MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  peano5 Structured version   Visualization version   GIF version

Theorem peano5 7872
Description: The induction postulate: any class containing zero and closed under the successor operation contains all natural numbers. One of Peano's five postulates for arithmetic. Proposition 7.30(5) of [TakeutiZaring] p. 43, except our proof does not require the Axiom of Infinity. The more traditional statement of mathematical induction as a theorem schema, with a basis and an induction step, is derived from this theorem as Theorem findes 7879. (Contributed by NM, 18-Feb-2004.) Avoid ax-10 2142, ax-12 2178. (Revised by GG, 3-Oct-2024.)
Assertion
Ref Expression
peano5 ((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴)) → ω ⊆ 𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem peano5
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldifn 4098 . . . . . 6 (𝑧 ∈ (ω ∖ 𝐴) → ¬ 𝑧𝐴)
21adantl 481 . . . . 5 (((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴)) ∧ 𝑧 ∈ (ω ∖ 𝐴)) → ¬ 𝑧𝐴)
3 eldifi 4097 . . . . . . . 8 (𝑧 ∈ (ω ∖ 𝐴) → 𝑧 ∈ ω)
4 elndif 4099 . . . . . . . . 9 (∅ ∈ 𝐴 → ¬ ∅ ∈ (ω ∖ 𝐴))
5 eleq1 2817 . . . . . . . . . . 11 (𝑧 = ∅ → (𝑧 ∈ (ω ∖ 𝐴) ↔ ∅ ∈ (ω ∖ 𝐴)))
65biimpcd 249 . . . . . . . . . 10 (𝑧 ∈ (ω ∖ 𝐴) → (𝑧 = ∅ → ∅ ∈ (ω ∖ 𝐴)))
76necon3bd 2940 . . . . . . . . 9 (𝑧 ∈ (ω ∖ 𝐴) → (¬ ∅ ∈ (ω ∖ 𝐴) → 𝑧 ≠ ∅))
84, 7mpan9 506 . . . . . . . 8 ((∅ ∈ 𝐴𝑧 ∈ (ω ∖ 𝐴)) → 𝑧 ≠ ∅)
9 nnsuc 7863 . . . . . . . 8 ((𝑧 ∈ ω ∧ 𝑧 ≠ ∅) → ∃𝑦 ∈ ω 𝑧 = suc 𝑦)
103, 8, 9syl2an2 686 . . . . . . 7 ((∅ ∈ 𝐴𝑧 ∈ (ω ∖ 𝐴)) → ∃𝑦 ∈ ω 𝑧 = suc 𝑦)
1110ad4ant13 751 . . . . . 6 ((((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴)) ∧ 𝑧 ∈ (ω ∖ 𝐴)) ∧ ((ω ∖ 𝐴) ∩ 𝑧) = ∅) → ∃𝑦 ∈ ω 𝑧 = suc 𝑦)
12 eleq1w 2812 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
13 suceq 6403 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → suc 𝑥 = suc 𝑦)
1413eleq1d 2814 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (suc 𝑥𝐴 ↔ suc 𝑦𝐴))
1512, 14imbi12d 344 . . . . . . . . . . . 12 (𝑥 = 𝑦 → ((𝑥𝐴 → suc 𝑥𝐴) ↔ (𝑦𝐴 → suc 𝑦𝐴)))
1615rspccv 3588 . . . . . . . . . . 11 (∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴) → (𝑦 ∈ ω → (𝑦𝐴 → suc 𝑦𝐴)))
17 vex 3454 . . . . . . . . . . . . . . . . . 18 𝑦 ∈ V
1817sucid 6419 . . . . . . . . . . . . . . . . 17 𝑦 ∈ suc 𝑦
19 eleq2 2818 . . . . . . . . . . . . . . . . 17 (𝑧 = suc 𝑦 → (𝑦𝑧𝑦 ∈ suc 𝑦))
2018, 19mpbiri 258 . . . . . . . . . . . . . . . 16 (𝑧 = suc 𝑦𝑦𝑧)
21 eleq1 2817 . . . . . . . . . . . . . . . . . 18 (𝑧 = suc 𝑦 → (𝑧 ∈ ω ↔ suc 𝑦 ∈ ω))
22 peano2b 7862 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ω ↔ suc 𝑦 ∈ ω)
2321, 22bitr4di 289 . . . . . . . . . . . . . . . . 17 (𝑧 = suc 𝑦 → (𝑧 ∈ ω ↔ 𝑦 ∈ ω))
24 minel 4432 . . . . . . . . . . . . . . . . . . 19 ((𝑦𝑧 ∧ ((ω ∖ 𝐴) ∩ 𝑧) = ∅) → ¬ 𝑦 ∈ (ω ∖ 𝐴))
25 neldif 4100 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ω ∧ ¬ 𝑦 ∈ (ω ∖ 𝐴)) → 𝑦𝐴)
2624, 25sylan2 593 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ω ∧ (𝑦𝑧 ∧ ((ω ∖ 𝐴) ∩ 𝑧) = ∅)) → 𝑦𝐴)
