Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  usgrgt2cycl Structured version   Visualization version   GIF version

Theorem usgrgt2cycl 35113
Description: A non-trivial cycle in a simple graph has a length greater than 2. (Contributed by BTernaryTau, 24-Sep-2023.)
Assertion
Ref Expression
usgrgt2cycl ((𝐺 ∈ USGraph ∧ 𝐹(Cycles‘𝐺)𝑃𝐹 ≠ ∅) → 2 < (♯‘𝐹))

Proof of Theorem usgrgt2cycl
StepHypRef Expression
1 cycliswlk 29743 . . . . . . . 8 (𝐹(Cycles‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
2 wlkcl 29561 . . . . . . . 8 (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0)
31, 2syl 17 . . . . . . 7 (𝐹(Cycles‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0)
43nn0red 12446 . . . . . 6 (𝐹(Cycles‘𝐺)𝑃 → (♯‘𝐹) ∈ ℝ)
54adantr 480 . . . . 5 ((𝐹(Cycles‘𝐺)𝑃𝐹 ≠ ∅) → (♯‘𝐹) ∈ ℝ)
62nn0ge0d 12448 . . . . . . 7 (𝐹(Walks‘𝐺)𝑃 → 0 ≤ (♯‘𝐹))
71, 6syl 17 . . . . . 6 (𝐹(Cycles‘𝐺)𝑃 → 0 ≤ (♯‘𝐹))
87adantr 480 . . . . 5 ((𝐹(Cycles‘𝐺)𝑃𝐹 ≠ ∅) → 0 ≤ (♯‘𝐹))
9 relwlk 29571 . . . . . . . 8 Rel (Walks‘𝐺)
109brrelex1i 5675 . . . . . . 7 (𝐹(Walks‘𝐺)𝑃𝐹 ∈ V)
11 hasheq0 14270 . . . . . . . . 9 (𝐹 ∈ V → ((♯‘𝐹) = 0 ↔ 𝐹 = ∅))
1211necon3bid 2969 . . . . . . . 8 (𝐹 ∈ V → ((♯‘𝐹) ≠ 0 ↔ 𝐹 ≠ ∅))
1312bicomd 223 . . . . . . 7 (𝐹 ∈ V → (𝐹 ≠ ∅ ↔ (♯‘𝐹) ≠ 0))
141, 10, 133syl 18 . . . . . 6 (𝐹(Cycles‘𝐺)𝑃 → (𝐹 ≠ ∅ ↔ (♯‘𝐹) ≠ 0))
1514biimpa 476 . . . . 5 ((𝐹(Cycles‘𝐺)𝑃𝐹 ≠ ∅) → (♯‘𝐹) ≠ 0)
165, 8, 15ne0gt0d 11253 . . . 4 ((𝐹(Cycles‘𝐺)𝑃𝐹 ≠ ∅) → 0 < (♯‘𝐹))
17163adant1 1130 . . 3 ((𝐺 ∈ USGraph ∧ 𝐹(Cycles‘𝐺)𝑃𝐹 ≠ ∅) → 0 < (♯‘𝐹))
18 usgrumgr 29126 . . . . 5 (𝐺 ∈ USGraph → 𝐺 ∈ UMGraph)
19 umgrn1cycl 29752 . . . . 5 ((𝐺 ∈ UMGraph ∧ 𝐹(Cycles‘𝐺)𝑃) → (♯‘𝐹) ≠ 1)
2018, 19sylan 580 . . . 4 ((𝐺 ∈ USGraph ∧ 𝐹(Cycles‘𝐺)𝑃) → (♯‘𝐹) ≠ 1)
21203adant3 1132 . . 3 ((𝐺 ∈ USGraph ∧ 𝐹(Cycles‘𝐺)𝑃𝐹 ≠ ∅) → (♯‘𝐹) ≠ 1)
22 0nn0 12399 . . . . . 6 0 ∈ ℕ0
23 nn0ltp1ne 35095 . . . . . 6 ((0 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ0) → ((0 + 1) < (♯‘𝐹) ↔ (0 < (♯‘𝐹) ∧ (♯‘𝐹) ≠ (0 + 1))))
2422, 3, 23sylancr 587 . . . . 5 (𝐹(Cycles‘𝐺)𝑃 → ((0 + 1) < (♯‘𝐹) ↔ (0 < (♯‘𝐹) ∧ (♯‘𝐹) ≠ (0 + 1))))
25 0p1e1 12245 . . . . . 6 (0 + 1) = 1
2625breq1i 5099 . . . . 5 ((0 + 1) < (♯‘𝐹) ↔ 1 < (♯‘𝐹))
2725neeq2i 2990 . . . . . 6 ((♯‘𝐹) ≠ (0 + 1) ↔ (♯‘𝐹) ≠ 1)
