Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  usgrgt2cycl Structured version   Visualization version   GIF version

Theorem usgrgt2cycl 35174
Description: A non-trivial cycle in a simple graph has a length greater than 2. (Contributed by BTernaryTau, 24-Sep-2023.)
Assertion
Ref Expression
usgrgt2cycl ((𝐺 ∈ USGraph ∧ 𝐹(Cycles‘𝐺)𝑃𝐹 ≠ ∅) → 2 < (♯‘𝐹))

Proof of Theorem usgrgt2cycl
StepHypRef Expression
1 cycliswlk 29776 . . . . . . . 8 (𝐹(Cycles‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
2 wlkcl 29594 . . . . . . . 8 (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0)
31, 2syl 17 . . . . . . 7 (𝐹(Cycles‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0)
43nn0red 12443 . . . . . 6 (𝐹(Cycles‘𝐺)𝑃 → (♯‘𝐹) ∈ ℝ)
54adantr 480 . . . . 5 ((𝐹(Cycles‘𝐺)𝑃𝐹 ≠ ∅) → (♯‘𝐹) ∈ ℝ)
62nn0ge0d 12445 . . . . . . 7 (𝐹(Walks‘𝐺)𝑃 → 0 ≤ (♯‘𝐹))
71, 6syl 17 . . . . . 6 (𝐹(Cycles‘𝐺)𝑃 → 0 ≤ (♯‘𝐹))
87adantr 480 . . . . 5 ((𝐹(Cycles‘𝐺)𝑃𝐹 ≠ ∅) → 0 ≤ (♯‘𝐹))
9 relwlk 29604 . . . . . . . 8 Rel (Walks‘𝐺)
109brrelex1i 5670 . . . . . . 7 (𝐹(Walks‘𝐺)𝑃𝐹 ∈ V)
11 hasheq0 14270 . . . . . . . . 9 (𝐹 ∈ V → ((♯‘𝐹) = 0 ↔ 𝐹 = ∅))
1211necon3bid 2972 . . . . . . . 8 (𝐹 ∈ V → ((♯‘𝐹) ≠ 0 ↔ 𝐹 ≠ ∅))
1312bicomd 223 . . . . . . 7 (𝐹 ∈ V → (𝐹 ≠ ∅ ↔ (♯‘𝐹) ≠ 0))
141, 10, 133syl 18 . . . . . 6 (𝐹(Cycles‘𝐺)𝑃 → (𝐹 ≠ ∅ ↔ (♯‘𝐹) ≠ 0))
1514biimpa 476 . . . . 5 ((𝐹(Cycles‘𝐺)𝑃𝐹 ≠ ∅) → (♯‘𝐹) ≠ 0)
165, 8, 15ne0gt0d 11250 . . . 4 ((𝐹(Cycles‘𝐺)𝑃𝐹 ≠ ∅) → 0 < (♯‘𝐹))
17163adant1 1130 . . 3 ((𝐺 ∈ USGraph ∧ 𝐹(Cycles‘𝐺)𝑃𝐹 ≠ ∅) → 0 < (♯‘𝐹))
18 usgrumgr 29159 . . . . 5 (𝐺 ∈ USGraph → 𝐺 ∈ UMGraph)
19 umgrn1cycl 29785 . . . . 5 ((𝐺 ∈ UMGraph ∧ 𝐹(Cycles‘𝐺)𝑃) → (♯‘𝐹) ≠ 1)
2018, 19sylan 580 . . . 4 ((𝐺 ∈ USGraph ∧ 𝐹(Cycles‘𝐺)𝑃) → (♯‘𝐹) ≠ 1)
21203adant3 1132 . . 3 ((𝐺 ∈ USGraph ∧ 𝐹(Cycles‘𝐺)𝑃𝐹 ≠ ∅) → (♯‘𝐹) ≠ 1)
22 0nn0 12396 . . . . . 6 0 ∈ ℕ0
23 nn0ltp1ne 35156 . . . . . 6 ((0 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ0) → ((0 + 1) < (♯‘𝐹) ↔ (0 < (♯‘𝐹) ∧ (♯‘𝐹) ≠ (0 + 1))))
2422, 3, 23sylancr 587 . . . . 5 (𝐹(Cycles‘𝐺)𝑃 → ((0 + 1) < (♯‘𝐹) ↔ (0 < (♯‘𝐹) ∧ (♯‘𝐹) ≠ (0 + 1))))
25 0p1e1 12242 . . . . . 6 (0 + 1) = 1
2625breq1i 5096 . . . . 5 ((0 + 1) < (♯‘𝐹) ↔ 1 < (♯‘𝐹))
2725neeq2i 2993 . . . . . 6 ((♯‘𝐹) ≠ (0 + 1) ↔ (♯‘𝐹) ≠ 1)
