| Step | Hyp | Ref
| Expression |
| 1 | | 1red 11262 |
. . . . 5
⊢ ((𝑘 ∈ ℤ ∧ 𝑘 ≠ 0) → 1 ∈
ℝ) |
| 2 | | nn0abscl 15351 |
. . . . . . 7
⊢ (𝑘 ∈ ℤ →
(abs‘𝑘) ∈
ℕ0) |
| 3 | 2 | nn0red 12588 |
. . . . . 6
⊢ (𝑘 ∈ ℤ →
(abs‘𝑘) ∈
ℝ) |
| 4 | 3 | adantr 480 |
. . . . 5
⊢ ((𝑘 ∈ ℤ ∧ 𝑘 ≠ 0) → (abs‘𝑘) ∈
ℝ) |
| 5 | | nnabscl 15364 |
. . . . . 6
⊢ ((𝑘 ∈ ℤ ∧ 𝑘 ≠ 0) → (abs‘𝑘) ∈
ℕ) |
| 6 | 5 | nnge1d 12314 |
. . . . 5
⊢ ((𝑘 ∈ ℤ ∧ 𝑘 ≠ 0) → 1 ≤
(abs‘𝑘)) |
| 7 | 1, 4, 6 | lensymd 11412 |
. . . 4
⊢ ((𝑘 ∈ ℤ ∧ 𝑘 ≠ 0) → ¬
(abs‘𝑘) <
1) |
| 8 | | nan 830 |
. . . 4
⊢ ((𝑘 ∈ ℤ → ¬
(𝑘 ≠ 0 ∧
(abs‘𝑘) < 1))
↔ ((𝑘 ∈ ℤ
∧ 𝑘 ≠ 0) →
¬ (abs‘𝑘) <
1)) |
| 9 | 7, 8 | mpbir 231 |
. . 3
⊢ (𝑘 ∈ ℤ → ¬
(𝑘 ≠ 0 ∧
(abs‘𝑘) <
1)) |
| 10 | 9 | nrex 3074 |
. 2
⊢ ¬
∃𝑘 ∈ ℤ
(𝑘 ≠ 0 ∧
(abs‘𝑘) <
1) |
| 11 | | ere 16125 |
. . . . . . . 8
⊢ e ∈
ℝ |
| 12 | 11 | recni 11275 |
. . . . . . 7
⊢ e ∈
ℂ |
| 13 | | neldif 4134 |
. . . . . . 7
⊢ ((e
∈ ℂ ∧ ¬ e ∈ (ℂ ∖ 𝔸)) → e
∈ 𝔸) |
| 14 | 12, 13 | mpan 690 |
. . . . . 6
⊢ (¬ e
∈ (ℂ ∖ 𝔸) → e ∈ 𝔸) |
| 15 | | ene0 16245 |
. . . . . . . 8
⊢ e ≠
0 |
| 16 | | elsng 4640 |
. . . . . . . . 9
⊢ (e ∈
ℂ → (e ∈ {0} ↔ e = 0)) |
| 17 | 12, 16 | ax-mp 5 |
. . . . . . . 8
⊢ (e ∈
{0} ↔ e = 0) |
| 18 | 15, 17 | nemtbir 3038 |
. . . . . . 7
⊢ ¬ e
∈ {0} |
| 19 | 18 | a1i 11 |
. . . . . 6
⊢ (¬ e
∈ (ℂ ∖ 𝔸) → ¬ e ∈ {0}) |
| 20 | 14, 19 | eldifd 3962 |
. . . . 5
⊢ (¬ e
∈ (ℂ ∖ 𝔸) → e ∈ (𝔸 ∖
{0})) |
| 21 | | elaa2 46249 |
. . . . 5
⊢ (e ∈
(𝔸 ∖ {0}) ↔ (e ∈ ℂ ∧ ∃𝑞 ∈