2726exp32 420 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ω → (𝑦𝑧 → (((ω ∖ 𝐴) ∩ 𝑧) = ∅ → 𝑦𝐴)))
2823, 27biimtrdi 253 . . . . . . . . . . . . . . . 16 (𝑧 = suc 𝑦 → (𝑧 ∈ ω → (𝑦𝑧 → (((ω ∖ 𝐴) ∩ 𝑧) = ∅ → 𝑦𝐴))))
2920, 28mpid 44 . . . . . . . . . . . . . . 15 (𝑧 = suc 𝑦 → (𝑧 ∈ ω → (((ω ∖ 𝐴) ∩ 𝑧) = ∅ → 𝑦𝐴)))
303, 29syl5 34 . . . . . . . . . . . . . 14 (𝑧 = suc 𝑦 → (𝑧 ∈ (ω ∖ 𝐴) → (((ω ∖ 𝐴) ∩ 𝑧) = ∅ → 𝑦𝐴)))
3130impd 410 . . . . . . . . . . . . 13 (𝑧 = suc 𝑦 → ((𝑧 ∈ (ω ∖ 𝐴) ∧ ((ω ∖ 𝐴) ∩ 𝑧) = ∅) → 𝑦𝐴))
32 eleq1a 2824 . . . . . . . . . . . . . 14 (suc 𝑦𝐴 → (𝑧 = suc 𝑦𝑧𝐴))
3332com12 32 . . . . . . . . . . . . 13 (𝑧 = suc 𝑦 → (suc 𝑦𝐴𝑧𝐴))
3431, 33imim12d 81 . . . . . . . . . . . 12 (𝑧 = suc 𝑦 → ((𝑦𝐴 → suc 𝑦𝐴) → ((𝑧 ∈ (ω ∖ 𝐴) ∧ ((ω ∖ 𝐴) ∩ 𝑧) = ∅) → 𝑧𝐴)))
3534com13 88 . . . . . . . . . . 11 ((𝑧 ∈ (ω ∖ 𝐴) ∧ ((ω ∖ 𝐴) ∩ 𝑧) = ∅) → ((𝑦𝐴 → suc 𝑦𝐴) → (𝑧 = suc 𝑦𝑧𝐴)))
3616, 35sylan9 507 . . . . . . . . . 10 ((∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴) ∧ (𝑧 ∈ (ω ∖ 𝐴) ∧ ((ω ∖ 𝐴) ∩ 𝑧) = ∅)) → (𝑦 ∈ ω → (𝑧 = suc 𝑦𝑧𝐴)))
3736rexlimdv 3133 . . . . . . . . 9 ((∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴) ∧ (𝑧 ∈ (ω ∖ 𝐴) ∧ ((ω ∖ 𝐴) ∩ 𝑧) = ∅)) → (∃𝑦 ∈ ω 𝑧 = suc 𝑦𝑧𝐴))
3837exp32 420 . . . . . . . 8 (∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴) → (𝑧 ∈ (ω ∖ 𝐴) → (((ω ∖ 𝐴) ∩ 𝑧) = ∅ → (∃𝑦 ∈ ω 𝑧 = suc 𝑦𝑧𝐴))))
3938a1i 11 . . . . . . 7 (∅ ∈ 𝐴 → (∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴) → (𝑧 ∈ (ω ∖ 𝐴) → (((ω ∖ 𝐴) ∩ 𝑧) = ∅ → (∃𝑦 ∈ ω 𝑧 = suc 𝑦𝑧𝐴)))))
4039imp41 425 . . . . . 6 ((((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴)) ∧ 𝑧 ∈ (ω ∖ 𝐴)) ∧ ((ω ∖ 𝐴) ∩ 𝑧) = ∅) → (∃𝑦 ∈ ω 𝑧 = suc 𝑦𝑧𝐴))
4111, 40mpd 15 . . . . 5 ((((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴)) ∧ 𝑧 ∈ (ω ∖ 𝐴)) ∧ ((ω ∖ 𝐴) ∩ 𝑧) = ∅) → 𝑧𝐴)
422, 41mtand 815 . . . 4 (((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴)) ∧ 𝑧 ∈ (ω ∖ 𝐴)) → ¬ ((ω ∖ 𝐴) ∩ 𝑧) = ∅)
4342nrexdv 3129 . . 3 ((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴)) → ¬ ∃𝑧 ∈ (ω ∖ 𝐴)((ω ∖ 𝐴) ∩ 𝑧) = ∅)
44 ordom 7855 . . . . 5 Ord ω
45 difss 4102 . . . . 5 (ω ∖ 𝐴) ⊆ ω
46 tz7.5 6356 . . . . 5 ((Ord ω ∧ (ω ∖ 𝐴) ⊆ ω ∧ (ω ∖ 𝐴) ≠ ∅) → ∃𝑧 ∈ (ω ∖ 𝐴)((ω ∖ 𝐴) ∩ 𝑧) = ∅)
4744, 45, 46mp3an12 1453 . . . 4 ((ω ∖ 𝐴) ≠ ∅ → ∃𝑧 ∈ (ω ∖ 𝐴)((ω ∖ 𝐴) ∩ 𝑧) = ∅)
4847necon1bi 2954 . . 3 (¬ ∃𝑧 ∈ (ω ∖ 𝐴)((ω ∖ 𝐴) ∩ 𝑧) = ∅ → (ω ∖ 𝐴) = ∅)
4943, 48syl 17 . 2 ((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴)) → (ω ∖ 𝐴) = ∅)
50 ssdif0 4332 . 2 (ω ⊆ 𝐴 ↔ (ω ∖ 𝐴) = ∅)
5149, 50sylibr 234 1 ((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴)) → ω ⊆ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054  cdif 3914  cin 3916  wss 3917  c0 4299  Ord word 6334  suc csuc 6337  ωcom 7845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-tr 5218  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-om 7846
This theorem is referenced by:  find  7874  finds  7875  finds2  7877  omex  9603  dfom3  9607
  Copyright terms: Public domain W3C validator