Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onov0suclim Structured version   Visualization version   GIF version

Theorem onov0suclim 43270
Description: Compactly express rules for binary operations on ordinals. (Contributed by RP, 18-Jan-2025.)
Hypotheses
Ref Expression
onov0suclim.0 (𝐴 ∈ On → (𝐴 ∅) = 𝐷)
onov0suclim.suc ((𝐴 ∈ On ∧ 𝐶 ∈ On) → (𝐴 suc 𝐶) = 𝐸)
onov0suclim.lim (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ Lim 𝐵) → (𝐴 𝐵) = 𝐹)
Assertion
Ref Expression
onov0suclim ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐵 = ∅ → (𝐴 𝐵) = 𝐷) ∧ ((𝐵 = suc 𝐶𝐶 ∈ On) → (𝐴 𝐵) = 𝐸) ∧ (Lim 𝐵 → (𝐴 𝐵) = 𝐹)))

Proof of Theorem onov0suclim
StepHypRef Expression
1 eloni 6345 . . . 4 (𝐵 ∈ On → Ord 𝐵)
2 orduniorsuc 7808 . . . . 5 (Ord 𝐵 → (𝐵 = 𝐵𝐵 = suc 𝐵))
3 unizlim 6460 . . . . . . 7 (Ord 𝐵 → (𝐵 = 𝐵 ↔ (𝐵 = ∅ ∨ Lim 𝐵)))
43biimpd 229 . . . . . 6 (Ord 𝐵 → (𝐵 = 𝐵 → (𝐵 = ∅ ∨ Lim 𝐵)))
54orim1d 967 . . . . 5 (Ord 𝐵 → ((𝐵 = 𝐵𝐵 = suc 𝐵) → ((𝐵 = ∅ ∨ Lim 𝐵) ∨ 𝐵 = suc 𝐵)))
62, 5mpd 15 . . . 4 (Ord 𝐵 → ((𝐵 = ∅ ∨ Lim 𝐵) ∨ 𝐵 = suc 𝐵))
71, 6syl 17 . . 3 (𝐵 ∈ On → ((𝐵 = ∅ ∨ Lim 𝐵) ∨ 𝐵 = suc 𝐵))
87adantl 481 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐵 = ∅ ∨ Lim 𝐵) ∨ 𝐵 = suc 𝐵))
9 oveq2 7398 . . . . . . . . 9 (𝐵 = ∅ → (𝐴 𝐵) = (𝐴 ∅))
10 onov0suclim.0 . . . . . . . . 9 (𝐴 ∈ On → (𝐴 ∅) = 𝐷)
119, 10sylan9eqr 2787 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐵 = ∅) → (𝐴 𝐵) = 𝐷)
1211ex 412 . . . . . . 7 (𝐴 ∈ On → (𝐵 = ∅ → (𝐴 𝐵) = 𝐷))
1312ad2antrr 726 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐵 = ∅) → (𝐵 = ∅ → (𝐴 𝐵) = 𝐷))
14 eloni 6345 . . . . . . . . . . . . 13 (𝐶 ∈ On → Ord 𝐶)
15 0elsuc 7813 . . . . . . . . . . . . 13 (Ord 𝐶 → ∅ ∈ suc 𝐶)
1614, 15syl 17 . . . . . . . . . . . 12 (𝐶 ∈ On → ∅ ∈ suc 𝐶)
1716adantl 481 . . . . . . . . . . 11 ((𝐵 = suc 𝐶𝐶 ∈ On) → ∅ ∈ suc 𝐶)
18 simpl 482 . . . . . . . . . . 11 ((𝐵 = suc 𝐶𝐶 ∈ On) → 𝐵 = suc 𝐶)
1917, 18eleqtrrd 2832 . . . . . . . . . 10 ((𝐵 = suc 𝐶𝐶 ∈ On) → ∅ ∈ 𝐵)
20 n0i 4306 . . . . . . . . . 10 (∅ ∈ 𝐵 → ¬ 𝐵 = ∅)
2119, 20syl 17 . . . . . . . . 9 ((𝐵 = suc 𝐶𝐶 ∈ On) → ¬ 𝐵 = ∅)