(Poly‘ℤ)(((coeff‘𝑞)‘0) ≠ 0 ∧ (𝑞‘e) = 0))) |
| 22 | 20, 21 | sylib 218 |
. . . 4
⊢ (¬ e
∈ (ℂ ∖ 𝔸) → (e ∈ ℂ ∧ ∃𝑞 ∈
(Poly‘ℤ)(((coeff‘𝑞)‘0) ≠ 0 ∧ (𝑞‘e) = 0))) |
| 23 | 22 | simprd 495 |
. . 3
⊢ (¬ e
∈ (ℂ ∖ 𝔸) → ∃𝑞 ∈
(Poly‘ℤ)(((coeff‘𝑞)‘0) ≠ 0 ∧ (𝑞‘e) = 0)) |
| 24 | | simpl 482 |
. . . . . . 7
⊢ ((𝑞 ∈ (Poly‘ℤ)
∧ ((coeff‘𝑞)‘0) ≠ 0) → 𝑞 ∈
(Poly‘ℤ)) |
| 25 | | 0nn0 12541 |
. . . . . . . . 9
⊢ 0 ∈
ℕ0 |
| 26 | | n0p 45050 |
. . . . . . . . 9
⊢ ((𝑞 ∈ (Poly‘ℤ)
∧ 0 ∈ ℕ0 ∧ ((coeff‘𝑞)‘0) ≠ 0) → 𝑞 ≠ 0𝑝) |
| 27 | 25, 26 | mp3an2 1451 |
. . . . . . . 8
⊢ ((𝑞 ∈ (Poly‘ℤ)
∧ ((coeff‘𝑞)‘0) ≠ 0) → 𝑞 ≠ 0𝑝) |
| 28 | | nelsn 4666 |
. . . . . . . 8
⊢ (𝑞 ≠ 0𝑝
→ ¬ 𝑞 ∈
{0𝑝}) |
| 29 | 27, 28 | syl 17 |
. . . . . . 7
⊢ ((𝑞 ∈ (Poly‘ℤ)
∧ ((coeff‘𝑞)‘0) ≠ 0) → ¬ 𝑞 ∈
{0𝑝}) |
| 30 | 24, 29 | eldifd 3962 |
. . . . . 6
⊢ ((𝑞 ∈ (Poly‘ℤ)
∧ ((coeff‘𝑞)‘0) ≠ 0) → 𝑞 ∈ ((Poly‘ℤ) ∖
{0𝑝})) |
| 31 | 30 | adantrr 717 |
. . . . 5
⊢ ((𝑞 ∈ (Poly‘ℤ)
∧ (((coeff‘𝑞)‘0) ≠ 0 ∧ (𝑞‘e) = 0)) → 𝑞 ∈ ((Poly‘ℤ) ∖
{0𝑝})) |
| 32 | | simprr 773 |
. . . . 5
⊢ ((𝑞 ∈ (Poly‘ℤ)
∧ (((coeff‘𝑞)‘0) ≠ 0 ∧ (𝑞‘e) = 0)) → (𝑞‘e) = 0) |
| 33 | | eqid 2737 |
. . . . 5
⊢
(coeff‘𝑞) =
(coeff‘𝑞) |
| 34 | | simprl 771 |
. . . . 5
⊢ ((𝑞 ∈ (Poly‘ℤ)
∧ (((coeff‘𝑞)‘0) ≠ 0 ∧ (𝑞‘e) = 0)) → ((coeff‘𝑞)‘0) ≠
0) |
| 35 | | eqid 2737 |
. . . . 5
⊢
(deg‘𝑞) =
(deg‘𝑞) |
| 36 | | eqid 2737 |
. . . . 5
⊢
Σ𝑙 ∈
(0...(deg‘𝑞))((abs‘(((coeff‘𝑞)‘𝑙) · (e↑𝑐𝑙))) · ((deg‘𝑞) · ((deg‘𝑞)↑((deg‘𝑞) + 1)))) = Σ𝑙 ∈ (0...(deg‘𝑞))((abs‘(((coeff‘𝑞)‘𝑙) · (e↑𝑐𝑙))) · ((deg‘𝑞) · ((deg‘𝑞)↑((deg‘𝑞) + 1)))) |
