8 neg0 11529 . . . . . . . . . . . 12 -0 = 0
98neeq2i 2997 . . . . . . . . . . 11 (-𝐵 ≠ -0 ↔ -𝐵 ≠ 0)
107, 9sylibr 234 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → -𝐵 ≠ -0)
1110neneqd 2937 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → ¬ -𝐵 = -0)
124zcnd 12698 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → 𝐵 ∈ ℂ)
13 0cnd 11228 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → 0 ∈ ℂ)
1412, 13neg11ad 11590 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (-𝐵 = -0 ↔ 𝐵 = 0))
1511, 14mtbid 324 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → ¬ 𝐵 = 0)
1615neqned 2939 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → 𝐵 ≠ 0)
17 qdivcl 12986 . . . . . . 7 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) ∈ ℚ)
183, 5, 16, 17syl3anc 1373 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (𝐴 / 𝐵) ∈ ℚ)
19 qnumcl 16759 . . . . . 6 ((𝐴 / 𝐵) ∈ ℚ → (numer‘(𝐴 / 𝐵)) ∈ ℤ)
2018, 19syl 17 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (numer‘(𝐴 / 𝐵)) ∈ ℤ)
2120zcnd 12698 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (numer‘(𝐴 / 𝐵)) ∈ ℂ)
22 simpl 482 . . . . . . 7 ((𝐴 ∈ ℤ ∧ -𝐵 ∈ ℕ) → 𝐴 ∈ ℤ)
2322zcnd 12698 . . . . . 6 ((𝐴 ∈ ℤ ∧ -𝐵 ∈ ℕ) → 𝐴 ∈ ℂ)
24233adant2 1131 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → 𝐴 ∈ ℂ)
252, 4gcdcld 16527 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ∈ ℕ0)
2625nn0cnd 12564 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ∈ ℂ)
2726negcld 11581 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → -(𝐴 gcd 𝐵) ∈ ℂ)
2815intnand 488 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → ¬ (𝐴 = 0 ∧ 𝐵 = 0))
29 gcdeq0 16536 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) = 0 ↔ (𝐴 = 0 ∧ 𝐵 = 0)))
3029necon3abid 2968 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ≠ 0 ↔ ¬ (𝐴 = 0 ∧ 𝐵 = 0)))
31303adant3 1132 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → ((𝐴 gcd 𝐵) ≠ 0 ↔ ¬ (𝐴 = 0 ∧ 𝐵 = 0)))
3228, 31mpbird 257 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ≠ 0)
3326, 32negne0d 11592 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → -(𝐴 gcd 𝐵) ≠ 0)
3424, 27, 33divcld 12017 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (𝐴 / -(𝐴 gcd 𝐵)) ∈ ℂ)
3524, 12, 16divneg2d 12031 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → -(𝐴 / 𝐵) = (𝐴 / -𝐵))
3635fveq2d 6880 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (numer‘-(𝐴 / 𝐵)) = (numer‘(𝐴 / -𝐵)))
37 numdenneg 32793 . . . . . . 7 ((𝐴 / 𝐵) ∈ ℚ → ((numer‘-(𝐴 / 𝐵)) = -(numer‘(𝐴 / 𝐵)) ∧ (denom‘-(𝐴 / 𝐵)) = (denom‘(𝐴 / 𝐵))))
3837simpld 494 . . . . . 6 ((𝐴 / 𝐵) ∈ ℚ → (numer‘-(𝐴 / 𝐵)) = -(numer‘(𝐴 / 𝐵)))
3918, 38syl 17 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (numer‘-(𝐴 / 𝐵)) = -(numer‘(𝐴 / 𝐵)))
40 gcdneg 16541 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd -𝐵) = (𝐴 gcd 𝐵))
41403adant3 1132 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (𝐴 gcd -𝐵) = (𝐴 gcd 𝐵))
4241oveq2d 7421 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (𝐴 / (𝐴 gcd -𝐵)) = (𝐴 / (𝐴 gcd 𝐵)))
43 divnumden 16767 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ -𝐵 ∈ ℕ) → ((numer‘(𝐴 / -𝐵)) = (𝐴 / (𝐴 gcd -𝐵)) ∧ (denom‘(𝐴 / -𝐵)) = (-𝐵 / (𝐴 gcd -𝐵))))
4443simpld 494 . . . . . . 7 ((𝐴 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (numer‘(𝐴 / -𝐵)) = (𝐴 / (𝐴 gcd -𝐵)))