2827anbi2i 623 . . . . 5 ((0 < (♯‘𝐹) ∧ (♯‘𝐹) ≠ (0 + 1)) ↔ (0 < (♯‘𝐹) ∧ (♯‘𝐹) ≠ 1))
2924, 26, 283bitr3g 313 . . . 4 (𝐹(Cycles‘𝐺)𝑃 → (1 < (♯‘𝐹) ↔ (0 < (♯‘𝐹) ∧ (♯‘𝐹) ≠ 1)))
30293ad2ant2 1134 . . 3 ((𝐺 ∈ USGraph ∧ 𝐹(Cycles‘𝐺)𝑃𝐹 ≠ ∅) → (1 < (♯‘𝐹) ↔ (0 < (♯‘𝐹) ∧ (♯‘𝐹) ≠ 1)))
3117, 21, 30mpbir2and 713 . 2 ((𝐺 ∈ USGraph ∧ 𝐹(Cycles‘𝐺)𝑃𝐹 ≠ ∅) → 1 < (♯‘𝐹))
32 usgrn2cycl 29787 . . 3 ((𝐺 ∈ USGraph ∧ 𝐹(Cycles‘𝐺)𝑃) → (♯‘𝐹) ≠ 2)
33323adant3 1132 . 2 ((𝐺 ∈ USGraph ∧ 𝐹(Cycles‘𝐺)𝑃𝐹 ≠ ∅) → (♯‘𝐹) ≠ 2)
34 df-2 12188 . . . . . 6 2 = (1 + 1)
3534breq1i 5096 . . . . 5 (2 < (♯‘𝐹) ↔ (1 + 1) < (♯‘𝐹))
36 1nn0 12397 . . . . . 6 1 ∈ ℕ0
37 nn0ltp1ne 35156 . . . . . 6 ((1 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ0) → ((1 + 1) < (♯‘𝐹) ↔ (1 < (♯‘𝐹) ∧ (♯‘𝐹) ≠ (1 + 1))))
3836, 3, 37sylancr 587 . . . . 5 (𝐹(Cycles‘𝐺)𝑃 → ((1 + 1) < (♯‘𝐹) ↔ (1 < (♯‘𝐹) ∧ (♯‘𝐹) ≠ (1 + 1))))
3935, 38bitrid 283 . . . 4 (𝐹(Cycles‘𝐺)𝑃 → (2 < (♯‘𝐹) ↔ (1 < (♯‘𝐹) ∧ (♯‘𝐹) ≠ (1 + 1))))
40393ad2ant2 1134 . . 3 ((𝐺 ∈ USGraph ∧ 𝐹(Cycles‘𝐺)𝑃𝐹 ≠ ∅) → (2 < (♯‘𝐹) ↔ (1 < (♯‘𝐹) ∧ (♯‘𝐹) ≠ (1 + 1))))
4134neeq2i 2993 . . . 4 ((♯‘𝐹) ≠ 2 ↔ (♯‘𝐹) ≠ (1 + 1))
4241anbi2i 623 . . 3 ((1 < (♯‘𝐹) ∧ (♯‘𝐹) ≠ 2) ↔ (1 < (♯‘𝐹) ∧ (♯‘𝐹) ≠ (1 + 1)))
4340, 42bitr4di 289 . 2 ((𝐺 ∈ USGraph ∧ 𝐹(Cycles‘𝐺)𝑃𝐹 ≠ ∅) → (2 < (♯‘𝐹) ↔ (1 < (♯‘𝐹) ∧ (♯‘𝐹) ≠ 2)))
4431, 33, 43mpbir2and 713 1 ((𝐺 ∈ USGraph ∧ 𝐹(Cycles‘𝐺)𝑃𝐹 ≠ ∅) → 2 < (♯‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wcel 2111  wne 2928  Vcvv 3436  c0 4280   class class class wbr 5089  cfv 6481  (class class class)co 7346  cr 11005  0cc0 11006  1c1 11007   + caddc 11009   < clt 11146  cle 11147  2c2 12180  0cn0 12381  chash 14237  UMGraphcumgr 29059  USGraphcusgr 29127  Walkscwlks 29575  Cyclesccycls 29763
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-er 8622  df-map 8752  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-dju 9794  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-n0 12382  df-xnn0 12455  df-z 12469  df-uz 12733  df-fz 13408  df-fzo 13555  df-hash 14238  df-word 14421  df-edg 29026  df-uhgr 29036  df-upgr 29060  df-umgr 29061  df-uspgr 29128  df-usgr 29129  df-wlks 29578  df-trls 29669  df-pths 29692  df-crcts 29764  df-cycls 29765
This theorem is referenced by:  usgrcyclgt2v  35175
  Copyright terms: Public domain W3C validator