| Step | Hyp | Ref
| Expression |
| 1 | | eldifn 4107 |
. . . . . 6
⊢ (𝑧 ∈ (ω ∖ 𝐴) → ¬ 𝑧 ∈ 𝐴) |
| 2 | 1 | adantl 481 |
. . . . 5
⊢
(((∅ ∈ 𝐴
∧ ∀𝑥 ∈
ω (𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴)) ∧ 𝑧 ∈ (ω ∖ 𝐴)) → ¬ 𝑧 ∈ 𝐴) |
| 3 | | eldifi 4106 |
. . . . . . . 8
⊢ (𝑧 ∈ (ω ∖ 𝐴) → 𝑧 ∈ ω) |
| 4 | | elndif 4108 |
. . . . . . . . 9
⊢ (∅
∈ 𝐴 → ¬
∅ ∈ (ω ∖ 𝐴)) |
| 5 | | eleq1 2822 |
. . . . . . . . . . 11
⊢ (𝑧 = ∅ → (𝑧 ∈ (ω ∖ 𝐴) ↔ ∅ ∈ (ω
∖ 𝐴))) |
| 6 | 5 | biimpcd 249 |
. . . . . . . . . 10
⊢ (𝑧 ∈ (ω ∖ 𝐴) → (𝑧 = ∅ → ∅ ∈ (ω
∖ 𝐴))) |
| 7 | 6 | necon3bd 2946 |
. . . . . . . . 9
⊢ (𝑧 ∈ (ω ∖ 𝐴) → (¬ ∅ ∈
(ω ∖ 𝐴) →
𝑧 ≠
∅)) |
| 8 | 4, 7 | mpan9 506 |
. . . . . . . 8
⊢ ((∅
∈ 𝐴 ∧ 𝑧 ∈ (ω ∖ 𝐴)) → 𝑧 ≠ ∅) |
| 9 | | nnsuc 7879 |
. . . . . . . 8
⊢ ((𝑧 ∈ ω ∧ 𝑧 ≠ ∅) →
∃𝑦 ∈ ω
𝑧 = suc 𝑦) |
| 10 | 3, 8, 9 | syl2an2 686 |
. . . . . . 7
⊢ ((∅
∈ 𝐴 ∧ 𝑧 ∈ (ω ∖ 𝐴)) → ∃𝑦 ∈ ω 𝑧 = suc 𝑦) |
| 11 | 10 | ad4ant13 751 |
. . . . . 6
⊢
((((∅ ∈ 𝐴
∧ ∀𝑥 ∈
ω (𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴)) ∧ 𝑧 ∈ (ω ∖ 𝐴)) ∧ ((ω ∖ 𝐴) ∩ 𝑧) = ∅) → ∃𝑦 ∈ ω 𝑧 = suc 𝑦) |
| 12 | | eleq1w 2817 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) |
| 13 | | suceq 6419 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑦 → suc 𝑥 = suc 𝑦) |
| 14 | 13 | eleq1d 2819 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑦 → (suc 𝑥 ∈ 𝐴 ↔ suc 𝑦 ∈ 𝐴)) |
| 15 | 12, 14 | imbi12d 344 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴) ↔ (𝑦 ∈ 𝐴 → suc 𝑦 ∈ 𝐴))) |
| 16 | 15 | rspccv 3598 |
. . . . . . . . . . 11
⊢
(∀𝑥 ∈
ω (𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴) → (𝑦 ∈ ω → (𝑦 ∈ 𝐴 → suc 𝑦 ∈ 𝐴))) |
| 17 | | vex 3463 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑦 ∈ V |
| 18 | 17 | sucid 6436 |
. . . . . . . . . . . . . . . . 17
⊢ 𝑦 ∈ suc 𝑦 |
| 19 | | eleq2 2823 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = suc 𝑦 → (𝑦 ∈ 𝑧 ↔ 𝑦 ∈ suc 𝑦)) |
| 20 | 18, 19 | mpbiri 258 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = suc 𝑦 → 𝑦 ∈ 𝑧) |
