![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elndif | Structured version Visualization version GIF version |
Description: A set does not belong to a class excluding it. (Contributed by NM, 27-Jun-1994.) |
Ref | Expression |
---|---|
elndif | ⊢ (𝐴 ∈ 𝐵 → ¬ 𝐴 ∈ (𝐶 ∖ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifn 4142 | . 2 ⊢ (𝐴 ∈ (𝐶 ∖ 𝐵) → ¬ 𝐴 ∈ 𝐵) | |
2 | 1 | con2i 139 | 1 ⊢ (𝐴 ∈ 𝐵 → ¬ 𝐴 ∈ (𝐶 ∖ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2106 ∖ cdif 3960 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 df-dif 3966 |
This theorem is referenced by: peano5 7916 extmptsuppeq 8212 undifixp 8973 ssfin4 10348 isf32lem3 10393 isf34lem4 10415 xrinfmss 13349 restntr 23206 cmpcld 23426 reconnlem2 24863 lebnumlem1 25007 i1fd 25730 ssdifidlprm 33466 hgt750lemd 34642 fmlasucdisj 35384 dfon2lem6 35770 onsucconni 36420 meaiininclem 46442 caragendifcl 46470 |
Copyright terms: Public domain | W3C validator |