MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  peano5OLD Structured version   Visualization version   GIF version

Theorem peano5OLD 7831
Description: Obsolete version of peano5 7830 as of 3-Oct-2024. (Contributed by NM, 18-Feb-2004.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
peano5OLD ((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴)) → ω ⊆ 𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem peano5OLD
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eldifn 4087 . . . . . 6 (𝑦 ∈ (ω ∖ 𝐴) → ¬ 𝑦𝐴)
21adantl 482 . . . . 5 (((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴)) ∧ 𝑦 ∈ (ω ∖ 𝐴)) → ¬ 𝑦𝐴)
3 eldifi 4086 . . . . . . . 8 (𝑦 ∈ (ω ∖ 𝐴) → 𝑦 ∈ ω)
4 elndif 4088 . . . . . . . . 9 (∅ ∈ 𝐴 → ¬ ∅ ∈ (ω ∖ 𝐴))
5 eleq1 2825 . . . . . . . . . . 11 (𝑦 = ∅ → (𝑦 ∈ (ω ∖ 𝐴) ↔ ∅ ∈ (ω ∖ 𝐴)))
65biimpcd 248 . . . . . . . . . 10 (𝑦 ∈ (ω ∖ 𝐴) → (𝑦 = ∅ → ∅ ∈ (ω ∖ 𝐴)))
76necon3bd 2957 . . . . . . . . 9 (𝑦 ∈ (ω ∖ 𝐴) → (¬ ∅ ∈ (ω ∖ 𝐴) → 𝑦 ≠ ∅))
84, 7mpan9 507 . . . . . . . 8 ((∅ ∈ 𝐴𝑦 ∈ (ω ∖ 𝐴)) → 𝑦 ≠ ∅)
9 nnsuc 7820 . . . . . . . 8 ((𝑦 ∈ ω ∧ 𝑦 ≠ ∅) → ∃𝑥 ∈ ω 𝑦 = suc 𝑥)
103, 8, 9syl2an2 684 . . . . . . 7 ((∅ ∈ 𝐴𝑦 ∈ (ω ∖ 𝐴)) → ∃𝑥 ∈ ω 𝑦 = suc 𝑥)
1110ad4ant13 749 . . . . . 6 ((((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴)) ∧ 𝑦 ∈ (ω ∖ 𝐴)) ∧ ((ω ∖ 𝐴) ∩ 𝑦) = ∅) → ∃𝑥 ∈ ω 𝑦 = suc 𝑥)
12 nfra1 3267 . . . . . . . . . . 11 𝑥𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴)
13 nfv 1917 . . . . . . . . . . 11 𝑥(𝑦 ∈ (ω ∖ 𝐴) ∧ ((ω ∖ 𝐴) ∩ 𝑦) = ∅)
1412, 13nfan 1902 . . . . . . . . . 10 𝑥(∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴) ∧ (𝑦 ∈ (ω ∖ 𝐴) ∧ ((ω ∖ 𝐴) ∩ 𝑦) = ∅))
15 nfv 1917 . . . . . . . . . 10 𝑥 𝑦𝐴
16 rsp 3230 . . . . . . . . . . 11 (∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴) → (𝑥 ∈ ω → (𝑥𝐴 → suc 𝑥𝐴)))
17 vex 3449 . . . . . . . . . . . . . . . . . 18 𝑥 ∈ V
1817sucid 6399 . . . . . . . . . . . . . . . . 17 𝑥 ∈ suc 𝑥
19 eleq2 2826 . . . . . . . . . . . . . . . . 17 (𝑦 = suc 𝑥 → (𝑥𝑦𝑥 ∈ suc 𝑥))
2018, 19mpbiri 257 . . . . . . . . . . . . . . . 16 (𝑦 = suc 𝑥𝑥𝑦)
21 eleq1 2825 . . . . . . . . . . . . . . . . . 18 (𝑦 = suc 𝑥 → (𝑦 ∈ ω ↔ suc 𝑥 ∈ ω))
22 peano2b 7819 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ω ↔ suc 𝑥 ∈ ω)
2321, 22bitr4di 288 . . . . . . . . . . . . . . . . 17 (𝑦 = suc 𝑥 → (𝑦 ∈ ω ↔ 𝑥 ∈ ω))
24 minel 4425 . . . . . . . . . . . . . . . . . . 19 ((𝑥𝑦 ∧ ((ω ∖ 𝐴) ∩ 𝑦) = ∅) → ¬ 𝑥 ∈ (ω ∖ 𝐴))
25 neldif 4089 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ω ∧ ¬ 𝑥 ∈ (ω ∖ 𝐴)) → 𝑥𝐴)
2624, 25sylan2 593 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ω ∧ (𝑥𝑦 ∧ ((ω ∖ 𝐴) ∩ 𝑦) = ∅)) → 𝑥𝐴)
2726exp32 421 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ω → (𝑥𝑦 → (((ω ∖ 𝐴) ∩ 𝑦) = ∅ → 𝑥𝐴)))
2823, 27syl6bi 252 . . . . . . . . . . . . . . . 16 (𝑦 = suc 𝑥 → (𝑦 ∈ ω → (𝑥𝑦 → (((ω ∖ 𝐴) ∩ 𝑦) = ∅ → 𝑥𝐴))))
