Step | Hyp | Ref
| Expression |
1 | | eldifn 4058 |
. . . . . 6
⊢ (𝑧 ∈ (ω ∖ 𝐴) → ¬ 𝑧 ∈ 𝐴) |
2 | 1 | adantl 481 |
. . . . 5
⊢
(((∅ ∈ 𝐴
∧ ∀𝑥 ∈
ω (𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴)) ∧ 𝑧 ∈ (ω ∖ 𝐴)) → ¬ 𝑧 ∈ 𝐴) |
3 | | eldifi 4057 |
. . . . . . . 8
⊢ (𝑧 ∈ (ω ∖ 𝐴) → 𝑧 ∈ ω) |
4 | | elndif 4059 |
. . . . . . . . 9
⊢ (∅
∈ 𝐴 → ¬
∅ ∈ (ω ∖ 𝐴)) |
5 | | eleq1 2826 |
. . . . . . . . . . 11
⊢ (𝑧 = ∅ → (𝑧 ∈ (ω ∖ 𝐴) ↔ ∅ ∈ (ω
∖ 𝐴))) |
6 | 5 | biimpcd 248 |
. . . . . . . . . 10
⊢ (𝑧 ∈ (ω ∖ 𝐴) → (𝑧 = ∅ → ∅ ∈ (ω
∖ 𝐴))) |
7 | 6 | necon3bd 2956 |
. . . . . . . . 9
⊢ (𝑧 ∈ (ω ∖ 𝐴) → (¬ ∅ ∈
(ω ∖ 𝐴) →
𝑧 ≠
∅)) |
8 | 4, 7 | mpan9 506 |
. . . . . . . 8
⊢ ((∅
∈ 𝐴 ∧ 𝑧 ∈ (ω ∖ 𝐴)) → 𝑧 ≠ ∅) |
9 | | nnsuc 7705 |
. . . . . . . 8
⊢ ((𝑧 ∈ ω ∧ 𝑧 ≠ ∅) →
∃𝑦 ∈ ω
𝑧 = suc 𝑦) |
10 | 3, 8, 9 | syl2an2 682 |
. . . . . . 7
⊢ ((∅
∈ 𝐴 ∧ 𝑧 ∈ (ω ∖ 𝐴)) → ∃𝑦 ∈ ω 𝑧 = suc 𝑦) |
11 | 10 | ad4ant13 747 |
. . . . . 6
⊢
((((∅ ∈ 𝐴
∧ ∀𝑥 ∈
ω (𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴)) ∧ 𝑧 ∈ (ω ∖ 𝐴)) ∧ ((ω ∖ 𝐴) ∩ 𝑧) = ∅) → ∃𝑦 ∈ ω 𝑧 = suc 𝑦) |
12 | | eleq1w 2821 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) |
13 | | suceq 6316 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑦 → suc 𝑥 = suc 𝑦) |
14 | 13 | eleq1d 2823 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑦 → (suc 𝑥 ∈ 𝐴 ↔ suc 𝑦 ∈ 𝐴)) |
15 | 12, 14 | imbi12d 344 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴) ↔ (𝑦 ∈ 𝐴 → suc 𝑦 ∈ 𝐴))) |
16 | 15 | rspccv 3549 |
. . . . . . . . . . 11
⊢
(∀𝑥 ∈
ω (𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴) → (𝑦 ∈ ω → (𝑦 ∈ 𝐴 → suc 𝑦 ∈ 𝐴))) |
17 | | vex 3426 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑦 ∈ V |
18 | 17 | sucid 6330 |
. . . . . . . . . . . . . . . . 17
⊢ 𝑦 ∈ suc 𝑦 |
19 | | eleq2 2827 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = suc 𝑦 → (𝑦 ∈ 𝑧 ↔ 𝑦 ∈ suc 𝑦)) |
20 | 18, 19 | mpbiri 257 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = suc 𝑦 → 𝑦 ∈ 𝑧) |
