Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elndif | Structured version Visualization version GIF version |
Description: A set does not belong to a class excluding it. (Contributed by NM, 27-Jun-1994.) |
Ref | Expression |
---|---|
elndif | ⊢ (𝐴 ∈ 𝐵 → ¬ 𝐴 ∈ (𝐶 ∖ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifn 4016 | . 2 ⊢ (𝐴 ∈ (𝐶 ∖ 𝐵) → ¬ 𝐴 ∈ 𝐵) | |
2 | 1 | con2i 141 | 1 ⊢ (𝐴 ∈ 𝐵 → ¬ 𝐴 ∈ (𝐶 ∖ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2113 ∖ cdif 3838 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-ext 2710 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1545 df-ex 1787 df-sb 2074 df-clab 2717 df-cleq 2730 df-clel 2811 df-v 3399 df-dif 3844 |
This theorem is referenced by: peano5 7618 extmptsuppeq 7876 undifixp 8537 ssfin4 9803 isf32lem3 9848 isf34lem4 9870 xrinfmss 12779 restntr 21926 cmpcld 22146 reconnlem2 23572 lebnumlem1 23706 i1fd 24426 hgt750lemd 32190 fmlasucdisj 32924 dfon2lem6 33328 onsucconni 34256 meaiininclem 43550 caragendifcl 43578 |
Copyright terms: Public domain | W3C validator |