| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elndif | Structured version Visualization version GIF version | ||
| Description: A set does not belong to a class excluding it. (Contributed by NM, 27-Jun-1994.) |
| Ref | Expression |
|---|---|
| elndif | ⊢ (𝐴 ∈ 𝐵 → ¬ 𝐴 ∈ (𝐶 ∖ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifn 4077 | . 2 ⊢ (𝐴 ∈ (𝐶 ∖ 𝐵) → ¬ 𝐴 ∈ 𝐵) | |
| 2 | 1 | con2i 139 | 1 ⊢ (𝐴 ∈ 𝐵 → ¬ 𝐴 ∈ (𝐶 ∖ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2111 ∖ cdif 3894 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-dif 3900 |
| This theorem is referenced by: peano5 7818 extmptsuppeq 8113 undifixp 8853 ssfin4 10196 isf32lem3 10241 isf34lem4 10263 xrinfmss 13204 restntr 23092 cmpcld 23312 reconnlem2 24738 lebnumlem1 24882 i1fd 25604 ssdifidlprm 33415 hgt750lemd 34653 fmlasucdisj 35435 dfon2lem6 35822 onsucconni 36471 meaiininclem 46524 caragendifcl 46552 |
| Copyright terms: Public domain | W3C validator |