| 21 | | eleq1 2822 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 = suc 𝑦 → (𝑧 ∈ ω ↔ suc 𝑦 ∈ ω)) |
| 22 | | peano2b 7878 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ∈ ω ↔ suc 𝑦 ∈
ω) |
| 23 | 21, 22 | bitr4di 289 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = suc 𝑦 → (𝑧 ∈ ω ↔ 𝑦 ∈ ω)) |
| 24 | | minel 4441 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑦 ∈ 𝑧 ∧ ((ω ∖ 𝐴) ∩ 𝑧) = ∅) → ¬ 𝑦 ∈ (ω ∖ 𝐴)) |
| 25 | | neldif 4109 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑦 ∈ ω ∧ ¬
𝑦 ∈ (ω ∖
𝐴)) → 𝑦 ∈ 𝐴) |
| 26 | 24, 25 | sylan2 593 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑦 ∈ ω ∧ (𝑦 ∈ 𝑧 ∧ ((ω ∖ 𝐴) ∩ 𝑧) = ∅)) → 𝑦 ∈ 𝐴) |
| 27 | 26 | exp32 420 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ ω → (𝑦 ∈ 𝑧 → (((ω ∖ 𝐴) ∩ 𝑧) = ∅ → 𝑦 ∈ 𝐴))) |
| 28 | 23, 27 | biimtrdi 253 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = suc 𝑦 → (𝑧 ∈ ω → (𝑦 ∈ 𝑧 → (((ω ∖ 𝐴) ∩ 𝑧) = ∅ → 𝑦 ∈ 𝐴)))) |
| 29 | 20, 28 | mpid 44 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = suc 𝑦 → (𝑧 ∈ ω → (((ω ∖
𝐴) ∩ 𝑧) = ∅ → 𝑦 ∈ 𝐴))) |
| 30 | 3, 29 | syl5 34 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = suc 𝑦 → (𝑧 ∈ (ω ∖ 𝐴) → (((ω ∖ 𝐴) ∩ 𝑧) = ∅ → 𝑦 ∈ 𝐴))) |
| 31 | 30 | impd 410 |
. . . . . . . . . . . . 13
⊢ (𝑧 = suc 𝑦 → ((𝑧 ∈ (ω ∖ 𝐴) ∧ ((ω ∖ 𝐴) ∩ 𝑧) = ∅) → 𝑦 ∈ 𝐴)) |
| 32 | | eleq1a 2829 |
. . . . . . . . . . . . . 14
⊢ (suc
𝑦 ∈ 𝐴 → (𝑧 = suc 𝑦 → 𝑧 ∈ 𝐴)) |
| 33 | 32 | com12 32 |
. . . . . . . . . . . . 13
⊢ (𝑧 = suc 𝑦 → (suc 𝑦 ∈ 𝐴 → 𝑧 ∈ 𝐴)) |
| 34 | 31, 33 | imim12d 81 |
. . . . . . . . . . . 12
⊢ (𝑧 = suc 𝑦 → ((𝑦 ∈ 𝐴 → suc 𝑦 ∈ 𝐴) → ((𝑧 ∈ (ω ∖ 𝐴) ∧ ((ω ∖ 𝐴) ∩ 𝑧) = ∅) → 𝑧 ∈ 𝐴))) |
| 35 | 34 | com13 88 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ (ω ∖ 𝐴) ∧ ((ω ∖ 𝐴) ∩ 𝑧) = ∅) → ((𝑦 ∈ 𝐴 → suc 𝑦 ∈ 𝐴) → (𝑧 = suc 𝑦 → 𝑧 ∈ 𝐴))) |
| 36 | 16, 35 | sylan9 507 |
. . . . . . . . . 10
⊢
((∀𝑥 ∈