2920, 28mpid 44 . . . . . . . . . . . . . . 15 (𝑦 = suc 𝑥 → (𝑦 ∈ ω → (((ω ∖ 𝐴) ∩ 𝑦) = ∅ → 𝑥𝐴)))
303, 29syl5 34 . . . . . . . . . . . . . 14 (𝑦 = suc 𝑥 → (𝑦 ∈ (ω ∖ 𝐴) → (((ω ∖ 𝐴) ∩ 𝑦) = ∅ → 𝑥𝐴)))
3130impd 411 . . . . . . . . . . . . 13 (𝑦 = suc 𝑥 → ((𝑦 ∈ (ω ∖ 𝐴) ∧ ((ω ∖ 𝐴) ∩ 𝑦) = ∅) → 𝑥𝐴))
32 eleq1a 2833 . . . . . . . . . . . . . 14 (suc 𝑥𝐴 → (𝑦 = suc 𝑥𝑦𝐴))
3332com12 32 . . . . . . . . . . . . 13 (𝑦 = suc 𝑥 → (suc 𝑥𝐴𝑦𝐴))
3431, 33imim12d 81 . . . . . . . . . . . 12 (𝑦 = suc 𝑥 → ((𝑥𝐴 → suc 𝑥𝐴) → ((𝑦 ∈ (ω ∖ 𝐴) ∧ ((ω ∖ 𝐴) ∩ 𝑦) = ∅) → 𝑦𝐴)))
3534com13 88 . . . . . . . . . . 11 ((𝑦 ∈ (ω ∖ 𝐴) ∧ ((ω ∖ 𝐴) ∩ 𝑦) = ∅) → ((𝑥𝐴 → suc 𝑥𝐴) → (𝑦 = suc 𝑥𝑦𝐴)))
3616, 35sylan9 508 . . . . . . . . . 10 ((∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴) ∧ (𝑦 ∈ (ω ∖ 𝐴) ∧ ((ω ∖ 𝐴) ∩ 𝑦) = ∅)) → (𝑥 ∈ ω → (𝑦 = suc 𝑥𝑦𝐴)))
3714, 15, 36rexlimd 3249 . . . . . . . . 9 ((∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴) ∧ (𝑦 ∈ (ω ∖ 𝐴) ∧ ((ω ∖ 𝐴) ∩ 𝑦) = ∅)) → (∃𝑥 ∈ ω 𝑦 = suc 𝑥𝑦𝐴))
3837exp32 421 . . . . . . . 8 (∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴) → (𝑦 ∈ (ω ∖ 𝐴) → (((ω ∖ 𝐴) ∩ 𝑦) = ∅ → (∃𝑥 ∈ ω 𝑦 = suc 𝑥𝑦𝐴))))
3938a1i 11 . . . . . . 7 (∅ ∈ 𝐴 → (∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴) → (𝑦 ∈ (ω ∖ 𝐴) → (((ω ∖ 𝐴) ∩ 𝑦) = ∅ → (∃𝑥 ∈ ω 𝑦 = suc 𝑥𝑦𝐴)))))
4039imp41 426 . . . . . 6 ((((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴)) ∧ 𝑦 ∈ (ω ∖ 𝐴)) ∧ ((ω ∖ 𝐴) ∩ 𝑦) = ∅) → (∃𝑥 ∈ ω 𝑦 = suc 𝑥𝑦𝐴))
4111, 40mpd 15 . . . . 5 ((((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴)) ∧ 𝑦 ∈ (ω ∖ 𝐴)) ∧ ((ω ∖ 𝐴) ∩ 𝑦) = ∅) → 𝑦𝐴)
422, 41mtand 814 . . . 4 (((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴)) ∧ 𝑦 ∈ (ω ∖ 𝐴)) → ¬ ((ω ∖ 𝐴) ∩ 𝑦) = ∅)
4342nrexdv 3146 . . 3 ((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴)) → ¬ ∃𝑦 ∈ (ω ∖ 𝐴)((ω ∖ 𝐴) ∩ 𝑦) = ∅)
44 ordom 7812 . . . . 5 Ord ω
45 difss 4091 . . . . 5 (ω ∖ 𝐴) ⊆ ω
46 tz7.5 6338 . . . . 5 ((Ord ω ∧ (ω ∖ 𝐴) ⊆ ω ∧ (ω ∖ 𝐴) ≠ ∅) → ∃𝑦 ∈ (ω ∖ 𝐴)((ω ∖ 𝐴) ∩ 𝑦) = ∅)
4744, 45, 46mp3an12 1451 . . . 4 ((ω ∖ 𝐴) ≠ ∅ → ∃𝑦 ∈ (ω ∖ 𝐴)((ω ∖ 𝐴) ∩ 𝑦) = ∅)
4847necon1bi 2972 . . 3 (¬ ∃𝑦 ∈ (ω ∖ 𝐴)((ω ∖ 𝐴) ∩ 𝑦) = ∅ → (ω ∖ 𝐴) = ∅)
4943, 48syl 17 . 2 ((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴)) → (ω ∖ 𝐴) = ∅)
50 ssdif0 4323 . 2 (ω ⊆ 𝐴 ↔ (ω ∖ 𝐴) = ∅)
5149, 50sylibr 233 1 ((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴)) → ω ⊆ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1541  wcel 2106  wne 2943  wral 3064  wrex 3073  cdif 3907  cin 3909  wss 3910  c0 4282  Ord word 6316  suc csuc 6319  ωcom 7802
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-clab 2714  df-cleq 2728  df-clel 2814  df-ne 2944  df-ral 3065  df-rex 3074  df-rab 3408  df-v 3447  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-br 5106  df-opab 5168  df-tr 5223  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-om 7803
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator