Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onov0suclim Structured version   Visualization version   GIF version

Theorem onov0suclim 43377
Description: Compactly express rules for binary operations on ordinals. (Contributed by RP, 18-Jan-2025.)
Hypotheses
Ref Expression
onov0suclim.0 (𝐴 ∈ On → (𝐴 ∅) = 𝐷)
onov0suclim.suc ((𝐴 ∈ On ∧ 𝐶 ∈ On) → (𝐴 suc 𝐶) = 𝐸)
onov0suclim.lim (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ Lim 𝐵) → (𝐴 𝐵) = 𝐹)
Assertion
Ref Expression
onov0suclim ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐵 = ∅ → (𝐴 𝐵) = 𝐷) ∧ ((𝐵 = suc 𝐶𝐶 ∈ On) → (𝐴 𝐵) = 𝐸) ∧ (Lim 𝐵 → (𝐴 𝐵) = 𝐹)))

Proof of Theorem onov0suclim
StepHypRef Expression
1 eloni 6316 . . . 4 (𝐵 ∈ On → Ord 𝐵)
2 orduniorsuc 7760 . . . . 5 (Ord 𝐵 → (𝐵 = 𝐵𝐵 = suc 𝐵))
3 unizlim 6430 . . . . . . 7 (Ord 𝐵 → (𝐵 = 𝐵 ↔ (𝐵 = ∅ ∨ Lim 𝐵)))
43biimpd 229 . . . . . 6 (Ord 𝐵 → (𝐵 = 𝐵 → (𝐵 = ∅ ∨ Lim 𝐵)))
54orim1d 967 . . . . 5 (Ord 𝐵 → ((𝐵 = 𝐵𝐵 = suc 𝐵) → ((𝐵 = ∅ ∨ Lim 𝐵) ∨ 𝐵 = suc 𝐵)))
62, 5mpd 15 . . . 4 (Ord 𝐵 → ((𝐵 = ∅ ∨ Lim 𝐵) ∨ 𝐵 = suc 𝐵))
71, 6syl 17 . . 3 (𝐵 ∈ On → ((𝐵 = ∅ ∨ Lim 𝐵) ∨ 𝐵 = suc 𝐵))
87adantl 481 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐵 = ∅ ∨ Lim 𝐵) ∨ 𝐵 = suc 𝐵))
9 oveq2 7354 . . . . . . . . 9 (𝐵 = ∅ → (𝐴 𝐵) = (𝐴 ∅))
10 onov0suclim.0 . . . . . . . . 9 (𝐴 ∈ On → (𝐴 ∅) = 𝐷)
119, 10sylan9eqr 2788 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐵 = ∅) → (𝐴 𝐵) = 𝐷)
1211ex 412 . . . . . . 7 (𝐴 ∈ On → (𝐵 = ∅ → (𝐴 𝐵) = 𝐷))
1312ad2antrr 726 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐵 = ∅) → (𝐵 = ∅ → (𝐴 𝐵) = 𝐷))
14 eloni 6316 . . . . . . . . . . . . 13 (𝐶 ∈ On → Ord 𝐶)
15 0elsuc 7765 . . . . . . . . . . . . 13 (Ord 𝐶 → ∅ ∈ suc 𝐶)
1614, 15syl 17 . . . . . . . . . . . 12 (𝐶 ∈ On → ∅ ∈ suc 𝐶)
1716adantl 481 . . . . . . . . . . 11 ((𝐵 = suc 𝐶𝐶 ∈ On) → ∅ ∈ suc 𝐶)
18 simpl 482 . . . . . . . . . . 11 ((𝐵 = suc 𝐶𝐶 ∈ On) → 𝐵 = suc 𝐶)
1917, 18eleqtrrd 2834 . . . . . . . . . 10 ((𝐵 = suc 𝐶𝐶 ∈ On) → ∅ ∈ 𝐵)
20 n0i 4287 . . . . . . . . . 10 (∅ ∈ 𝐵 → ¬ 𝐵 = ∅)
2119, 20syl 17 . . . . . . . . 9 ((𝐵 = suc 𝐶𝐶 ∈ On) → ¬ 𝐵 = ∅)
2221pm2.21d 121 . . . . . . . 8 ((𝐵 = suc 𝐶𝐶 ∈ On) → (𝐵 = ∅ → (𝐴 𝐵) = 𝐸))
2322adantl 481 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐵 = suc 𝐶𝐶 ∈ On)) → (𝐵 = ∅ → (𝐴 𝐵) = 𝐸))
2423impancom 451 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐵 = ∅) → ((𝐵 = suc 𝐶𝐶 ∈ On) → (𝐴 𝐵) = 𝐸))
25 nlim0 6366 . . . . . . . . 9 ¬ Lim ∅
26 limeq 6318 . . . . . . . . 9 (𝐵 = ∅ → (Lim 𝐵 ↔ Lim ∅))
2725, 26mtbiri 327 . . . . . . . 8 (𝐵 = ∅ → ¬ Lim 𝐵)
2827adantl 481 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐵 = ∅) → ¬ Lim 𝐵)
2928pm2.21d 121 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐵 = ∅) → (Lim 𝐵 → (𝐴 𝐵) = 𝐹))
3013, 24, 293jca 1128 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐵 = ∅) → ((𝐵 = ∅ → (𝐴 𝐵) = 𝐷) ∧ ((𝐵 = suc 𝐶𝐶 ∈ On) → (𝐴 𝐵) = 𝐸) ∧ (Lim 𝐵 → (𝐴 𝐵) = 𝐹)))
3130ex 412 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵 = ∅ → ((𝐵 = ∅ → (𝐴 𝐵) = 𝐷) ∧ ((𝐵 = suc 𝐶𝐶 ∈ On) → (𝐴 𝐵) = 𝐸) ∧ (Lim 𝐵 → (𝐴 𝐵) = 𝐹))))
3227con2i 139 . . . . . . . 8 (Lim 𝐵 → ¬ 𝐵 = ∅)
3332adantl 481 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ Lim 𝐵) → ¬ 𝐵 = ∅)
3433pm2.21d 121 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ Lim 𝐵) → (𝐵 = ∅ → (𝐴 𝐵) = 𝐷))
35 limeq 6318 . . . . . . . . . . . 12 (𝐵 = suc 𝐶 → (Lim 𝐵 ↔ Lim suc 𝐶))
3635notbid 318 . . . . . . . . . . 11 (𝐵 = suc 𝐶 → (¬ Lim 𝐵 ↔ ¬ Lim suc 𝐶))
3736biimprd 248 . . . . . . . . . 10 (𝐵 = suc 𝐶 → (¬ Lim suc 𝐶 → ¬ Lim 𝐵))
38 nlimsucg 7772 . . . . . . . . . 10 (𝐶 ∈ On → ¬ Lim suc 𝐶)
3937, 38impel 505 . . . . . . . . 9 ((𝐵 = suc 𝐶𝐶 ∈ On) → ¬ Lim 𝐵)
4039adantl 481 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐵 = suc 𝐶𝐶 ∈ On)) → ¬ Lim 𝐵)
4140pm2.21d 121 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐵 = suc 𝐶𝐶 ∈ On)) → (Lim 𝐵 → (𝐴 𝐵) = 𝐸))
4241impancom 451 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ Lim 𝐵) → ((𝐵 = suc 𝐶𝐶 ∈ On) → (𝐴 𝐵) = 𝐸))
43 onov0suclim.lim . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ Lim 𝐵) → (𝐴 𝐵) = 𝐹)
4443a1d 25 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ Lim 𝐵) → (Lim 𝐵 → (𝐴 𝐵) = 𝐹))