2221pm2.21d 121 . . . . . . . 8 ((𝐵 = suc 𝐶𝐶 ∈ On) → (𝐵 = ∅ → (𝐴 𝐵) = 𝐸))
2322adantl 481 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐵 = suc 𝐶𝐶 ∈ On)) → (𝐵 = ∅ → (𝐴 𝐵) = 𝐸))
2423impancom 451 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐵 = ∅) → ((𝐵 = suc 𝐶𝐶 ∈ On) → (𝐴 𝐵) = 𝐸))
25 nlim0 6395 . . . . . . . . 9 ¬ Lim ∅
26 limeq 6347 . . . . . . . . 9 (𝐵 = ∅ → (Lim 𝐵 ↔ Lim ∅))
2725, 26mtbiri 327 . . . . . . . 8 (𝐵 = ∅ → ¬ Lim 𝐵)
2827adantl 481 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐵 = ∅) → ¬ Lim 𝐵)
2928pm2.21d 121 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐵 = ∅) → (Lim 𝐵 → (𝐴 𝐵) = 𝐹))
3013, 24, 293jca 1128 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐵 = ∅) → ((𝐵 = ∅ → (𝐴 𝐵) = 𝐷) ∧ ((𝐵 = suc 𝐶𝐶 ∈ On) → (𝐴 𝐵) = 𝐸) ∧ (Lim 𝐵 → (𝐴 𝐵) = 𝐹)))
3130ex 412 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵 = ∅ → ((𝐵 = ∅ → (𝐴 𝐵) = 𝐷) ∧ ((𝐵 = suc 𝐶𝐶 ∈ On) → (𝐴 𝐵) = 𝐸) ∧ (Lim 𝐵 → (𝐴 𝐵) = 𝐹))))
3227con2i 139 . . . . . . . 8 (Lim 𝐵 → ¬ 𝐵 = ∅)
3332adantl 481 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ Lim 𝐵) → ¬ 𝐵 = ∅)
3433pm2.21d 121 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ Lim 𝐵) → (𝐵 = ∅ → (𝐴 𝐵) = 𝐷))
35 limeq 6347 . . . . . . . . . . . 12 (𝐵 = suc 𝐶 → (Lim 𝐵 ↔ Lim suc 𝐶))
3635notbid 318 . . . . . . . . . . 11 (𝐵 = suc 𝐶 → (¬ Lim 𝐵 ↔ ¬ Lim suc 𝐶))
3736biimprd 248 . . . . . . . . . 10 (𝐵 = suc 𝐶 → (¬ Lim suc 𝐶 → ¬ Lim 𝐵))
38 nlimsucg 7821 . . . . . . . . . 10 (𝐶 ∈ On → ¬ Lim suc 𝐶)
3937, 38impel 505 . . . . . . . . 9 ((𝐵 = suc 𝐶𝐶 ∈ On) → ¬ Lim 𝐵)
4039adantl 481 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐵 = suc 𝐶𝐶 ∈ On)) → ¬ Lim 𝐵)
4140pm2.21d 121 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐵 = suc 𝐶𝐶 ∈ On)) → (Lim 𝐵 → (𝐴 𝐵) = 𝐸))
4241impancom 451 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ Lim 𝐵) → ((𝐵 = suc 𝐶𝐶 ∈ On) → (𝐴 𝐵) = 𝐸))
43 onov0suclim.lim . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ Lim 𝐵) → (𝐴 𝐵) = 𝐹)
4443a1d 25 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ Lim 𝐵) → (Lim 𝐵 → (𝐴 𝐵) = 𝐹))