21 | | eleq1 2826 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 = suc 𝑦 → (𝑧 ∈ ω ↔ suc 𝑦 ∈ ω)) |
22 | | peano2b 7704 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ∈ ω ↔ suc 𝑦 ∈
ω) |
23 | 21, 22 | bitr4di 288 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = suc 𝑦 → (𝑧 ∈ ω ↔ 𝑦 ∈ ω)) |
24 | | minel 4396 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑦 ∈ 𝑧 ∧ ((ω ∖ 𝐴) ∩ 𝑧) = ∅) → ¬ 𝑦 ∈ (ω ∖ 𝐴)) |
25 | | neldif 4060 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑦 ∈ ω ∧ ¬
𝑦 ∈ (ω ∖
𝐴)) → 𝑦 ∈ 𝐴) |
26 | 24, 25 | sylan2 592 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑦 ∈ ω ∧ (𝑦 ∈ 𝑧 ∧ ((ω ∖ 𝐴) ∩ 𝑧) = ∅)) → 𝑦 ∈ 𝐴) |
27 | 26 | exp32 420 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ ω → (𝑦 ∈ 𝑧 → (((ω ∖ 𝐴) ∩ 𝑧) = ∅ → 𝑦 ∈ 𝐴))) |
28 | 23, 27 | syl6bi 252 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = suc 𝑦 → (𝑧 ∈ ω → (𝑦 ∈ 𝑧 → (((ω ∖ 𝐴) ∩ 𝑧) = ∅ → 𝑦 ∈ 𝐴)))) |
29 | 20, 28 | mpid 44 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = suc 𝑦 → (𝑧 ∈ ω → (((ω ∖
𝐴) ∩ 𝑧) = ∅ → 𝑦 ∈ 𝐴))) |
30 | 3, 29 | syl5 34 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = suc 𝑦 → (𝑧 ∈ (ω ∖ 𝐴) → (((ω ∖ 𝐴) ∩ 𝑧) = ∅ → 𝑦 ∈ 𝐴))) |
31 | 30 | impd 410 |
. . . . . . . . . . . . 13
⊢ (𝑧 = suc 𝑦 → ((𝑧 ∈ (ω ∖ 𝐴) ∧ ((ω ∖ 𝐴) ∩ 𝑧) = ∅) → 𝑦 ∈ 𝐴)) |
32 | | eleq1a 2834 |
. . . . . . . . . . . . . 14
⊢ (suc
𝑦 ∈ 𝐴 → (𝑧 = suc 𝑦 → 𝑧 ∈ 𝐴)) |
33 | 32 | com12 32 |
. . . . . . . . . . . . 13
⊢ (𝑧 = suc 𝑦 → (suc 𝑦 ∈ 𝐴 → 𝑧 ∈ 𝐴)) |
34 | 31, 33 | imim12d 81 |
. . . . . . . . . . . 12
⊢ (𝑧 = suc 𝑦 → ((𝑦 ∈ 𝐴 → suc 𝑦 ∈ 𝐴) → ((𝑧 ∈ (ω ∖ 𝐴) ∧ ((ω ∖ 𝐴) ∩ 𝑧) = ∅) → 𝑧 ∈ 𝐴))) |
35 | 34 | com13 88 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ (ω ∖ 𝐴) ∧ ((ω ∖ 𝐴) ∩ 𝑧) = ∅) → ((𝑦 ∈ 𝐴 → suc 𝑦 ∈ 𝐴) → (𝑧 = suc 𝑦 → 𝑧 ∈ 𝐴))) |
36 | 16, 35 | sylan9 507 |
. . . . . . . . . 10
⊢
((∀𝑥 ∈
ω (𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴) ∧ (𝑧 ∈ (ω ∖ 𝐴) ∧ ((ω ∖ 𝐴) ∩ 𝑧) = ∅)) → (𝑦 ∈ ω → (𝑧 = suc 𝑦 → 𝑧 ∈ 𝐴))) |