| 37 | | eqid 2737 |
. . . . 5
⊢ (𝑛 ∈ ℕ0
↦ (Σ𝑙 ∈
(0...(deg‘𝑞))((abs‘(((coeff‘𝑞)‘𝑙) · (e↑𝑐𝑙))) · ((deg‘𝑞) · ((deg‘𝑞)↑((deg‘𝑞) + 1)))) ·
((((deg‘𝑞)↑((deg‘𝑞) + 1))↑𝑛) / (!‘𝑛)))) = (𝑛 ∈ ℕ0 ↦
(Σ𝑙 ∈
(0...(deg‘𝑞))((abs‘(((coeff‘𝑞)‘𝑙) · (e↑𝑐𝑙))) · ((deg‘𝑞) · ((deg‘𝑞)↑((deg‘𝑞) + 1)))) ·
((((deg‘𝑞)↑((deg‘𝑞) + 1))↑𝑛) / (!‘𝑛)))) |
| 38 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (ℎ = 𝑙 → ((coeff‘𝑞)‘ℎ) = ((coeff‘𝑞)‘𝑙)) |
| 39 | | oveq2 7439 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (ℎ = 𝑙 → (e↑𝑐ℎ) =
(e↑𝑐𝑙)) |
| 40 | 38, 39 | oveq12d 7449 |
. . . . . . . . . . . . . . . . . . 19
⊢ (ℎ = 𝑙 → (((coeff‘𝑞)‘ℎ) · (e↑𝑐ℎ)) = (((coeff‘𝑞)‘𝑙) · (e↑𝑐𝑙))) |
| 41 | 40 | fveq2d 6910 |
. . . . . . . . . . . . . . . . . 18
⊢ (ℎ = 𝑙 → (abs‘(((coeff‘𝑞)‘ℎ) · (e↑𝑐ℎ))) =
(abs‘(((coeff‘𝑞)‘𝑙) · (e↑𝑐𝑙)))) |
| 42 | 41 | oveq1d 7446 |
. . . . . . . . . . . . . . . . 17
⊢ (ℎ = 𝑙 → ((abs‘(((coeff‘𝑞)‘ℎ) · (e↑𝑐ℎ))) · ((deg‘𝑞) · ((deg‘𝑞)↑((deg‘𝑞) + 1)))) =
((abs‘(((coeff‘𝑞)‘𝑙) · (e↑𝑐𝑙))) · ((deg‘𝑞) · ((deg‘𝑞)↑((deg‘𝑞) + 1))))) |
| 43 | 42 | cbvsumv 15732 |
. . . . . . . . . . . . . . . 16
⊢
Σℎ ∈
(0...(deg‘𝑞))((abs‘(((coeff‘𝑞)‘ℎ) · (e↑𝑐ℎ))) · ((deg‘𝑞) · ((deg‘𝑞)↑((deg‘𝑞) + 1)))) = Σ𝑙 ∈ (0...(deg‘𝑞))((abs‘(((coeff‘𝑞)‘𝑙) · (e↑𝑐𝑙))) · ((deg‘𝑞) · ((deg‘𝑞)↑((deg‘𝑞) + 1)))) |
| 44 | 43 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 = 𝑛 → Σℎ ∈ (0...(deg‘𝑞))((abs‘(((coeff‘𝑞)‘ℎ) · (e↑𝑐ℎ))) · ((deg‘𝑞) · ((deg‘𝑞)↑((deg‘𝑞) + 1)))) = Σ𝑙 ∈ (0...(deg‘𝑞))((abs‘(((coeff‘𝑞)‘𝑙) · (e↑𝑐𝑙))) · ((deg‘𝑞) · ((deg‘𝑞)↑((deg‘𝑞) + 1))))) |