4534, 42, 443jca 1128 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ Lim 𝐵) → ((𝐵 = ∅ → (𝐴 𝐵) = 𝐷) ∧ ((𝐵 = suc 𝐶𝐶 ∈ On) → (𝐴 𝐵) = 𝐸) ∧ (Lim 𝐵 → (𝐴 𝐵) = 𝐹)))
4645ex 412 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (Lim 𝐵 → ((𝐵 = ∅ → (𝐴 𝐵) = 𝐷) ∧ ((𝐵 = suc 𝐶𝐶 ∈ On) → (𝐴 𝐵) = 𝐸) ∧ (Lim 𝐵 → (𝐴 𝐵) = 𝐹))))
4731, 46jaod 859 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐵 = ∅ ∨ Lim 𝐵) → ((𝐵 = ∅ → (𝐴 𝐵) = 𝐷) ∧ ((𝐵 = suc 𝐶𝐶 ∈ On) → (𝐴 𝐵) = 𝐸) ∧ (Lim 𝐵 → (𝐴 𝐵) = 𝐹))))
48 1n0 8403 . . . . . . . . 9 1o ≠ ∅
49 necom 2981 . . . . . . . . . . 11 (1o ≠ ∅ ↔ ∅ ≠ 1o)
50 df-1o 8385 . . . . . . . . . . . . 13 1o = suc ∅
51 uni0 4884 . . . . . . . . . . . . . 14 ∅ = ∅
52 suceq 6374 . . . . . . . . . . . . . 14 ( ∅ = ∅ → suc ∅ = suc ∅)
5351, 52ax-mp 5 . . . . . . . . . . . . 13 suc ∅ = suc ∅
5450, 53eqtr4i 2757 . . . . . . . . . . . 12 1o = suc
5554neeq2i 2993 . . . . . . . . . . 11 (∅ ≠ 1o ↔ ∅ ≠ suc ∅)
56 df-ne 2929 . . . . . . . . . . 11 (∅ ≠ suc ∅ ↔ ¬ ∅ = suc ∅)
5749, 55, 563bitri 297 . . . . . . . . . 10 (1o ≠ ∅ ↔ ¬ ∅ = suc ∅)
58 id 22 . . . . . . . . . . . 12 (𝐵 = ∅ → 𝐵 = ∅)
59 unieq 4867 . . . . . . . . . . . . 13 (𝐵 = ∅ → 𝐵 = ∅)
60 suceq 6374 . . . . . . . . . . . . 13 ( 𝐵 = ∅ → suc 𝐵 = suc ∅)
6159, 60syl 17 . . . . . . . . . . . 12 (𝐵 = ∅ → suc 𝐵 = suc ∅)
6258, 61eqeq12d 2747 . . . . . . . . . . 11 (𝐵 = ∅ → (𝐵 = suc 𝐵 ↔ ∅ = suc ∅))
6362notbid 318 . . . . . . . . . 10 (𝐵 = ∅ → (¬ 𝐵 = suc 𝐵 ↔ ¬ ∅ = suc ∅))
6457, 63bitr4id 290 . . . . . . . . 9 (𝐵 = ∅ → (1o ≠ ∅ ↔ ¬ 𝐵 = suc 𝐵))
6548, 64mpbii 233 . . . . . . . 8 (𝐵 = ∅ → ¬ 𝐵 = suc 𝐵)
6665con2i 139 . . . . . . 7 (𝐵 = suc 𝐵 → ¬ 𝐵 = ∅)
6766adantl 481 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐵 = suc 𝐵) → ¬ 𝐵 = ∅)
6867pm2.21d 121 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐵 = suc 𝐵) → (𝐵 = ∅ → (𝐴 𝐵) = 𝐷))
69 simprl 770 . . . . . . . . 9 ((𝐴 ∈ On ∧ (𝐵 = suc 𝐶𝐶 ∈ On)) → 𝐵 = suc 𝐶)
7069oveq2d 7362 . . . . . . . 8 ((𝐴 ∈ On ∧ (𝐵 = suc 𝐶𝐶 ∈ On)) → (𝐴 𝐵) = (𝐴 suc 𝐶))
71 onov0suclim.suc . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝐶 ∈ On) → (𝐴 suc 𝐶) = 𝐸)
