Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  usgrgt2cycl Structured version   Visualization version   GIF version

Theorem usgrgt2cycl 32992
Description: A non-trivial cycle in a simple graph has a length greater than 2. (Contributed by BTernaryTau, 24-Sep-2023.)
Assertion
Ref Expression
usgrgt2cycl ((𝐺 ∈ USGraph ∧ 𝐹(Cycles‘𝐺)𝑃𝐹 ≠ ∅) → 2 < (♯‘𝐹))

Proof of Theorem usgrgt2cycl
StepHypRef Expression
1 cycliswlk 28067 . . . . . . . 8 (𝐹(Cycles‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
2 wlkcl 27885 . . . . . . . 8 (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0)
31, 2syl 17 . . . . . . 7 (𝐹(Cycles‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0)
43nn0red 12224 . . . . . 6 (𝐹(Cycles‘𝐺)𝑃 → (♯‘𝐹) ∈ ℝ)
54adantr 480 . . . . 5 ((𝐹(Cycles‘𝐺)𝑃𝐹 ≠ ∅) → (♯‘𝐹) ∈ ℝ)
62nn0ge0d 12226 . . . . . . 7 (𝐹(Walks‘𝐺)𝑃 → 0 ≤ (♯‘𝐹))
71, 6syl 17 . . . . . 6 (𝐹(Cycles‘𝐺)𝑃 → 0 ≤ (♯‘𝐹))
87adantr 480 . . . . 5 ((𝐹(Cycles‘𝐺)𝑃𝐹 ≠ ∅) → 0 ≤ (♯‘𝐹))
9 relwlk 27895 . . . . . . . 8 Rel (Walks‘𝐺)
109brrelex1i 5634 . . . . . . 7 (𝐹(Walks‘𝐺)𝑃𝐹 ∈ V)
11 hasheq0 14006 . . . . . . . . 9 (𝐹 ∈ V → ((♯‘𝐹) = 0 ↔ 𝐹 = ∅))
1211necon3bid 2987 . . . . . . . 8 (𝐹 ∈ V → ((♯‘𝐹) ≠ 0 ↔ 𝐹 ≠ ∅))
1312bicomd 222 . . . . . . 7 (𝐹 ∈ V → (𝐹 ≠ ∅ ↔ (♯‘𝐹) ≠ 0))
141, 10, 133syl 18 . . . . . 6 (𝐹(Cycles‘𝐺)𝑃 → (𝐹 ≠ ∅ ↔ (♯‘𝐹) ≠ 0))
1514biimpa 476 . . . . 5 ((𝐹(Cycles‘𝐺)𝑃𝐹 ≠ ∅) → (♯‘𝐹) ≠ 0)
165, 8, 15ne0gt0d 11042 . . . 4 ((𝐹(Cycles‘𝐺)𝑃𝐹 ≠ ∅) → 0 < (♯‘𝐹))
17163adant1 1128 . . 3 ((𝐺 ∈ USGraph ∧ 𝐹(Cycles‘𝐺)𝑃𝐹 ≠ ∅) → 0 < (♯‘𝐹))
18 usgrumgr 27452 . . . . 5 (𝐺 ∈ USGraph → 𝐺 ∈ UMGraph)
19 umgrn1cycl 28073 . . . . 5 ((𝐺 ∈ UMGraph ∧ 𝐹(Cycles‘𝐺)𝑃) → (♯‘𝐹) ≠ 1)
2018, 19sylan 579 . . . 4 ((𝐺 ∈ USGraph ∧ 𝐹(Cycles‘𝐺)𝑃) → (♯‘𝐹) ≠ 1)
21203adant3 1130 . . 3 ((𝐺 ∈ USGraph ∧ 𝐹(Cycles‘𝐺)𝑃𝐹 ≠ ∅) → (♯‘𝐹) ≠ 1)
22 0nn0 12178 . . . . . 6 0 ∈ ℕ0
23 nn0ltp1ne 32970 . . . . . 6 ((0 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ0) → ((0 + 1) < (♯‘𝐹) ↔ (0 < (♯‘𝐹) ∧ (♯‘𝐹) ≠ (0 + 1))))
2422, 3, 23sylancr 586 . . . . 5 (𝐹(Cycles‘𝐺)𝑃 → ((0 + 1) < (♯‘𝐹) ↔ (0 < (♯‘𝐹) ∧ (♯‘𝐹) ≠ (0 + 1))))
25 0p1e1 12025 . . . . . 6 (0 + 1) = 1
2625breq1i 5077 . . . . 5 ((0 + 1) < (♯‘𝐹) ↔ 1 < (♯‘𝐹))
2725neeq2i 3008 . . . . . 6 ((♯‘𝐹) ≠ (0 + 1) ↔ (♯‘𝐹) ≠ 1)