| 45 | | oveq2 7439 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 = 𝑛 → (((deg‘𝑞)↑((deg‘𝑞) + 1))↑𝑚) = (((deg‘𝑞)↑((deg‘𝑞) + 1))↑𝑛)) |
| 46 | | fveq2 6906 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 = 𝑛 → (!‘𝑚) = (!‘𝑛)) |
| 47 | 45, 46 | oveq12d 7449 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 = 𝑛 → ((((deg‘𝑞)↑((deg‘𝑞) + 1))↑𝑚) / (!‘𝑚)) = ((((deg‘𝑞)↑((deg‘𝑞) + 1))↑𝑛) / (!‘𝑛))) |
| 48 | 44, 47 | oveq12d 7449 |
. . . . . . . . . . . . . 14
⊢ (𝑚 = 𝑛 → (Σℎ ∈ (0...(deg‘𝑞))((abs‘(((coeff‘𝑞)‘ℎ) · (e↑𝑐ℎ))) · ((deg‘𝑞) · ((deg‘𝑞)↑((deg‘𝑞) + 1)))) ·
((((deg‘𝑞)↑((deg‘𝑞) + 1))↑𝑚) / (!‘𝑚))) = (Σ𝑙 ∈ (0...(deg‘𝑞))((abs‘(((coeff‘𝑞)‘𝑙) · (e↑𝑐𝑙))) · ((deg‘𝑞) · ((deg‘𝑞)↑((deg‘𝑞) + 1)))) ·
((((deg‘𝑞)↑((deg‘𝑞) + 1))↑𝑛) / (!‘𝑛)))) |
| 49 | 48 | cbvmptv 5255 |
. . . . . . . . . . . . 13
⊢ (𝑚 ∈ ℕ0
↦ (Σℎ ∈
(0...(deg‘𝑞))((abs‘(((coeff‘𝑞)‘ℎ) · (e↑𝑐ℎ))) · ((deg‘𝑞) · ((deg‘𝑞)↑((deg‘𝑞) + 1)))) ·
((((deg‘𝑞)↑((deg‘𝑞) + 1))↑𝑚) / (!‘𝑚)))) = (𝑛 ∈ ℕ0 ↦
(Σ𝑙 ∈
(0...(deg‘𝑞))((abs‘(((coeff‘𝑞)‘𝑙) · (e↑𝑐𝑙))) · ((deg‘𝑞) · ((deg‘𝑞)↑((deg‘𝑞) + 1)))) ·
((((deg‘𝑞)↑((deg‘𝑞) + 1))↑𝑛) / (!‘𝑛)))) |
| 50 | 49 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝑚 = 𝑛 → (𝑚 ∈ ℕ0 ↦
(Σℎ ∈
(0...(deg‘𝑞))((abs‘(((coeff‘𝑞)‘ℎ) · (e↑𝑐ℎ))) · ((deg‘𝑞) · ((deg‘𝑞)↑((deg‘𝑞) + 1)))) ·
((((deg‘𝑞)↑((deg‘𝑞) + 1))↑𝑚) / (!‘𝑚)))) = (𝑛 ∈ ℕ0 ↦
(Σ𝑙 ∈
