Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onov0suclim Structured version   Visualization version   GIF version

Theorem onov0suclim 43245
Description: Compactly express rules for binary operations on ordinals. (Contributed by RP, 18-Jan-2025.)
Hypotheses
Ref Expression
onov0suclim.0 (𝐴 ∈ On → (𝐴 ∅) = 𝐷)
onov0suclim.suc ((𝐴 ∈ On ∧ 𝐶 ∈ On) → (𝐴 suc 𝐶) = 𝐸)
onov0suclim.lim (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ Lim 𝐵) → (𝐴 𝐵) = 𝐹)
Assertion
Ref Expression
onov0suclim ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐵 = ∅ → (𝐴 𝐵) = 𝐷) ∧ ((𝐵 = suc 𝐶𝐶 ∈ On) → (𝐴 𝐵) = 𝐸) ∧ (Lim 𝐵 → (𝐴 𝐵) = 𝐹)))

Proof of Theorem onov0suclim
StepHypRef Expression
1 eloni 6362 . . . 4 (𝐵 ∈ On → Ord 𝐵)
2 orduniorsuc 7822 . . . . 5 (Ord 𝐵 → (𝐵 = 𝐵𝐵 = suc 𝐵))
3 unizlim 6476 . . . . . . 7 (Ord 𝐵 → (𝐵 = 𝐵 ↔ (𝐵 = ∅ ∨ Lim 𝐵)))
43biimpd 229 . . . . . 6 (Ord 𝐵 → (𝐵 = 𝐵 → (𝐵 = ∅ ∨ Lim 𝐵)))
54orim1d 967 . . . . 5 (Ord 𝐵 → ((𝐵 = 𝐵𝐵 = suc 𝐵) → ((𝐵 = ∅ ∨ Lim 𝐵) ∨ 𝐵 = suc 𝐵)))
62, 5mpd 15 . . . 4 (Ord 𝐵 → ((𝐵 = ∅ ∨ Lim 𝐵) ∨ 𝐵 = suc 𝐵))
71, 6syl 17 . . 3 (𝐵 ∈ On → ((𝐵 = ∅ ∨ Lim 𝐵) ∨ 𝐵 = suc 𝐵))
87adantl 481 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐵 = ∅ ∨ Lim 𝐵) ∨ 𝐵 = suc 𝐵))
9 oveq2 7411 . . . . . . . . 9 (𝐵 = ∅ → (𝐴 𝐵) = (𝐴 ∅))
10 onov0suclim.0 . . . . . . . . 9 (𝐴 ∈ On → (𝐴 ∅) = 𝐷)
119, 10sylan9eqr 2792 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐵 = ∅) → (𝐴 𝐵) = 𝐷)
1211ex 412 . . . . . . 7 (𝐴 ∈ On → (𝐵 = ∅ → (𝐴 𝐵) = 𝐷))
1312ad2antrr 726 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐵 = ∅) → (𝐵 = ∅ → (𝐴 𝐵) = 𝐷))
14 eloni 6362 . . . . . . . . . . . . 13 (𝐶 ∈ On → Ord 𝐶)
15 0elsuc 7827 . . . . . . . . . . . . 13 (Ord 𝐶 → ∅ ∈ suc 𝐶)
1614, 15syl 17 . . . . . . . . . . . 12 (𝐶 ∈ On → ∅ ∈ suc 𝐶)
1716adantl 481 . . . . . . . . . . 11 ((𝐵 = suc 𝐶𝐶 ∈ On) → ∅ ∈ suc 𝐶)
18 simpl 482 . . . . . . . . . . 11 ((𝐵 = suc 𝐶𝐶 ∈ On) → 𝐵 = suc 𝐶)
1917, 18eleqtrrd 2837 . . . . . . . . . 10 ((𝐵 = suc 𝐶𝐶 ∈ On) → ∅ ∈ 𝐵)
20 n0i 4315 . . . . . . . . . 10 (∅ ∈ 𝐵 → ¬ 𝐵 = ∅)
2119, 20syl 17 . . . . . . . . 9 ((𝐵 = suc 𝐶𝐶 ∈ On) → ¬ 𝐵 = ∅)