4534, 42, 443jca 1128 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ Lim 𝐵) → ((𝐵 = ∅ → (𝐴 𝐵) = 𝐷) ∧ ((𝐵 = suc 𝐶𝐶 ∈ On) → (𝐴 𝐵) = 𝐸) ∧ (Lim 𝐵 → (𝐴 𝐵) = 𝐹)))
4645ex 412 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (Lim 𝐵 → ((𝐵 = ∅ → (𝐴 𝐵) = 𝐷) ∧ ((𝐵 = suc 𝐶𝐶 ∈ On) → (𝐴 𝐵) = 𝐸) ∧ (Lim 𝐵 → (𝐴 𝐵) = 𝐹))))
4731, 46jaod 859 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐵 = ∅ ∨ Lim 𝐵) → ((𝐵 = ∅ → (𝐴 𝐵) = 𝐷) ∧ ((𝐵 = suc 𝐶𝐶 ∈ On) → (𝐴 𝐵) = 𝐸) ∧ (Lim 𝐵 → (𝐴 𝐵) = 𝐹))))
48 1n0 8455 . . . . . . . . 9 1o ≠ ∅
49 necom 2979 . . . . . . . . . . 11 (1o ≠ ∅ ↔ ∅ ≠ 1o)
50 df-1o 8437 . . . . . . . . . . . . 13 1o = suc ∅
51 uni0 4902 . . . . . . . . . . . . . 14 ∅ = ∅
52 suceq 6403 . . . . . . . . . . . . . 14 ( ∅ = ∅ → suc ∅ = suc ∅)
5351, 52ax-mp 5 . . . . . . . . . . . . 13 suc ∅ = suc ∅
5450, 53eqtr4i 2756 . . . . . . . . . . . 12 1o = suc
5554neeq2i 2991 . . . . . . . . . . 11 (∅ ≠ 1o ↔ ∅ ≠ suc ∅)
56 df-ne 2927 . . . . . . . . . . 11 (∅ ≠ suc ∅ ↔ ¬ ∅ = suc ∅)
5749, 55, 563bitri 297 . . . . . . . . . 10 (1o ≠ ∅ ↔ ¬ ∅ = suc ∅)
58 id 22 . . . . . . . . . . . 12 (𝐵 = ∅ → 𝐵 = ∅)
59 unieq 4885 . . . . . . . . . . . . 13 (𝐵 = ∅ → 𝐵 = ∅)
60 suceq 6403 . . . . . . . . . . . . 13 ( 𝐵 = ∅ → suc 𝐵 = suc ∅)
6159, 60syl 17 . . . . . . . . . . . 12 (𝐵 = ∅ → suc 𝐵 = suc ∅)
6258, 61eqeq12d 2746 . . . . . . . . . . 11 (𝐵 = ∅ → (𝐵 = suc 𝐵 ↔ ∅ = suc ∅))
6362notbid 318 . . . . . . . . . 10 (𝐵 = ∅ → (¬ 𝐵 = suc 𝐵 ↔ ¬ ∅ = suc ∅))
6457, 63bitr4id 290 . . . . . . . . 9 (𝐵 = ∅ → (1o ≠ ∅ ↔ ¬ 𝐵 = suc 𝐵))
6548, 64mpbii 233 . . . . . . . 8 (𝐵 = ∅ → ¬ 𝐵 = suc 𝐵)
6665con2i 139 . . . . . . 7 (𝐵 = suc 𝐵 → ¬ 𝐵 = ∅)
6766adantl 481 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐵 = suc 𝐵) → ¬ 𝐵 = ∅)
6867pm2.21d 121 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐵 = suc 𝐵) → (𝐵 = ∅ → (𝐴 𝐵) = 𝐷))
69 simprl 770 . . . . . . . . 9 ((𝐴 ∈ On ∧ (𝐵 = suc 𝐶𝐶 ∈ On)) → 𝐵 = suc 𝐶)
7069oveq2d 7406 . . . . . . . 8 ((𝐴 ∈ On ∧ (𝐵 = suc 𝐶𝐶 ∈ On)) → (𝐴 𝐵) = (𝐴 suc 𝐶))
71 onov0suclim.suc . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝐶 ∈ On) → (𝐴 suc 𝐶) = 𝐸)
7271adantrl 716 . . . . . . . 8 ((𝐴 ∈ On ∧ (𝐵 = suc 𝐶𝐶 ∈ On)) → (𝐴 suc 𝐶) = 𝐸)