2827anbi2i 623 . . . . 5 ((0 < (♯‘𝐹) ∧ (♯‘𝐹) ≠ (0 + 1)) ↔ (0 < (♯‘𝐹) ∧ (♯‘𝐹) ≠ 1))
2924, 26, 283bitr3g 313 . . . 4 (𝐹(Cycles‘𝐺)𝑃 → (1 < (♯‘𝐹) ↔ (0 < (♯‘𝐹) ∧ (♯‘𝐹) ≠ 1)))
30293ad2ant2 1134 . . 3 ((𝐺 ∈ USGraph ∧ 𝐹(Cycles‘𝐺)𝑃𝐹 ≠ ∅) → (1 < (♯‘𝐹) ↔ (0 < (♯‘𝐹) ∧ (♯‘𝐹) ≠ 1)))
3117, 21, 30mpbir2and 713 . 2 ((𝐺 ∈ USGraph ∧ 𝐹(Cycles‘𝐺)𝑃𝐹 ≠ ∅) → 1 < (♯‘𝐹))
32 usgrn2cycl 29754 . . 3 ((𝐺 ∈ USGraph ∧ 𝐹(Cycles‘𝐺)𝑃) → (♯‘𝐹) ≠ 2)
33323adant3 1132 . 2 ((𝐺 ∈ USGraph ∧ 𝐹(Cycles‘𝐺)𝑃𝐹 ≠ ∅) → (♯‘𝐹) ≠ 2)
34 df-2 12191 . . . . . 6 2 = (1 + 1)
3534breq1i 5099 . . . . 5 (2 < (♯‘𝐹) ↔ (1 + 1) < (♯‘𝐹))
36 1nn0 12400 . . . . . 6 1 ∈ ℕ0
37 nn0ltp1ne 35095 . . . . . 6 ((1 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ0) → ((1 + 1) < (♯‘𝐹) ↔ (1 < (♯‘𝐹) ∧ (♯‘𝐹) ≠ (1 + 1))))
3836, 3, 37sylancr 587 . . . . 5 (𝐹(Cycles‘𝐺)𝑃 → ((1 + 1) < (♯‘𝐹) ↔ (1 < (♯‘𝐹) ∧ (♯‘𝐹) ≠ (1 + 1))))
3935, 38bitrid 283 . . . 4 (𝐹(Cycles‘𝐺)𝑃 → (2 < (♯‘𝐹) ↔ (1 < (♯‘𝐹) ∧ (♯‘𝐹) ≠ (1 + 1))))
40393ad2ant2 1134 . . 3 ((𝐺 ∈ USGraph ∧ 𝐹(Cycles‘𝐺)𝑃𝐹 ≠ ∅) → (2 < (♯‘𝐹) ↔ (1 < (♯‘𝐹) ∧ (♯‘𝐹) ≠ (1 + 1))))
4134neeq2i 2990 . . . 4 ((♯‘𝐹) ≠ 2 ↔ (♯‘𝐹) ≠ (1 + 1))
4241anbi2i 623 . . 3 ((1 < (♯‘𝐹) ∧ (♯‘𝐹) ≠ 2) ↔ (1 < (♯‘𝐹) ∧ (♯‘𝐹) ≠ (1 + 1)))
4340, 42bitr4di 289 . 2 ((𝐺 ∈ USGraph ∧ 𝐹(Cycles‘𝐺)𝑃𝐹 ≠ ∅) → (2 < (♯‘𝐹) ↔ (1 < (♯‘𝐹) ∧ (♯‘𝐹) ≠ 2)))
4431, 33, 43mpbir2and 713 1 ((𝐺 ∈ USGraph ∧ 𝐹(Cycles‘𝐺)𝑃𝐹 ≠ ∅) → 2 < (♯‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wcel 2109  wne 2925  Vcvv 3436  c0 4284   class class class wbr 5092  cfv 6482  (class class class)co 7349  cr 11008  0cc0 11009  1c1 11010   + caddc 11012   < clt 11149  cle 11150  2c2 12183  0cn0 12384  chash 14237  UMGraphcumgr 29026  USGraphcusgr 29094  Walkscwlks 29542  Cyclesccycls 29730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-oadd 8392  df-er 8625  df-map 8755  df-pm 8756  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-dju 9797  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-n0 12385  df-xnn0 12458  df-z 12472  df-uz 12736  df-fz 13411  df-fzo 13558  df-hash 14238  df-word 14421  df-edg 28993  df-uhgr 29003  df-upgr 29027  df-umgr 29028  df-uspgr 29095  df-usgr 29096  df-wlks 29545  df-trls 29636  df-pths 29659  df-crcts 29731  df-cycls 29732
This theorem is referenced by:  usgrcyclgt2v  35114
  Copyright terms: Public domain W3C validator