37 | 36 | rexlimdv 3211 |
. . . . . . . . 9
⊢
((∀𝑥 ∈
ω (𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴) ∧ (𝑧 ∈ (ω ∖ 𝐴) ∧ ((ω ∖ 𝐴) ∩ 𝑧) = ∅)) → (∃𝑦 ∈ ω 𝑧 = suc 𝑦 → 𝑧 ∈ 𝐴)) |
38 | 37 | exp32 420 |
. . . . . . . 8
⊢
(∀𝑥 ∈
ω (𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴) → (𝑧 ∈ (ω ∖ 𝐴) → (((ω ∖ 𝐴) ∩ 𝑧) = ∅ → (∃𝑦 ∈ ω 𝑧 = suc 𝑦 → 𝑧 ∈ 𝐴)))) |
39 | 38 | a1i 11 |
. . . . . . 7
⊢ (∅
∈ 𝐴 →
(∀𝑥 ∈ ω
(𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴) → (𝑧 ∈ (ω ∖ 𝐴) → (((ω ∖ 𝐴) ∩ 𝑧) = ∅ → (∃𝑦 ∈ ω 𝑧 = suc 𝑦 → 𝑧 ∈ 𝐴))))) |
40 | 39 | imp41 425 |
. . . . . 6
⊢
((((∅ ∈ 𝐴
∧ ∀𝑥 ∈
ω (𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴)) ∧ 𝑧 ∈ (ω ∖ 𝐴)) ∧ ((ω ∖ 𝐴) ∩ 𝑧) = ∅) → (∃𝑦 ∈ ω 𝑧 = suc 𝑦 → 𝑧 ∈ 𝐴)) |
41 | 11, 40 | mpd 15 |
. . . . 5
⊢
((((∅ ∈ 𝐴
∧ ∀𝑥 ∈
ω (𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴)) ∧ 𝑧 ∈ (ω ∖ 𝐴)) ∧ ((ω ∖ 𝐴) ∩ 𝑧) = ∅) → 𝑧 ∈ 𝐴) |
42 | 2, 41 | mtand 812 |
. . . 4
⊢
(((∅ ∈ 𝐴
∧ ∀𝑥 ∈
ω (𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴)) ∧ 𝑧 ∈ (ω ∖ 𝐴)) → ¬ ((ω ∖ 𝐴) ∩ 𝑧) = ∅) |
43 | 42 | nrexdv 3197 |
. . 3
⊢ ((∅
∈ 𝐴 ∧
∀𝑥 ∈ ω
(𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴)) → ¬ ∃𝑧 ∈ (ω ∖ 𝐴)((ω ∖ 𝐴) ∩ 𝑧) = ∅) |
44 | | ordom 7697 |
. . . . 5
⊢ Ord
ω |
45 | | difss 4062 |
. . . . 5
⊢ (ω
∖ 𝐴) ⊆
ω |
46 | | tz7.5 6272 |
. . . . 5
⊢ ((Ord
ω ∧ (ω ∖ 𝐴) ⊆ ω ∧ (ω ∖
𝐴) ≠ ∅) →
∃𝑧 ∈ (ω
∖ 𝐴)((ω ∖
𝐴) ∩ 𝑧) = ∅) |
47 | 44, 45, 46 | mp3an12 1449 |
. . . 4
⊢ ((ω
∖ 𝐴) ≠ ∅
→ ∃𝑧 ∈
(ω ∖ 𝐴)((ω ∖ 𝐴) ∩ 𝑧) = ∅) |
48 | 47 | necon1bi 2971 |
. . 3
⊢ (¬
∃𝑧 ∈ (ω
∖ 𝐴)((ω ∖
𝐴) ∩ 𝑧) = ∅ → (ω ∖ 𝐴) = ∅) |
49 | 43, 48 | syl 17 |
. 2
⊢ ((∅
∈ 𝐴 ∧
∀𝑥 ∈ ω
(𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴)) → (ω ∖ 𝐴) = ∅) |
50 | | ssdif0 4294 |
. 2
⊢ (ω
⊆ 𝐴 ↔ (ω
∖ 𝐴) =
∅) |
51 | 49, 50 | sylibr 233 |
1
⊢ ((∅
∈ 𝐴 ∧
∀𝑥 ∈ ω
(𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴)) → ω ⊆ 𝐴) |