(0...(deg‘𝑞))((abs‘(((coeff‘𝑞)‘𝑙) · (e↑𝑐𝑙))) · ((deg‘𝑞) · ((deg‘𝑞)↑((deg‘𝑞) + 1)))) ·
((((deg‘𝑞)↑((deg‘𝑞) + 1))↑𝑛) / (!‘𝑛))))) |
| 51 | | id 22 |
. . . . . . . . . . . 12
⊢ (𝑚 = 𝑛 → 𝑚 = 𝑛) |
| 52 | 50, 51 | fveq12d 6913 |
. . . . . . . . . . 11
⊢ (𝑚 = 𝑛 → ((𝑚 ∈ ℕ0 ↦
(Σℎ ∈
(0...(deg‘𝑞))((abs‘(((coeff‘𝑞)‘ℎ) · (e↑𝑐ℎ))) · ((deg‘𝑞) · ((deg‘𝑞)↑((deg‘𝑞) + 1)))) ·
((((deg‘𝑞)↑((deg‘𝑞) + 1))↑𝑚) / (!‘𝑚))))‘𝑚) = ((𝑛 ∈ ℕ0 ↦
(Σ𝑙 ∈
(0...(deg‘𝑞))((abs‘(((coeff‘𝑞)‘𝑙) · (e↑𝑐𝑙))) · ((deg‘𝑞) · ((deg‘𝑞)↑((deg‘𝑞) + 1)))) ·
((((deg‘𝑞)↑((deg‘𝑞) + 1))↑𝑛) / (!‘𝑛))))‘𝑛)) |
| 53 | 52 | fveq2d 6910 |
. . . . . . . . . 10
⊢ (𝑚 = 𝑛 → (abs‘((𝑚 ∈ ℕ0 ↦
(Σℎ ∈
(0...(deg‘𝑞))((abs‘(((coeff‘𝑞)‘ℎ) · (e↑𝑐ℎ))) · ((deg‘𝑞) · ((deg‘𝑞)↑((deg‘𝑞) + 1)))) ·
((((deg‘𝑞)↑((deg‘𝑞) + 1))↑𝑚) / (!‘𝑚))))‘𝑚)) = (abs‘((𝑛 ∈ ℕ0 ↦
(Σ𝑙 ∈
(0...(deg‘𝑞))((abs‘(((coeff‘𝑞)‘𝑙) · (e↑𝑐𝑙))) · ((deg‘𝑞) · ((deg‘𝑞)↑((deg‘𝑞) + 1)))) ·
((((deg‘𝑞)↑((deg‘𝑞) + 1))↑𝑛) / (!‘𝑛))))‘𝑛))) |
| 54 | 53 | breq1d 5153 |
. . . . . . . . 9
⊢ (𝑚 = 𝑛 → ((abs‘((𝑚 ∈ ℕ0 ↦
(Σℎ ∈
(0...(deg‘𝑞))((abs‘(((coeff‘𝑞)‘ℎ) · (e↑𝑐ℎ))) · ((deg‘𝑞) · ((deg‘𝑞)↑((deg‘𝑞) + 1)))) ·
((((deg‘𝑞)↑((deg‘𝑞) + 1))↑𝑚) / (!‘𝑚))))‘𝑚)) < 1 ↔ (abs‘((𝑛 ∈ ℕ0
↦ (Σ𝑙 ∈
(0...(deg‘𝑞))((abs‘(((coeff‘𝑞)‘𝑙) · (e↑𝑐𝑙))) · ((deg‘𝑞) · ((deg‘𝑞)↑((deg‘𝑞) + 1)))) ·
((((deg‘𝑞)↑((deg‘𝑞) + 1))↑𝑛) / (!‘𝑛))))‘𝑛)) < 1)) |
| 55 | 54 | cbvralvw 3237 |
. . . . . . . 8
⊢
(∀𝑚 ∈
(ℤ≥‘𝑗)(abs‘((𝑚 ∈ ℕ0 ↦
(Σℎ ∈
(0...(deg‘𝑞))((abs‘(((coeff‘𝑞)‘ℎ) · (e↑𝑐ℎ))) · ((deg‘𝑞) · ((deg‘𝑞)↑((deg‘𝑞) + 1)))) ·