45443adant2 1131 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (numer‘(𝐴 / -𝐵)) = (𝐴 / (𝐴 gcd -𝐵)))
4624, 27, 33divnegd 12030 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → -(𝐴 / -(𝐴 gcd 𝐵)) = (-𝐴 / -(𝐴 gcd 𝐵)))
4724, 26, 32div2negd 12032 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (-𝐴 / -(𝐴 gcd 𝐵)) = (𝐴 / (𝐴 gcd 𝐵)))
4846, 47eqtrd 2770 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → -(𝐴 / -(𝐴 gcd 𝐵)) = (𝐴 / (𝐴 gcd 𝐵)))
4942, 45, 483eqtr4d 2780 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (numer‘(𝐴 / -𝐵)) = -(𝐴 / -(𝐴 gcd 𝐵)))
5036, 39, 493eqtr3d 2778 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → -(numer‘(𝐴 / 𝐵)) = -(𝐴 / -(𝐴 gcd 𝐵)))
5121, 34, 50neg11d 11606 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (numer‘(𝐴 / 𝐵)) = (𝐴 / -(𝐴 gcd 𝐵)))
5224, 26, 32divneg2d 12031 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → -(𝐴 / (𝐴 gcd 𝐵)) = (𝐴 / -(𝐴 gcd 𝐵)))
5351, 52eqtr4d 2773 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (numer‘(𝐴 / 𝐵)) = -(𝐴 / (𝐴 gcd 𝐵)))
5435fveq2d 6880 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (denom‘-(𝐴 / 𝐵)) = (denom‘(𝐴 / -𝐵)))
5537simprd 495 . . . . 5 ((𝐴 / 𝐵) ∈ ℚ → (denom‘-(𝐴 / 𝐵)) = (denom‘(𝐴 / 𝐵)))
5618, 55syl 17 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (denom‘-(𝐴 / 𝐵)) = (denom‘(𝐴 / 𝐵)))
5741oveq2d 7421 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (-𝐵 / (𝐴 gcd -𝐵)) = (-𝐵 / (𝐴 gcd 𝐵)))
5843simprd 495 . . . . . 6 ((𝐴 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (denom‘(𝐴 / -𝐵)) = (-𝐵 / (𝐴 gcd -𝐵)))
59583adant2 1131 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (denom‘(𝐴 / -𝐵)) = (-𝐵 / (𝐴 gcd -𝐵)))
6012, 26, 32divneg2d 12031 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → -(𝐵 / (𝐴 gcd 𝐵)) = (𝐵 / -(𝐴 gcd 𝐵)))
6112, 26, 32divnegd 12030 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → -(𝐵 / (𝐴 gcd 𝐵)) = (-𝐵 / (𝐴 gcd 𝐵)))
6260, 61eqtr3d 2772 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (𝐵 / -(𝐴 gcd 𝐵)) = (-𝐵 / (𝐴 gcd 𝐵)))
6357, 59, 623eqtr4d 2780 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (denom‘(𝐴 / -𝐵)) = (𝐵 / -(𝐴 gcd 𝐵)))
6454, 56, 633eqtr3d 2778 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (denom‘(𝐴 / 𝐵)) = (𝐵 / -(𝐴 gcd 𝐵)))
6564, 60eqtr4d 2773 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → (denom‘(𝐴 / 𝐵)) = -(𝐵 / (𝐴 gcd 𝐵)))
6653, 65jca 511 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ -𝐵 ∈ ℕ) → ((numer‘(𝐴 / 𝐵)) = -(𝐴 / (𝐴 gcd 𝐵)) ∧ (denom‘(𝐴 / 𝐵)) = -(𝐵 / (𝐴 gcd 𝐵))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wne 2932  cfv 6531  (class class class)co 7405  cc 11127  0cc0 11129  -cneg 11467   / cdiv 11894  cn 12240  cz 12588  cq 12964   gcd cgcd 16513  numercnumer 16752  denomcdenom 16753
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-sup 9454  df-inf 9455  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-n0 12502  df-z 12589  df-uz 12853  df-q 12965  df-rp 13009  df-fl 13809  df-mod 13887  df-seq 14020  df-exp 14080  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-dvds 16273  df-gcd 16514  df-numer 16754  df-denom 16755
This theorem is referenced by:  qqhval2lem  34012
  Copyright terms: Public domain W3C validator