MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elndif Structured version   Visualization version   GIF version

Theorem elndif 4059
Description: A set does not belong to a class excluding it. (Contributed by NM, 27-Jun-1994.)
Assertion
Ref Expression
elndif (𝐴𝐵 → ¬ 𝐴 ∈ (𝐶𝐵))

Proof of Theorem elndif
StepHypRef Expression
1 eldifn 4058 . 2 (𝐴 ∈ (𝐶𝐵) → ¬ 𝐴𝐵)
21con2i 139 1 (𝐴𝐵 → ¬ 𝐴 ∈ (𝐶𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2108  cdif 3880
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-dif 3886
This theorem is referenced by:  peano5  7714  peano5OLD  7715  extmptsuppeq  7975  undifixp  8680  ssfin4  9997  isf32lem3  10042  isf34lem4  10064  xrinfmss  12973  restntr  22241  cmpcld  22461  reconnlem2  23896  lebnumlem1  24030  i1fd  24750  hgt750lemd  32528  fmlasucdisj  33261  dfon2lem6  33670  onsucconni  34553  meaiininclem  43914  caragendifcl  43942
  Copyright terms: Public domain W3C validator