((((deg‘𝑞)↑((deg‘𝑞) + 1))↑𝑚) / (!‘𝑚))))‘𝑚)) < 1 ↔ ∀𝑛 ∈ (ℤ≥‘𝑗)(abs‘((𝑛 ∈ ℕ0 ↦
(Σ𝑙 ∈
(0...(deg‘𝑞))((abs‘(((coeff‘𝑞)‘𝑙) · (e↑𝑐𝑙))) · ((deg‘𝑞) · ((deg‘𝑞)↑((deg‘𝑞) + 1)))) ·
((((deg‘𝑞)↑((deg‘𝑞) + 1))↑𝑛) / (!‘𝑛))))‘𝑛)) < 1) |
| 56 | | fveq2 6906 |
. . . . . . . . 9
⊢ (𝑗 = 𝑖 → (ℤ≥‘𝑗) =
(ℤ≥‘𝑖)) |
| 57 | 56 | raleqdv 3326 |
. . . . . . . 8
⊢ (𝑗 = 𝑖 → (∀𝑛 ∈ (ℤ≥‘𝑗)(abs‘((𝑛 ∈ ℕ0 ↦
(Σ𝑙 ∈
(0...(deg‘𝑞))((abs‘(((coeff‘𝑞)‘𝑙) · (e↑𝑐𝑙))) · ((deg‘𝑞) · ((deg‘𝑞)↑((deg‘𝑞) + 1)))) ·
((((deg‘𝑞)↑((deg‘𝑞) + 1))↑𝑛) / (!‘𝑛))))‘𝑛)) < 1 ↔ ∀𝑛 ∈ (ℤ≥‘𝑖)(abs‘((𝑛 ∈ ℕ0 ↦
(Σ𝑙 ∈
(0...(deg‘𝑞))((abs‘(((coeff‘𝑞)‘𝑙) · (e↑𝑐𝑙))) · ((deg‘𝑞) · ((deg‘𝑞)↑((deg‘𝑞) + 1)))) ·
((((deg‘𝑞)↑((deg‘𝑞) + 1))↑𝑛) / (!‘𝑛))))‘𝑛)) < 1)) |
| 58 | 55, 57 | bitrid 283 |
. . . . . . 7
⊢ (𝑗 = 𝑖 → (∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘((𝑚 ∈ ℕ0 ↦
(Σℎ ∈
(0...(deg‘𝑞))((abs‘(((coeff‘𝑞)‘ℎ) · (e↑𝑐ℎ))) · ((deg‘𝑞) · ((deg‘𝑞)↑((deg‘𝑞) + 1)))) ·
((((deg‘𝑞)↑((deg‘𝑞) + 1))↑𝑚) / (!‘𝑚))))‘𝑚)) < 1 ↔ ∀𝑛 ∈ (ℤ≥‘𝑖)(abs‘((𝑛 ∈ ℕ0 ↦
(Σ𝑙 ∈
(0...(deg‘𝑞))((abs‘(((coeff‘𝑞)‘𝑙) · (e↑𝑐𝑙))) · ((deg‘𝑞) · ((deg‘𝑞)↑((deg‘𝑞) + 1)))) ·
((((deg‘𝑞)↑((deg‘𝑞) + 1))↑𝑛) / (!‘𝑛))))‘𝑛)) < 1)) |
| 59 | 58 | cbvrabv 3447 |
. . . . . 6
⊢ {𝑗 ∈ ℕ0
∣ ∀𝑚 ∈
(ℤ≥‘𝑗)(abs‘((𝑚 ∈ ℕ0 ↦
(Σℎ ∈
(0...(deg‘𝑞))((abs‘(((coeff‘𝑞)‘ℎ) · (e↑𝑐ℎ))) · ((deg‘𝑞) · ((deg‘𝑞)↑((deg‘𝑞) + 1)))) ·
((((deg‘𝑞)↑((deg‘𝑞) + 1))↑𝑚) / (!‘𝑚))))‘𝑚)) < 1} = {𝑖 ∈ ℕ0 ∣
∀𝑛 ∈
(ℤ≥‘𝑖)(abs‘((𝑛 ∈ ℕ0 ↦
(Σ𝑙 ∈
(0...(deg‘𝑞))((abs‘(((coeff‘𝑞)‘𝑙) · (e↑𝑐𝑙))) · ((deg‘𝑞) · ((deg‘𝑞)↑((deg‘𝑞) + 1)))) ·
