MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  peano5 Structured version   Visualization version   GIF version

Theorem peano5 7849
Description: The induction postulate: any class containing zero and closed under the successor operation contains all natural numbers. One of Peano's five postulates for arithmetic. Proposition 7.30(5) of [TakeutiZaring] p. 43, except our proof does not require the Axiom of Infinity. The more traditional statement of mathematical induction as a theorem schema, with a basis and an induction step, is derived from this theorem as Theorem findes 7856. (Contributed by NM, 18-Feb-2004.) Avoid ax-10 2142, ax-12 2178. (Revised by GG, 3-Oct-2024.)
Assertion
Ref Expression
peano5 ((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴)) → ω ⊆ 𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem peano5
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldifn 4091 . . . . . 6 (𝑧 ∈ (ω ∖ 𝐴) → ¬ 𝑧𝐴)
21adantl 481 . . . . 5 (((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴)) ∧ 𝑧 ∈ (ω ∖ 𝐴)) → ¬ 𝑧𝐴)
3 eldifi 4090 . . . . . . . 8 (𝑧 ∈ (ω ∖ 𝐴) → 𝑧 ∈ ω)
4 elndif 4092 . . . . . . . . 9 (∅ ∈ 𝐴 → ¬ ∅ ∈ (ω ∖ 𝐴))
5 eleq1 2816 . . . . . . . . . . 11 (𝑧 = ∅ → (𝑧 ∈ (ω ∖ 𝐴) ↔ ∅ ∈ (ω ∖ 𝐴)))
65biimpcd 249 . . . . . . . . . 10 (𝑧 ∈ (ω ∖ 𝐴) → (𝑧 = ∅ → ∅ ∈ (ω ∖ 𝐴)))
76necon3bd 2939 . . . . . . . . 9 (𝑧 ∈ (ω ∖ 𝐴) → (¬ ∅ ∈ (ω ∖ 𝐴) → 𝑧 ≠ ∅))
84, 7mpan9 506 . . . . . . . 8 ((∅ ∈ 𝐴𝑧 ∈ (ω ∖ 𝐴)) → 𝑧 ≠ ∅)
9 nnsuc 7840 . . . . . . . 8 ((𝑧 ∈ ω ∧ 𝑧 ≠ ∅) → ∃𝑦 ∈ ω 𝑧 = suc 𝑦)
103, 8, 9syl2an2 686 . . . . . . 7 ((∅ ∈ 𝐴𝑧 ∈ (ω ∖ 𝐴)) → ∃𝑦 ∈ ω 𝑧 = suc 𝑦)
1110ad4ant13 751 . . . . . 6 ((((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴)) ∧ 𝑧 ∈ (ω ∖ 𝐴)) ∧ ((ω ∖ 𝐴) ∩ 𝑧) = ∅) → ∃𝑦 ∈ ω 𝑧 = suc 𝑦)
12 eleq1w 2811 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
13 suceq 6388 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → suc 𝑥 = suc 𝑦)
1413eleq1d 2813 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (suc 𝑥𝐴 ↔ suc 𝑦𝐴))
1512, 14imbi12d 344 . . . . . . . . . . . 12 (𝑥 = 𝑦 → ((𝑥𝐴 → suc 𝑥𝐴) ↔ (𝑦𝐴 → suc 𝑦𝐴)))
1615rspccv 3582 . . . . . . . . . . 11 (∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴) → (𝑦 ∈ ω → (𝑦𝐴 → suc 𝑦𝐴)))
17 vex 3448 . . . . . . . . . . . . . . . . . 18 𝑦 ∈ V
1817sucid 6404 . . . . . . . . . . . . . . . . 17 𝑦 ∈ suc 𝑦
19 eleq2 2817 . . . . . . . . . . . . . . . . 17 (𝑧 = suc 𝑦 → (𝑦𝑧𝑦 ∈ suc 𝑦))
2018, 19mpbiri 258 . . . . . . . . . . . . . . . 16 (𝑧 = suc 𝑦𝑦𝑧)
21 eleq1 2816 . . . . . . . . . . . . . . . . . 18 (𝑧 = suc 𝑦 → (𝑧 ∈ ω ↔ suc 𝑦 ∈ ω))
22 peano2b 7839 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ω ↔ suc 𝑦 ∈ ω)
2321, 22bitr4di 289 . . . . . . . . . . . . . . . . 17 (𝑧 = suc 𝑦 → (𝑧 ∈ ω ↔ 𝑦 ∈ ω))
24 minel 4425 . . . . . . . . . . . . . . . . . . 19 ((𝑦𝑧 ∧ ((ω ∖ 𝐴) ∩ 𝑧) = ∅) → ¬ 𝑦 ∈ (ω ∖ 𝐴))
25 neldif 4093 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ω ∧ ¬ 𝑦 ∈ (ω ∖ 𝐴)) → 𝑦𝐴)
2624, 25sylan2 593 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ω ∧ (𝑦𝑧 ∧ ((ω ∖ 𝐴) ∩ 𝑧) = ∅)) → 𝑦𝐴)
