MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neldif Structured version   Visualization version   GIF version

Theorem neldif 4090
Description: Implication of membership in a class difference. (Contributed by NM, 28-Jun-1994.)
Assertion
Ref Expression
neldif ((𝐴𝐵 ∧ ¬ 𝐴 ∈ (𝐵𝐶)) → 𝐴𝐶)

Proof of Theorem neldif
StepHypRef Expression
1 eldif 3921 . . . 4 (𝐴 ∈ (𝐵𝐶) ↔ (𝐴𝐵 ∧ ¬ 𝐴𝐶))
21simplbi2 502 . . 3 (𝐴𝐵 → (¬ 𝐴𝐶𝐴 ∈ (𝐵𝐶)))
32con1d 145 . 2 (𝐴𝐵 → (¬ 𝐴 ∈ (𝐵𝐶) → 𝐴𝐶))
43imp 408 1 ((𝐴𝐵 ∧ ¬ 𝐴 ∈ (𝐵𝐶)) → 𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397  wcel 2107  cdif 3908
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-tru 1545  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-v 3446  df-dif 3914
This theorem is referenced by:  peano5  7831  peano5OLD  7832  boxcutc  8882  etransc  44610
  Copyright terms: Public domain W3C validator