((((deg‘𝑞)↑((deg‘𝑞) + 1))↑𝑛) / (!‘𝑛))))‘𝑛)) < 1} |
| 60 | 59 | infeq1i 9518 |
. . . . 5
⊢
inf({𝑗 ∈
ℕ0 ∣ ∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘((𝑚 ∈ ℕ0 ↦
(Σℎ ∈
(0...(deg‘𝑞))((abs‘(((coeff‘𝑞)‘ℎ) · (e↑𝑐ℎ))) · ((deg‘𝑞) · ((deg‘𝑞)↑((deg‘𝑞) + 1)))) ·
((((deg‘𝑞)↑((deg‘𝑞) + 1))↑𝑚) / (!‘𝑚))))‘𝑚)) < 1}, ℝ, < ) = inf({𝑖 ∈ ℕ0
∣ ∀𝑛 ∈
(ℤ≥‘𝑖)(abs‘((𝑛 ∈ ℕ0 ↦
(Σ𝑙 ∈
(0...(deg‘𝑞))((abs‘(((coeff‘𝑞)‘𝑙) · (e↑𝑐𝑙))) · ((deg‘𝑞) · ((deg‘𝑞)↑((deg‘𝑞) + 1)))) ·
((((deg‘𝑞)↑((deg‘𝑞) + 1))↑𝑛) / (!‘𝑛))))‘𝑛)) < 1}, ℝ, < ) |
| 61 | | eqid 2737 |
. . . . 5
⊢
sup({(abs‘((coeff‘𝑞)‘0)), (!‘(deg‘𝑞)), inf({𝑗 ∈ ℕ0 ∣
∀𝑚 ∈
(ℤ≥‘𝑗)(abs‘((𝑚 ∈ ℕ0 ↦
(Σℎ ∈
(0...(deg‘𝑞))((abs‘(((coeff‘𝑞)‘ℎ) · (e↑𝑐ℎ))) · ((deg‘𝑞) · ((deg‘𝑞)↑((deg‘𝑞) + 1)))) ·
((((deg‘𝑞)↑((deg‘𝑞) + 1))↑𝑚) / (!‘𝑚))))‘𝑚)) < 1}, ℝ, < )},
ℝ*, < ) = sup({(abs‘((coeff‘𝑞)‘0)), (!‘(deg‘𝑞)), inf({𝑗 ∈ ℕ0 ∣
∀𝑚 ∈
(ℤ≥‘𝑗)(abs‘((𝑚 ∈ ℕ0 ↦
(Σℎ ∈
(0...(deg‘𝑞))((abs‘(((coeff‘𝑞)‘ℎ) · (e↑𝑐ℎ))) · ((deg‘𝑞) · ((deg‘𝑞)↑((deg‘𝑞) + 1)))) ·
((((deg‘𝑞)↑((deg‘𝑞) + 1))↑𝑚) / (!‘𝑚))))‘𝑚)) < 1}, ℝ, < )},
ℝ*, < ) |
| 62 | 31, 32, 33, 34, 35, 36, 37, 60, 61 | etransclem48 46297 |
. . . 4
⊢ ((𝑞 ∈ (Poly‘ℤ)
∧ (((coeff‘𝑞)‘0) ≠ 0 ∧ (𝑞‘e) = 0)) → ∃𝑘 ∈ ℤ (𝑘 ≠ 0 ∧ (abs‘𝑘) < 1)) |
| 63 | 62 | rexlimiva 3147 |
. . 3
⊢
(∃𝑞 ∈
(Poly‘ℤ)(((coeff‘𝑞)‘0) ≠ 0 ∧ (𝑞‘e) = 0) → ∃𝑘 ∈ ℤ (𝑘 ≠ 0 ∧ (abs‘𝑘) < 1)) |
| 64 | 23, 63 | syl 17 |
. 2
⊢ (¬ e
∈ (ℂ ∖ 𝔸) → ∃𝑘 ∈ ℤ (𝑘 ≠ 0 ∧ (abs‘𝑘) < 1)) |
| 65 | 10, 64 | mt3 201 |
1
⊢ e ∈
(ℂ ∖ 𝔸) |