2221pm2.21d 121 . . . . . . . 8 ((𝐵 = suc 𝐶𝐶 ∈ On) → (𝐵 = ∅ → (𝐴 𝐵) = 𝐸))
2322adantl 481 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐵 = suc 𝐶𝐶 ∈ On)) → (𝐵 = ∅ → (𝐴 𝐵) = 𝐸))
2423impancom 451 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐵 = ∅) → ((𝐵 = suc 𝐶𝐶 ∈ On) → (𝐴 𝐵) = 𝐸))
25 nlim0 6412 . . . . . . . . 9 ¬ Lim ∅
26 limeq 6364 . . . . . . . . 9 (𝐵 = ∅ → (Lim 𝐵 ↔ Lim ∅))
2725, 26mtbiri 327 . . . . . . . 8 (𝐵 = ∅ → ¬ Lim 𝐵)
2827adantl 481 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐵 = ∅) → ¬ Lim 𝐵)
2928pm2.21d 121 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐵 = ∅) → (Lim 𝐵 → (𝐴 𝐵) = 𝐹))
3013, 24, 293jca 1128 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐵 = ∅) → ((𝐵 = ∅ → (𝐴 𝐵) = 𝐷) ∧ ((𝐵 = suc 𝐶𝐶 ∈ On) → (𝐴 𝐵) = 𝐸) ∧ (Lim 𝐵 → (𝐴 𝐵) = 𝐹)))
3130ex 412 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵 = ∅ → ((𝐵 = ∅ → (𝐴 𝐵) = 𝐷) ∧ ((𝐵 = suc 𝐶𝐶 ∈ On) → (𝐴 𝐵) = 𝐸) ∧ (Lim 𝐵 → (𝐴 𝐵) = 𝐹))))
3227con2i 139 . . . . . . . 8 (Lim 𝐵 → ¬ 𝐵 = ∅)
3332adantl 481 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ Lim 𝐵) → ¬ 𝐵 = ∅)
3433pm2.21d 121 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ Lim 𝐵) → (𝐵 = ∅ → (𝐴 𝐵) = 𝐷))
35 limeq 6364 . . . . . . . . . . . 12 (𝐵 = suc 𝐶 → (Lim 𝐵 ↔ Lim suc 𝐶))
3635notbid 318 . . . . . . . . . . 11 (𝐵 = suc 𝐶 → (¬ Lim 𝐵 ↔ ¬ Lim suc 𝐶))
3736biimprd 248 . . . . . . . . . 10 (𝐵 = suc 𝐶 → (¬ Lim suc 𝐶 → ¬ Lim 𝐵))
38 nlimsucg 7835 . . . . . . . . . 10 (𝐶 ∈ On → ¬ Lim suc 𝐶)
3937, 38impel 505 . . . . . . . . 9 ((𝐵 = suc 𝐶𝐶 ∈ On) → ¬ Lim 𝐵)
4039adantl 481 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐵 = suc 𝐶𝐶 ∈ On)) → ¬ Lim 𝐵)
4140pm2.21d 121 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐵 = suc 𝐶𝐶 ∈ On)) → (Lim 𝐵 → (𝐴 𝐵) = 𝐸))
4241impancom 451 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ Lim 𝐵) → ((𝐵 = suc 𝐶𝐶 ∈ On) → (𝐴 𝐵) = 𝐸))
43 onov0suclim.lim . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ Lim 𝐵) → (𝐴 𝐵) = 𝐹)
4443a1d 25 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ Lim 𝐵) → (Lim 𝐵 → (𝐴 𝐵) = 𝐹))