2827anbi2i 622 . . . . 5 ((0 < (♯‘𝐹) ∧ (♯‘𝐹) ≠ (0 + 1)) ↔ (0 < (♯‘𝐹) ∧ (♯‘𝐹) ≠ 1))
2924, 26, 283bitr3g 312 . . . 4 (𝐹(Cycles‘𝐺)𝑃 → (1 < (♯‘𝐹) ↔ (0 < (♯‘𝐹) ∧ (♯‘𝐹) ≠ 1)))
30293ad2ant2 1132 . . 3 ((𝐺 ∈ USGraph ∧ 𝐹(Cycles‘𝐺)𝑃𝐹 ≠ ∅) → (1 < (♯‘𝐹) ↔ (0 < (♯‘𝐹) ∧ (♯‘𝐹) ≠ 1)))
3117, 21, 30mpbir2and 709 . 2 ((𝐺 ∈ USGraph ∧ 𝐹(Cycles‘𝐺)𝑃𝐹 ≠ ∅) → 1 < (♯‘𝐹))
32 usgrn2cycl 28075 . . 3 ((𝐺 ∈ USGraph ∧ 𝐹(Cycles‘𝐺)𝑃) → (♯‘𝐹) ≠ 2)
33323adant3 1130 . 2 ((𝐺 ∈ USGraph ∧ 𝐹(Cycles‘𝐺)𝑃𝐹 ≠ ∅) → (♯‘𝐹) ≠ 2)
34 df-2 11966 . . . . . 6 2 = (1 + 1)
3534breq1i 5077 . . . . 5 (2 < (♯‘𝐹) ↔ (1 + 1) < (♯‘𝐹))
36 1nn0 12179 . . . . . 6 1 ∈ ℕ0
37 nn0ltp1ne 32970 . . . . . 6 ((1 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ0) → ((1 + 1) < (♯‘𝐹) ↔ (1 < (♯‘𝐹) ∧ (♯‘𝐹) ≠ (1 + 1))))
3836, 3, 37sylancr 586 . . . . 5 (𝐹(Cycles‘𝐺)𝑃 → ((1 + 1) < (♯‘𝐹) ↔ (1 < (♯‘𝐹) ∧ (♯‘𝐹) ≠ (1 + 1))))
3935, 38syl5bb 282 . . . 4 (𝐹(Cycles‘𝐺)𝑃 → (2 < (♯‘𝐹) ↔ (1 < (♯‘𝐹) ∧ (♯‘𝐹) ≠ (1 + 1))))
40393ad2ant2 1132 . . 3 ((𝐺 ∈ USGraph ∧ 𝐹(Cycles‘𝐺)𝑃𝐹 ≠ ∅) → (2 < (♯‘𝐹) ↔ (1 < (♯‘𝐹) ∧ (♯‘𝐹) ≠ (1 + 1))))
4134neeq2i 3008 . . . 4 ((♯‘𝐹) ≠ 2 ↔ (♯‘𝐹) ≠ (1 + 1))
4241anbi2i 622 . . 3 ((1 < (♯‘𝐹) ∧ (♯‘𝐹) ≠ 2) ↔ (1 < (♯‘𝐹) ∧ (♯‘𝐹) ≠ (1 + 1)))
4340, 42bitr4di 288 . 2 ((𝐺 ∈ USGraph ∧ 𝐹(Cycles‘𝐺)𝑃𝐹 ≠ ∅) → (2 < (♯‘𝐹) ↔ (1 < (♯‘𝐹) ∧ (♯‘𝐹) ≠ 2)))
4431, 33, 43mpbir2and 709 1 ((𝐺 ∈ USGraph ∧ 𝐹(Cycles‘𝐺)𝑃𝐹 ≠ ∅) → 2 < (♯‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085  wcel 2108  wne 2942  Vcvv 3422  c0 4253   class class class wbr 5070  cfv 6418  (class class class)co 7255  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   < clt 10940  cle 10941  2c2 11958  0cn0 12163  chash 13972  UMGraphcumgr 27354  USGraphcusgr 27422  Walkscwlks 27866  Cyclesccycls 28054
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-ifp 1060  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-n0 12164  df-xnn0 12236  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-hash 13973  df-word 14146  df-edg 27321  df-uhgr 27331  df-upgr 27355  df-umgr 27356  df-uspgr 27423  df-usgr 27424  df-wlks 27869  df-trls 27962  df-pths 27985  df-crcts 28055  df-cycls 28056
This theorem is referenced by:  usgrcyclgt2v  32993
  Copyright terms: Public domain W3C validator