MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  peano5 Structured version   Visualization version   GIF version

Theorem peano5 7823
Description: The induction postulate: any class containing zero and closed under the successor operation contains all natural numbers. One of Peano's five postulates for arithmetic. Proposition 7.30(5) of [TakeutiZaring] p. 43, except our proof does not require the Axiom of Infinity. The more traditional statement of mathematical induction as a theorem schema, with a basis and an induction step, is derived from this theorem as Theorem findes 7830. (Contributed by NM, 18-Feb-2004.) Avoid ax-10 2144, ax-12 2180. (Revised by GG, 3-Oct-2024.)
Assertion
Ref Expression
peano5 ((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴)) → ω ⊆ 𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem peano5
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldifn 4079 . . . . . 6 (𝑧 ∈ (ω ∖ 𝐴) → ¬ 𝑧𝐴)
21adantl 481 . . . . 5 (((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴)) ∧ 𝑧 ∈ (ω ∖ 𝐴)) → ¬ 𝑧𝐴)
3 eldifi 4078 . . . . . . . 8 (𝑧 ∈ (ω ∖ 𝐴) → 𝑧 ∈ ω)
4 elndif 4080 . . . . . . . . 9 (∅ ∈ 𝐴 → ¬ ∅ ∈ (ω ∖ 𝐴))
5 eleq1 2819 . . . . . . . . . . 11 (𝑧 = ∅ → (𝑧 ∈ (ω ∖ 𝐴) ↔ ∅ ∈ (ω ∖ 𝐴)))
65biimpcd 249 . . . . . . . . . 10 (𝑧 ∈ (ω ∖ 𝐴) → (𝑧 = ∅ → ∅ ∈ (ω ∖ 𝐴)))
76necon3bd 2942 . . . . . . . . 9 (𝑧 ∈ (ω ∖ 𝐴) → (¬ ∅ ∈ (ω ∖ 𝐴) → 𝑧 ≠ ∅))
84, 7mpan9 506 . . . . . . . 8 ((∅ ∈ 𝐴𝑧 ∈ (ω ∖ 𝐴)) → 𝑧 ≠ ∅)
9 nnsuc 7814 . . . . . . . 8 ((𝑧 ∈ ω ∧ 𝑧 ≠ ∅) → ∃𝑦 ∈ ω 𝑧 = suc 𝑦)
103, 8, 9syl2an2 686 . . . . . . 7 ((∅ ∈ 𝐴𝑧 ∈ (ω ∖ 𝐴)) → ∃𝑦 ∈ ω 𝑧 = suc 𝑦)
1110ad4ant13 751 . . . . . 6 ((((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴)) ∧ 𝑧 ∈ (ω ∖ 𝐴)) ∧ ((ω ∖ 𝐴) ∩ 𝑧) = ∅) → ∃𝑦 ∈ ω 𝑧 = suc 𝑦)
12 eleq1w 2814 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
13 suceq 6374 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → suc 𝑥 = suc 𝑦)
1413eleq1d 2816 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (suc 𝑥𝐴 ↔ suc 𝑦𝐴))
1512, 14imbi12d 344 . . . . . . . . . . . 12 (𝑥 = 𝑦 → ((𝑥𝐴 → suc 𝑥𝐴) ↔ (𝑦𝐴 → suc 𝑦𝐴)))
1615rspccv 3569 . . . . . . . . . . 11 (∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴) → (𝑦 ∈ ω → (𝑦𝐴 → suc 𝑦𝐴)))
17 vex 3440 . . . . . . . . . . . . . . . . . 18 𝑦 ∈ V
1817sucid 6390 . . . . . . . . . . . . . . . . 17 𝑦 ∈ suc 𝑦
19 eleq2 2820 . . . . . . . . . . . . . . . . 17 (𝑧 = suc 𝑦 → (𝑦𝑧𝑦 ∈ suc 𝑦))
2018, 19mpbiri 258 . . . . . . . . . . . . . . . 16 (𝑧 = suc 𝑦𝑦𝑧)
21 eleq1 2819 . . . . . . . . . . . . . . . . . 18 (𝑧 = suc 𝑦 → (𝑧 ∈ ω ↔ suc 𝑦 ∈ ω))
22 peano2b 7813 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ω ↔ suc 𝑦 ∈ ω)
2321, 22bitr4di 289 . . . . . . . . . . . . . . . . 17 (𝑧 = suc 𝑦 → (𝑧 ∈ ω ↔ 𝑦 ∈ ω))
24 minel 4413 . . . . . . . . . . . . . . . . . . 19 ((𝑦𝑧 ∧ ((ω ∖ 𝐴) ∩ 𝑧) = ∅) → ¬ 𝑦 ∈ (ω ∖ 𝐴))
25 neldif 4081 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ω ∧ ¬ 𝑦 ∈ (ω ∖ 𝐴)) → 𝑦𝐴)
2624, 25sylan2 593 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ω ∧ (𝑦𝑧 ∧ ((ω ∖ 𝐴) ∩ 𝑧) = ∅)) → 𝑦𝐴)