4534, 42, 443jca 1128 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ Lim 𝐵) → ((𝐵 = ∅ → (𝐴 𝐵) = 𝐷) ∧ ((𝐵 = suc 𝐶𝐶 ∈ On) → (𝐴 𝐵) = 𝐸) ∧ (Lim 𝐵 → (𝐴 𝐵) = 𝐹)))
4645ex 412 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (Lim 𝐵 → ((𝐵 = ∅ → (𝐴 𝐵) = 𝐷) ∧ ((𝐵 = suc 𝐶𝐶 ∈ On) → (𝐴 𝐵) = 𝐸) ∧ (Lim 𝐵 → (𝐴 𝐵) = 𝐹))))
4731, 46jaod 859 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐵 = ∅ ∨ Lim 𝐵) → ((𝐵 = ∅ → (𝐴 𝐵) = 𝐷) ∧ ((𝐵 = suc 𝐶𝐶 ∈ On) → (𝐴 𝐵) = 𝐸) ∧ (Lim 𝐵 → (𝐴 𝐵) = 𝐹))))
48 1n0 8498 . . . . . . . . 9 1o ≠ ∅
49 necom 2985 . . . . . . . . . . 11 (1o ≠ ∅ ↔ ∅ ≠ 1o)
50 df-1o 8478 . . . . . . . . . . . . 13 1o = suc ∅
51 uni0 4911 . . . . . . . . . . . . . 14 ∅ = ∅
52 suceq 6419 . . . . . . . . . . . . . 14 ( ∅ = ∅ → suc ∅ = suc ∅)
5351, 52ax-mp 5 . . . . . . . . . . . . 13 suc ∅ = suc ∅
5450, 53eqtr4i 2761 . . . . . . . . . . . 12 1o = suc
5554neeq2i 2997 . . . . . . . . . . 11 (∅ ≠ 1o ↔ ∅ ≠ suc ∅)
56 df-ne 2933 . . . . . . . . . . 11 (∅ ≠ suc ∅ ↔ ¬ ∅ = suc ∅)
5749, 55, 563bitri 297 . . . . . . . . . 10 (1o ≠ ∅ ↔ ¬ ∅ = suc ∅)
58 id 22 . . . . . . . . . . . 12 (𝐵 = ∅ → 𝐵 = ∅)
59 unieq 4894 . . . . . . . . . . . . 13 (𝐵 = ∅ → 𝐵 = ∅)
60 suceq 6419 . . . . . . . . . . . . 13 ( 𝐵 = ∅ → suc 𝐵 = suc ∅)
6159, 60syl 17 . . . . . . . . . . . 12 (𝐵 = ∅ → suc 𝐵 = suc ∅)
6258, 61eqeq12d 2751 . . . . . . . . . . 11 (𝐵 = ∅ → (𝐵 = suc 𝐵 ↔ ∅ = suc ∅))
6362notbid 318 . . . . . . . . . 10 (𝐵 = ∅ → (¬ 𝐵 = suc 𝐵 ↔ ¬ ∅ = suc ∅))
6457, 63bitr4id 290 . . . . . . . . 9 (𝐵 = ∅ → (1o ≠ ∅ ↔ ¬ 𝐵 = suc 𝐵))
6548, 64mpbii 233 . . . . . . . 8 (𝐵 = ∅ → ¬ 𝐵 = suc 𝐵)
6665con2i 139 . . . . . . 7 (𝐵 = suc 𝐵 → ¬ 𝐵 = ∅)
6766adantl 481 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐵 = suc 𝐵) → ¬ 𝐵 = ∅)
6867pm2.21d 121 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐵 = suc 𝐵) → (𝐵 = ∅ → (𝐴 𝐵) = 𝐷))
69 simprl 770 . . . . . . . . 9 ((𝐴 ∈ On ∧ (𝐵 = suc 𝐶𝐶 ∈ On)) → 𝐵 = suc 𝐶)
7069oveq2d 7419 . . . . . . . 8 ((𝐴 ∈ On ∧ (𝐵 = suc 𝐶𝐶 ∈ On)) → (𝐴 𝐵) = (𝐴 suc 𝐶))
71 onov0suclim.suc . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝐶 ∈ On) → (𝐴 suc 𝐶) = 𝐸)
7271adantrl 716 . . . . . . . 8 ((𝐴 ∈ On ∧ (𝐵 = suc 𝐶𝐶 ∈ On)) → (𝐴 suc 𝐶) = 𝐸)
