![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elndif | Structured version Visualization version GIF version |
Description: A set does not belong to a class excluding it. (Contributed by NM, 27-Jun-1994.) |
Ref | Expression |
---|---|
elndif | ⊢ (𝐴 ∈ 𝐵 → ¬ 𝐴 ∈ (𝐶 ∖ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifn 4127 | . 2 ⊢ (𝐴 ∈ (𝐶 ∖ 𝐵) → ¬ 𝐴 ∈ 𝐵) | |
2 | 1 | con2i 139 | 1 ⊢ (𝐴 ∈ 𝐵 → ¬ 𝐴 ∈ (𝐶 ∖ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2105 ∖ cdif 3945 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-v 3475 df-dif 3951 |
This theorem is referenced by: peano5 7888 peano5OLD 7889 extmptsuppeq 8177 undifixp 8932 ssfin4 10309 isf32lem3 10354 isf34lem4 10376 xrinfmss 13294 restntr 22907 cmpcld 23127 reconnlem2 24564 lebnumlem1 24708 i1fd 25431 hgt750lemd 33959 fmlasucdisj 34689 dfon2lem6 35065 onsucconni 35626 meaiininclem 45501 caragendifcl 45529 |
Copyright terms: Public domain | W3C validator |