2726exp32 420 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ω → (𝑦𝑧 → (((ω ∖ 𝐴) ∩ 𝑧) = ∅ → 𝑦𝐴)))
2823, 27biimtrdi 253 . . . . . . . . . . . . . . . 16 (𝑧 = suc 𝑦 → (𝑧 ∈ ω → (𝑦𝑧 → (((ω ∖ 𝐴) ∩ 𝑧) = ∅ → 𝑦𝐴))))
2920, 28mpid 44 . . . . . . . . . . . . . . 15 (𝑧 = suc 𝑦 → (𝑧 ∈ ω → (((ω ∖ 𝐴) ∩ 𝑧) = ∅ → 𝑦𝐴)))
303, 29syl5 34 . . . . . . . . . . . . . 14 (𝑧 = suc 𝑦 → (𝑧 ∈ (ω ∖ 𝐴) → (((ω ∖ 𝐴) ∩ 𝑧) = ∅ → 𝑦𝐴)))
3130impd 410 . . . . . . . . . . . . 13 (𝑧 = suc 𝑦 → ((𝑧 ∈ (ω ∖ 𝐴) ∧ ((ω ∖ 𝐴) ∩ 𝑧) = ∅) → 𝑦𝐴))
32 eleq1a 2826 . . . . . . . . . . . . . 14 (suc 𝑦𝐴 → (𝑧 = suc 𝑦𝑧𝐴))
3332com12 32 . . . . . . . . . . . . 13 (𝑧 = suc 𝑦 → (suc 𝑦𝐴𝑧𝐴))
3431, 33imim12d 81 . . . . . . . . . . . 12 (𝑧 = suc 𝑦 → ((𝑦𝐴 → suc 𝑦𝐴) → ((𝑧 ∈ (ω ∖ 𝐴) ∧ ((ω ∖ 𝐴) ∩ 𝑧) = ∅) → 𝑧𝐴)))
3534com13 88 . . . . . . . . . . 11 ((𝑧 ∈ (ω ∖ 𝐴) ∧ ((ω ∖ 𝐴) ∩ 𝑧) = ∅) → ((𝑦𝐴 → suc 𝑦𝐴) → (𝑧 = suc 𝑦𝑧𝐴)))
3616, 35sylan9 507 . . . . . . . . . 10 ((∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴) ∧ (𝑧 ∈ (ω ∖ 𝐴) ∧ ((ω ∖ 𝐴) ∩ 𝑧) = ∅)) → (𝑦 ∈ ω → (𝑧 = suc 𝑦𝑧𝐴)))
3736rexlimdv 3131 . . . . . . . . 9 ((∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴) ∧ (𝑧 ∈ (ω ∖ 𝐴) ∧ ((ω ∖ 𝐴) ∩ 𝑧) = ∅)) → (∃𝑦 ∈ ω 𝑧 = suc 𝑦𝑧𝐴))
3837exp32 420 . . . . . . . 8 (∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴) → (𝑧 ∈ (ω ∖ 𝐴) → (((ω ∖ 𝐴) ∩ 𝑧) = ∅ → (∃𝑦 ∈ ω 𝑧 = suc 𝑦𝑧𝐴))))
3938a1i 11 . . . . . . 7 (∅ ∈ 𝐴 → (∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴) → (𝑧 ∈ (ω ∖ 𝐴) → (((ω ∖ 𝐴) ∩ 𝑧) = ∅ → (∃𝑦 ∈ ω 𝑧 = suc 𝑦𝑧𝐴)))))
4039imp41 425 . . . . . 6 ((((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴)) ∧ 𝑧 ∈ (ω ∖ 𝐴)) ∧ ((ω ∖ 𝐴) ∩ 𝑧) = ∅) → (∃𝑦 ∈ ω 𝑧 = suc 𝑦𝑧𝐴))
4111, 40mpd 15 . . . . 5 ((((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴)) ∧ 𝑧 ∈ (ω ∖ 𝐴)) ∧ ((ω ∖ 𝐴) ∩ 𝑧) = ∅) → 𝑧𝐴)
422, 41mtand 815 . . . 4 (((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴)) ∧ 𝑧 ∈ (ω ∖ 𝐴)) → ¬ ((ω ∖ 𝐴) ∩ 𝑧) = ∅)
4342nrexdv 3127 . . 3 ((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴)) → ¬ ∃𝑧 ∈ (ω ∖ 𝐴)((ω ∖ 𝐴) ∩ 𝑧) = ∅)
44 ordom 7806 . . . . 5 Ord ω
45 difss 4083 . . . . 5 (ω ∖ 𝐴) ⊆ ω
46 tz7.5 6327 . . . . 5 ((Ord ω ∧ (ω ∖ 𝐴) ⊆ ω ∧ (ω ∖ 𝐴) ≠ ∅) → ∃𝑧 ∈ (ω ∖ 𝐴)((ω ∖ 𝐴) ∩ 𝑧) = ∅)
4744, 45, 46mp3an12 1453 . . . 4 ((ω ∖ 𝐴) ≠ ∅ → ∃𝑧 ∈ (ω ∖ 𝐴)((ω ∖ 𝐴) ∩ 𝑧) = ∅)
4847necon1bi 2956 . . 3 (¬ ∃𝑧 ∈ (ω ∖ 𝐴)((ω ∖ 𝐴) ∩ 𝑧) = ∅ → (ω ∖ 𝐴) = ∅)
4943, 48syl 17 . 2 ((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴)) → (ω ∖ 𝐴) = ∅)
50 ssdif0 4313 . 2 (ω ⊆ 𝐴 ↔ (ω ∖ 𝐴) = ∅)
5149, 50sylibr 234 1 ((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴)) → ω ⊆ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2111  wne 2928  wral 3047  wrex 3056  cdif 3894  cin 3896  wss 3897  c0 4280  Ord word 6305  suc csuc 6308  ωcom 7796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-tr 5197  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-om 7797
This theorem is referenced by:  find  7825  finds  7826  finds2  7828  omex  9533  dfom3  9537
  Copyright terms: Public domain W3C validator