7370, 72eqtrd 2770 . . . . . . 7 ((𝐴 ∈ On ∧ (𝐵 = suc 𝐶𝐶 ∈ On)) → (𝐴 𝐵) = 𝐸)
7473ex 412 . . . . . 6 (𝐴 ∈ On → ((𝐵 = suc 𝐶𝐶 ∈ On) → (𝐴 𝐵) = 𝐸))
7574ad2antrr 726 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐵 = suc 𝐵) → ((𝐵 = suc 𝐶𝐶 ∈ On) → (𝐴 𝐵) = 𝐸))
76 onuni 7780 . . . . . . . . 9 (𝐵 ∈ On → 𝐵 ∈ On)
77 nlimsucg 7835 . . . . . . . . 9 ( 𝐵 ∈ On → ¬ Lim suc 𝐵)
7876, 77syl 17 . . . . . . . 8 (𝐵 ∈ On → ¬ Lim suc 𝐵)
79 limeq 6364 . . . . . . . . . 10 (𝐵 = suc 𝐵 → (Lim 𝐵 ↔ Lim suc 𝐵))
8079notbid 318 . . . . . . . . 9 (𝐵 = suc 𝐵 → (¬ Lim 𝐵 ↔ ¬ Lim suc 𝐵))
8180biimprd 248 . . . . . . . 8 (𝐵 = suc 𝐵 → (¬ Lim suc 𝐵 → ¬ Lim 𝐵))
8278, 81mpan9 506 . . . . . . 7 ((𝐵 ∈ On ∧ 𝐵 = suc 𝐵) → ¬ Lim 𝐵)
8382adantll 714 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐵 = suc 𝐵) → ¬ Lim 𝐵)
8483pm2.21d 121 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐵 = suc 𝐵) → (Lim 𝐵 → (𝐴 𝐵) = 𝐹))
8568, 75, 843jca 1128 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐵 = suc 𝐵) → ((𝐵 = ∅ → (𝐴 𝐵) = 𝐷) ∧ ((𝐵 = suc 𝐶𝐶 ∈ On) → (𝐴 𝐵) = 𝐸) ∧ (Lim 𝐵 → (𝐴 𝐵) = 𝐹)))
8685ex 412 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵 = suc 𝐵 → ((𝐵 = ∅ → (𝐴 𝐵) = 𝐷) ∧ ((𝐵 = suc 𝐶𝐶 ∈ On) → (𝐴 𝐵) = 𝐸) ∧ (Lim 𝐵 → (𝐴 𝐵) = 𝐹))))
8747, 86jaod 859 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (((𝐵 = ∅ ∨ Lim 𝐵) ∨ 𝐵 = suc 𝐵) → ((𝐵 = ∅ → (𝐴 𝐵) = 𝐷) ∧ ((𝐵 = suc 𝐶𝐶 ∈ On) → (𝐴 𝐵) = 𝐸) ∧ (Lim 𝐵 → (𝐴 𝐵) = 𝐹))))
888, 87mpd 15 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐵 = ∅ → (𝐴 𝐵) = 𝐷) ∧ ((𝐵 = suc 𝐶𝐶 ∈ On) → (𝐴 𝐵) = 𝐸) ∧ (Lim 𝐵 → (𝐴 𝐵) = 𝐹)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2108  wne 2932  c0 4308   cuni 4883  Ord word 6351  Oncon0 6352  Lim wlim 6353  suc csuc 6354  (class class class)co 7403  1oc1o 8471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-11 2157  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7727
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-tr 5230  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fv 6538  df-ov 7406  df-1o 8478
This theorem is referenced by:  oa0suclim  43246  om0suclim  43247  oe0suclim  43248
  Copyright terms: Public domain W3C validator