| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > neldif | Structured version Visualization version GIF version | ||
| Description: Implication of membership in a class difference. (Contributed by NM, 28-Jun-1994.) |
| Ref | Expression |
|---|---|
| neldif | ⊢ ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ (𝐵 ∖ 𝐶)) → 𝐴 ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldif 3927 | . . . 4 ⊢ (𝐴 ∈ (𝐵 ∖ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶)) | |
| 2 | 1 | simplbi2 500 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (¬ 𝐴 ∈ 𝐶 → 𝐴 ∈ (𝐵 ∖ 𝐶))) |
| 3 | 2 | con1d 145 | . 2 ⊢ (𝐴 ∈ 𝐵 → (¬ 𝐴 ∈ (𝐵 ∖ 𝐶) → 𝐴 ∈ 𝐶)) |
| 4 | 3 | imp 406 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ (𝐵 ∖ 𝐶)) → 𝐴 ∈ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2109 ∖ cdif 3914 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-dif 3920 |
| This theorem is referenced by: peano5 7872 boxcutc 8917 etransc 46288 |
| Copyright terms: Public domain | W3C validator |