Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > neldif | Structured version Visualization version GIF version |
Description: Implication of membership in a class difference. (Contributed by NM, 28-Jun-1994.) |
Ref | Expression |
---|---|
neldif | ⊢ ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ (𝐵 ∖ 𝐶)) → 𝐴 ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldif 3897 | . . . 4 ⊢ (𝐴 ∈ (𝐵 ∖ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶)) | |
2 | 1 | simplbi2 501 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (¬ 𝐴 ∈ 𝐶 → 𝐴 ∈ (𝐵 ∖ 𝐶))) |
3 | 2 | con1d 145 | . 2 ⊢ (𝐴 ∈ 𝐵 → (¬ 𝐴 ∈ (𝐵 ∖ 𝐶) → 𝐴 ∈ 𝐶)) |
4 | 3 | imp 407 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ (𝐵 ∖ 𝐶)) → 𝐴 ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∈ wcel 2106 ∖ cdif 3884 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-dif 3890 |
This theorem is referenced by: peano5 7740 peano5OLD 7741 boxcutc 8729 etransc 43824 |
Copyright terms: Public domain | W3C validator |