| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elndif | Structured version Visualization version GIF version | ||
| Description: A set does not belong to a class excluding it. (Contributed by NM, 27-Jun-1994.) |
| Ref | Expression |
|---|---|
| elndif | ⊢ (𝐴 ∈ 𝐵 → ¬ 𝐴 ∈ (𝐶 ∖ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifn 4095 | . 2 ⊢ (𝐴 ∈ (𝐶 ∖ 𝐵) → ¬ 𝐴 ∈ 𝐵) | |
| 2 | 1 | con2i 139 | 1 ⊢ (𝐴 ∈ 𝐵 → ¬ 𝐴 ∈ (𝐶 ∖ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2109 ∖ cdif 3911 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-dif 3917 |
| This theorem is referenced by: peano5 7869 extmptsuppeq 8167 undifixp 8907 ssfin4 10263 isf32lem3 10308 isf34lem4 10330 xrinfmss 13270 restntr 23069 cmpcld 23289 reconnlem2 24716 lebnumlem1 24860 i1fd 25582 ssdifidlprm 33429 hgt750lemd 34639 fmlasucdisj 35386 dfon2lem6 35776 onsucconni 36425 meaiininclem 46484 caragendifcl 46512 |
| Copyright terms: Public domain | W3C validator |