| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elndif | Structured version Visualization version GIF version | ||
| Description: A set does not belong to a class excluding it. (Contributed by NM, 27-Jun-1994.) |
| Ref | Expression |
|---|---|
| elndif | ⊢ (𝐴 ∈ 𝐵 → ¬ 𝐴 ∈ (𝐶 ∖ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifn 4098 | . 2 ⊢ (𝐴 ∈ (𝐶 ∖ 𝐵) → ¬ 𝐴 ∈ 𝐵) | |
| 2 | 1 | con2i 139 | 1 ⊢ (𝐴 ∈ 𝐵 → ¬ 𝐴 ∈ (𝐶 ∖ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2109 ∖ cdif 3914 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-dif 3920 |
| This theorem is referenced by: peano5 7872 extmptsuppeq 8170 undifixp 8910 ssfin4 10270 isf32lem3 10315 isf34lem4 10337 xrinfmss 13277 restntr 23076 cmpcld 23296 reconnlem2 24723 lebnumlem1 24867 i1fd 25589 ssdifidlprm 33436 hgt750lemd 34646 fmlasucdisj 35393 dfon2lem6 35783 onsucconni 36432 meaiininclem 46491 caragendifcl 46519 |
| Copyright terms: Public domain | W3C validator |