2726exp32 420 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ω → (𝑦𝑧 → (((ω ∖ 𝐴) ∩ 𝑧) = ∅ → 𝑦𝐴)))
2823, 27biimtrdi 253 . . . . . . . . . . . . . . . 16 (𝑧 = suc 𝑦 → (𝑧 ∈ ω → (𝑦𝑧 → (((ω ∖ 𝐴) ∩ 𝑧) = ∅ → 𝑦𝐴))))
2920, 28mpid 44 . . . . . . . . . . . . . . 15 (𝑧 = suc 𝑦 → (𝑧 ∈ ω → (((ω ∖ 𝐴) ∩ 𝑧) = ∅ → 𝑦𝐴)))
303, 29syl5 34 . . . . . . . . . . . . . 14 (𝑧 = suc 𝑦 → (𝑧 ∈ (ω ∖ 𝐴) → (((ω ∖ 𝐴) ∩ 𝑧) = ∅ → 𝑦𝐴)))
3130impd 410 . . . . . . . . . . . . 13 (𝑧 = suc 𝑦 → ((𝑧 ∈ (ω ∖ 𝐴) ∧ ((ω ∖ 𝐴) ∩ 𝑧) = ∅) → 𝑦𝐴))
32 eleq1a 2823 . . . . . . . . . . . . . 14 (suc 𝑦𝐴 → (𝑧 = suc 𝑦𝑧𝐴))
3332com12 32 . . . . . . . . . . . . 13 (𝑧 = suc 𝑦 → (suc 𝑦𝐴𝑧𝐴))
3431, 33imim12d 81 . . . . . . . . . . . 12 (𝑧 = suc 𝑦 → ((𝑦𝐴 → suc 𝑦𝐴) → ((𝑧 ∈ (ω ∖ 𝐴) ∧ ((ω ∖ 𝐴) ∩ 𝑧) = ∅) → 𝑧𝐴)))
3534com13 88 . . . . . . . . . . 11 ((𝑧 ∈ (ω ∖ 𝐴) ∧ ((ω ∖ 𝐴) ∩ 𝑧) = ∅) → ((𝑦𝐴 → suc 𝑦𝐴) → (𝑧 = suc 𝑦𝑧𝐴)))
3616, 35sylan9 507 . . . . . . . . . 10 ((∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴) ∧ (𝑧 ∈ (ω ∖ 𝐴) ∧ ((ω ∖ 𝐴) ∩ 𝑧) = ∅)) → (𝑦 ∈ ω → (𝑧 = suc 𝑦𝑧𝐴)))
3736rexlimdv 3132 . . . . . . . . 9 ((∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴) ∧ (𝑧 ∈ (ω ∖ 𝐴) ∧ ((ω ∖ 𝐴) ∩ 𝑧) = ∅)) → (∃𝑦 ∈ ω 𝑧 = suc 𝑦𝑧𝐴))
3837exp32 420 . . . . . . . 8 (∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴) → (𝑧 ∈ (ω ∖ 𝐴) → (((ω ∖ 𝐴) ∩ 𝑧) = ∅ → (∃𝑦 ∈ ω 𝑧 = suc 𝑦𝑧𝐴))))
3938a1i 11 . . . . . . 7 (∅ ∈ 𝐴 → (∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴) → (𝑧 ∈ (ω ∖ 𝐴) → (((ω ∖ 𝐴) ∩ 𝑧) = ∅ → (∃𝑦 ∈ ω 𝑧 = suc 𝑦𝑧𝐴)))))
4039imp41 425 . . . . . 6 ((((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴)) ∧ 𝑧 ∈ (ω ∖ 𝐴)) ∧ ((ω ∖ 𝐴) ∩ 𝑧) = ∅) → (∃𝑦 ∈ ω 𝑧 = suc 𝑦𝑧𝐴))
4111, 40mpd 15 . . . . 5 ((((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴)) ∧ 𝑧 ∈ (ω ∖ 𝐴)) ∧ ((ω ∖ 𝐴) ∩ 𝑧) = ∅) → 𝑧𝐴)
422, 41mtand 815 . . . 4 (((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴)) ∧ 𝑧 ∈ (ω ∖ 𝐴)) → ¬ ((ω ∖ 𝐴) ∩ 𝑧) = ∅)
4342nrexdv 3128 . . 3 ((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴)) → ¬ ∃𝑧 ∈ (ω ∖ 𝐴)((ω ∖ 𝐴) ∩ 𝑧) = ∅)
44 ordom 7832 . . . . 5 Ord ω
45 difss 4095 . . . . 5 (ω ∖ 𝐴) ⊆ ω
46 tz7.5 6341 . . . . 5 ((Ord ω ∧ (ω ∖ 𝐴) ⊆ ω ∧ (ω ∖ 𝐴) ≠ ∅) → ∃𝑧 ∈ (ω ∖ 𝐴)((ω ∖ 𝐴) ∩ 𝑧) = ∅)
4744, 45, 46mp3an12 1453 . . . 4 ((ω ∖ 𝐴) ≠ ∅ → ∃𝑧 ∈ (ω ∖ 𝐴)((ω ∖ 𝐴) ∩ 𝑧) = ∅)
4847necon1bi 2953 . . 3 (¬ ∃𝑧 ∈ (ω ∖ 𝐴)((ω ∖ 𝐴) ∩ 𝑧) = ∅ → (ω ∖ 𝐴) = ∅)
4943, 48syl 17 . 2 ((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴)) → (ω ∖ 𝐴) = ∅)
50 ssdif0 4325 . 2 (ω ⊆ 𝐴 ↔ (ω ∖ 𝐴) = ∅)
5149, 50sylibr 234 1 ((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴)) → ω ⊆ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  cdif 3908  cin 3910  wss 3911  c0 4292  Ord word 6319  suc csuc 6322  ωcom 7822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-tr 5210  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-om 7823
This theorem is referenced by:  find  7851  finds  7852  finds2  7854  omex  9572  dfom3  9576
  Copyright terms: Public domain W3C validator