ω (𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴) ∧ (𝑧 ∈ (ω ∖ 𝐴) ∧ ((ω ∖ 𝐴) ∩ 𝑧) = ∅)) → (𝑦 ∈ ω → (𝑧 = suc 𝑦 → 𝑧 ∈ 𝐴))) |
| 37 | 36 | rexlimdv 3139 |
. . . . . . . . 9
⊢
((∀𝑥 ∈
ω (𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴) ∧ (𝑧 ∈ (ω ∖ 𝐴) ∧ ((ω ∖ 𝐴) ∩ 𝑧) = ∅)) → (∃𝑦 ∈ ω 𝑧 = suc 𝑦 → 𝑧 ∈ 𝐴)) |
| 38 | 37 | exp32 420 |
. . . . . . . 8
⊢
(∀𝑥 ∈
ω (𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴) → (𝑧 ∈ (ω ∖ 𝐴) → (((ω ∖ 𝐴) ∩ 𝑧) = ∅ → (∃𝑦 ∈ ω 𝑧 = suc 𝑦 → 𝑧 ∈ 𝐴)))) |
| 39 | 38 | a1i 11 |
. . . . . . 7
⊢ (∅
∈ 𝐴 →
(∀𝑥 ∈ ω
(𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴) → (𝑧 ∈ (ω ∖ 𝐴) → (((ω ∖ 𝐴) ∩ 𝑧) = ∅ → (∃𝑦 ∈ ω 𝑧 = suc 𝑦 → 𝑧 ∈ 𝐴))))) |
| 40 | 39 | imp41 425 |
. . . . . 6
⊢
((((∅ ∈ 𝐴
∧ ∀𝑥 ∈
ω (𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴)) ∧ 𝑧 ∈ (ω ∖ 𝐴)) ∧ ((ω ∖ 𝐴) ∩ 𝑧) = ∅) → (∃𝑦 ∈ ω 𝑧 = suc 𝑦 → 𝑧 ∈ 𝐴)) |
| 41 | 11, 40 | mpd 15 |
. . . . 5
⊢
((((∅ ∈ 𝐴
∧ ∀𝑥 ∈
ω (𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴)) ∧ 𝑧 ∈ (ω ∖ 𝐴)) ∧ ((ω ∖ 𝐴) ∩ 𝑧) = ∅) → 𝑧 ∈ 𝐴) |
| 42 | 2, 41 | mtand 815 |
. . . 4
⊢
(((∅ ∈ 𝐴
∧ ∀𝑥 ∈
ω (𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴)) ∧ 𝑧 ∈ (ω ∖ 𝐴)) → ¬ ((ω ∖ 𝐴) ∩ 𝑧) = ∅) |
| 43 | 42 | nrexdv 3135 |
. . 3
⊢ ((∅
∈ 𝐴 ∧
∀𝑥 ∈ ω
(𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴)) → ¬ ∃𝑧 ∈ (ω ∖ 𝐴)((ω ∖ 𝐴) ∩ 𝑧) = ∅) |
| 44 | | ordom 7871 |
. . . . 5
⊢ Ord
ω |
| 45 | | difss 4111 |
. . . . 5
⊢ (ω
∖ 𝐴) ⊆
ω |
| 46 | | tz7.5 6373 |
. . . . 5
⊢ ((Ord
ω ∧ (ω ∖ 𝐴) ⊆ ω ∧ (ω ∖
𝐴) ≠ ∅) →
∃𝑧 ∈ (ω
∖ 𝐴)((ω ∖
𝐴) ∩ 𝑧) = ∅) |
| 47 | 44, 45, 46 | mp3an12 1453 |
. . . 4
⊢ ((ω
∖ 𝐴) ≠ ∅
→ ∃𝑧 ∈
(ω ∖ 𝐴)((ω ∖ 𝐴) ∩ 𝑧) = ∅) |
| 48 | 47 | necon1bi 2960 |
. . 3
⊢ (¬
∃𝑧 ∈ (ω
∖ 𝐴)((ω ∖
𝐴) ∩ 𝑧) = ∅ → (ω ∖ 𝐴) = ∅) |
| 49 | 43, 48 | syl 17 |
. 2
⊢ ((∅
∈ 𝐴 ∧
∀𝑥 ∈ ω
(𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴)) → (ω ∖ 𝐴) = ∅) |
| 50 | | ssdif0 4341 |
. 2
⊢ (ω
⊆ 𝐴 ↔ (ω
∖ 𝐴) =
∅) |
| 51 | 49, 50 | sylibr 234 |
1
⊢ ((∅
∈ 𝐴 ∧
∀𝑥 ∈ ω
(𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴)) → ω ⊆ 𝐴) |