7370, 72eqtrd 2765 . . . . . . 7 ((𝐴 ∈ On ∧ (𝐵 = suc 𝐶𝐶 ∈ On)) → (𝐴 𝐵) = 𝐸)
7473ex 412 . . . . . 6 (𝐴 ∈ On → ((𝐵 = suc 𝐶𝐶 ∈ On) → (𝐴 𝐵) = 𝐸))
7574ad2antrr 726 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐵 = suc 𝐵) → ((𝐵 = suc 𝐶𝐶 ∈ On) → (𝐴 𝐵) = 𝐸))
76 onuni 7767 . . . . . . . . 9 (𝐵 ∈ On → 𝐵 ∈ On)
77 nlimsucg 7821 . . . . . . . . 9 ( 𝐵 ∈ On → ¬ Lim suc 𝐵)
7876, 77syl 17 . . . . . . . 8 (𝐵 ∈ On → ¬ Lim suc 𝐵)
79 limeq 6347 . . . . . . . . . 10 (𝐵 = suc 𝐵 → (Lim 𝐵 ↔ Lim suc 𝐵))
8079notbid 318 . . . . . . . . 9 (𝐵 = suc 𝐵 → (¬ Lim 𝐵 ↔ ¬ Lim suc 𝐵))
8180biimprd 248 . . . . . . . 8 (𝐵 = suc 𝐵 → (¬ Lim suc 𝐵 → ¬ Lim 𝐵))
8278, 81mpan9 506 . . . . . . 7 ((𝐵 ∈ On ∧ 𝐵 = suc 𝐵) → ¬ Lim 𝐵)
8382adantll 714 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐵 = suc 𝐵) → ¬ Lim 𝐵)
8483pm2.21d 121 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐵 = suc 𝐵) → (Lim 𝐵 → (𝐴 𝐵) = 𝐹))
8568, 75, 843jca 1128 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐵 = suc 𝐵) → ((𝐵 = ∅ → (𝐴 𝐵) = 𝐷) ∧ ((𝐵 = suc 𝐶𝐶 ∈ On) → (𝐴 𝐵) = 𝐸) ∧ (Lim 𝐵 → (𝐴 𝐵) = 𝐹)))
8685ex 412 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵 = suc 𝐵 → ((𝐵 = ∅ → (𝐴 𝐵) = 𝐷) ∧ ((𝐵 = suc 𝐶𝐶 ∈ On) → (𝐴 𝐵) = 𝐸) ∧ (Lim 𝐵 → (𝐴 𝐵) = 𝐹))))
8747, 86jaod 859 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (((𝐵 = ∅ ∨ Lim 𝐵) ∨ 𝐵 = suc 𝐵) → ((𝐵 = ∅ → (𝐴 𝐵) = 𝐷) ∧ ((𝐵 = suc 𝐶𝐶 ∈ On) → (𝐴 𝐵) = 𝐸) ∧ (Lim 𝐵 → (𝐴 𝐵) = 𝐹))))
888, 87mpd 15 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐵 = ∅ → (𝐴 𝐵) = 𝐷) ∧ ((𝐵 = suc 𝐶𝐶 ∈ On) → (𝐴 𝐵) = 𝐸) ∧ (Lim 𝐵 → (𝐴 𝐵) = 𝐹)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2926  c0 4299   cuni 4874  Ord word 6334  Oncon0 6335  Lim wlim 6336  suc csuc 6337  (class class class)co 7390  1oc1o 8430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-11 2158  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-tr 5218  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fv 6522  df-ov 7393  df-1o 8437
This theorem is referenced by:  oa0suclim  43271  om0suclim  43272  oe0suclim  43273
  Copyright terms: Public domain W3C validator