7271adantrl 716 . . . . . . . 8 ((𝐴 ∈ On ∧ (𝐵 = suc 𝐶𝐶 ∈ On)) → (𝐴 suc 𝐶) = 𝐸)
7370, 72eqtrd 2766 . . . . . . 7 ((𝐴 ∈ On ∧ (𝐵 = suc 𝐶𝐶 ∈ On)) → (𝐴 𝐵) = 𝐸)
7473ex 412 . . . . . 6 (𝐴 ∈ On → ((𝐵 = suc 𝐶𝐶 ∈ On) → (𝐴 𝐵) = 𝐸))
7574ad2antrr 726 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐵 = suc 𝐵) → ((𝐵 = suc 𝐶𝐶 ∈ On) → (𝐴 𝐵) = 𝐸))
76 onuni 7721 . . . . . . . . 9 (𝐵 ∈ On → 𝐵 ∈ On)
77 nlimsucg 7772 . . . . . . . . 9 ( 𝐵 ∈ On → ¬ Lim suc 𝐵)
7876, 77syl 17 . . . . . . . 8 (𝐵 ∈ On → ¬ Lim suc 𝐵)
79 limeq 6318 . . . . . . . . . 10 (𝐵 = suc 𝐵 → (Lim 𝐵 ↔ Lim suc 𝐵))
8079notbid 318 . . . . . . . . 9 (𝐵 = suc 𝐵 → (¬ Lim 𝐵 ↔ ¬ Lim suc 𝐵))
8180biimprd 248 . . . . . . . 8 (𝐵 = suc 𝐵 → (¬ Lim suc 𝐵 → ¬ Lim 𝐵))
8278, 81mpan9 506 . . . . . . 7 ((𝐵 ∈ On ∧ 𝐵 = suc 𝐵) → ¬ Lim 𝐵)
8382adantll 714 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐵 = suc 𝐵) → ¬ Lim 𝐵)
8483pm2.21d 121 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐵 = suc 𝐵) → (Lim 𝐵 → (𝐴 𝐵) = 𝐹))
8568, 75, 843jca 1128 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐵 = suc 𝐵) → ((𝐵 = ∅ → (𝐴 𝐵) = 𝐷) ∧ ((𝐵 = suc 𝐶𝐶 ∈ On) → (𝐴 𝐵) = 𝐸) ∧ (Lim 𝐵 → (𝐴 𝐵) = 𝐹)))
8685ex 412 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵 = suc 𝐵 → ((𝐵 = ∅ → (𝐴 𝐵) = 𝐷) ∧ ((𝐵 = suc 𝐶𝐶 ∈ On) → (𝐴 𝐵) = 𝐸) ∧ (Lim 𝐵 → (𝐴 𝐵) = 𝐹))))
8747, 86jaod 859 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (((𝐵 = ∅ ∨ Lim 𝐵) ∨ 𝐵 = suc 𝐵) → ((𝐵 = ∅ → (𝐴 𝐵) = 𝐷) ∧ ((𝐵 = suc 𝐶𝐶 ∈ On) → (𝐴 𝐵) = 𝐸) ∧ (Lim 𝐵 → (𝐴 𝐵) = 𝐹))))
888, 87mpd 15 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐵 = ∅ → (𝐴 𝐵) = 𝐷) ∧ ((𝐵 = suc 𝐶𝐶 ∈ On) → (𝐴 𝐵) = 𝐸) ∧ (Lim 𝐵 → (𝐴 𝐵) = 𝐹)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2111  wne 2928  c0 4280   cuni 4856  Ord word 6305  Oncon0 6306  Lim wlim 6307  suc csuc 6308  (class class class)co 7346  1oc1o 8378
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-tr 5197  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fv 6489  df-ov 7349  df-1o 8385
This theorem is referenced by:  oa0suclim  43378  om0suclim  43379  oe0suclim  43380
  Copyright terms: Public domain W3C validator