| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elndif | Structured version Visualization version GIF version | ||
| Description: A set does not belong to a class excluding it. (Contributed by NM, 27-Jun-1994.) |
| Ref | Expression |
|---|---|
| elndif | ⊢ (𝐴 ∈ 𝐵 → ¬ 𝐴 ∈ (𝐶 ∖ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifn 4107 | . 2 ⊢ (𝐴 ∈ (𝐶 ∖ 𝐵) → ¬ 𝐴 ∈ 𝐵) | |
| 2 | 1 | con2i 139 | 1 ⊢ (𝐴 ∈ 𝐵 → ¬ 𝐴 ∈ (𝐶 ∖ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2108 ∖ cdif 3923 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-dif 3929 |
| This theorem is referenced by: peano5 7889 extmptsuppeq 8187 undifixp 8948 ssfin4 10324 isf32lem3 10369 isf34lem4 10391 xrinfmss 13326 restntr 23120 cmpcld 23340 reconnlem2 24767 lebnumlem1 24911 i1fd 25634 ssdifidlprm 33473 hgt750lemd 34680 fmlasucdisj 35421 dfon2lem6 35806 onsucconni 36455 meaiininclem 46515 caragendifcl 46543 |
| Copyright terms: Public domain | W3C validator |