MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  peano5OLD Structured version   Visualization version   GIF version

Theorem peano5OLD 7895
Description: Obsolete version of peano5 7894 as of 3-Oct-2024. (Contributed by NM, 18-Feb-2004.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
peano5OLD ((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴)) → ω ⊆ 𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem peano5OLD
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eldifn 4124 . . . . . 6 (𝑦 ∈ (ω ∖ 𝐴) → ¬ 𝑦𝐴)
21adantl 481 . . . . 5 (((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴)) ∧ 𝑦 ∈ (ω ∖ 𝐴)) → ¬ 𝑦𝐴)
3 eldifi 4123 . . . . . . . 8 (𝑦 ∈ (ω ∖ 𝐴) → 𝑦 ∈ ω)
4 elndif 4125 . . . . . . . . 9 (∅ ∈ 𝐴 → ¬ ∅ ∈ (ω ∖ 𝐴))
5 eleq1 2817 . . . . . . . . . . 11 (𝑦 = ∅ → (𝑦 ∈ (ω ∖ 𝐴) ↔ ∅ ∈ (ω ∖ 𝐴)))
65biimpcd 248 . . . . . . . . . 10 (𝑦 ∈ (ω ∖ 𝐴) → (𝑦 = ∅ → ∅ ∈ (ω ∖ 𝐴)))
76necon3bd 2950 . . . . . . . . 9 (𝑦 ∈ (ω ∖ 𝐴) → (¬ ∅ ∈ (ω ∖ 𝐴) → 𝑦 ≠ ∅))
84, 7mpan9 506 . . . . . . . 8 ((∅ ∈ 𝐴𝑦 ∈ (ω ∖ 𝐴)) → 𝑦 ≠ ∅)
9 nnsuc 7883 . . . . . . . 8 ((𝑦 ∈ ω ∧ 𝑦 ≠ ∅) → ∃𝑥 ∈ ω 𝑦 = suc 𝑥)
103, 8, 9syl2an2 685 . . . . . . 7 ((∅ ∈ 𝐴𝑦 ∈ (ω ∖ 𝐴)) → ∃𝑥 ∈ ω 𝑦 = suc 𝑥)
1110ad4ant13 750 . . . . . 6 ((((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴)) ∧ 𝑦 ∈ (ω ∖ 𝐴)) ∧ ((ω ∖ 𝐴) ∩ 𝑦) = ∅) → ∃𝑥 ∈ ω 𝑦 = suc 𝑥)
12 nfra1 3277 . . . . . . . . . . 11 𝑥𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴)
13 nfv 1910 . . . . . . . . . . 11 𝑥(𝑦 ∈ (ω ∖ 𝐴) ∧ ((ω ∖ 𝐴) ∩ 𝑦) = ∅)
1412, 13nfan 1895 . . . . . . . . . 10 𝑥(∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴) ∧ (𝑦 ∈ (ω ∖ 𝐴) ∧ ((ω ∖ 𝐴) ∩ 𝑦) = ∅))
15 nfv 1910 . . . . . . . . . 10 𝑥 𝑦𝐴
16 rsp 3240 . . . . . . . . . . 11 (∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴) → (𝑥 ∈ ω → (𝑥𝐴 → suc 𝑥𝐴)))
17 vex 3474 . . . . . . . . . . . . . . . . . 18 𝑥 ∈ V
1817sucid 6446 . . . . . . . . . . . . . . . . 17 𝑥 ∈ suc 𝑥
19 eleq2 2818 . . . . . . . . . . . . . . . . 17 (𝑦 = suc 𝑥 → (𝑥𝑦𝑥 ∈ suc 𝑥))
2018, 19mpbiri 258 . . . . . . . . . . . . . . . 16 (𝑦 = suc 𝑥𝑥𝑦)
21 eleq1 2817 . . . . . . . . . . . . . . . . . 18 (𝑦 = suc 𝑥 → (𝑦 ∈ ω ↔ suc 𝑥 ∈ ω))
22 peano2b 7882 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ω ↔ suc 𝑥 ∈ ω)
2321, 22bitr4di 289 . . . . . . . . . . . . . . . . 17 (𝑦 = suc 𝑥 → (𝑦 ∈ ω ↔ 𝑥 ∈ ω))
24 minel 4462 . . . . . . . . . . . . . . . . . . 19 ((𝑥𝑦 ∧ ((ω ∖ 𝐴) ∩ 𝑦) = ∅) → ¬ 𝑥 ∈ (ω ∖ 𝐴))
25 neldif 4126 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ω ∧ ¬ 𝑥 ∈ (ω ∖ 𝐴)) → 𝑥𝐴)
2624, 25sylan2 592 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ω ∧ (𝑥𝑦 ∧ ((ω ∖ 𝐴) ∩ 𝑦) = ∅)) → 𝑥𝐴)
2726exp32 420 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ω → (𝑥𝑦 → (((ω ∖ 𝐴) ∩ 𝑦) = ∅ → 𝑥𝐴)))
2823, 27biimtrdi 252 . . . . . . . . . . . . . . . 16 (𝑦 = suc 𝑥 → (𝑦 ∈ ω → (𝑥𝑦 → (((ω ∖ 𝐴) ∩ 𝑦) = ∅ → 𝑥𝐴))))
2920, 28mpid 44 . . . . . . . . . . . . . . 15 (𝑦 = suc 𝑥 → (𝑦 ∈ ω → (((ω ∖ 𝐴) ∩ 𝑦) = ∅ → 𝑥𝐴)))
303, 29syl5 34 . . . . . . . . . . . . . 14 (𝑦 = suc 𝑥 → (𝑦 ∈ (ω ∖ 𝐴) → (((ω ∖ 𝐴) ∩ 𝑦) = ∅ → 𝑥𝐴)))
3130impd 410 . . . . . . . . . . . . 13 (𝑦 = suc 𝑥 → ((𝑦 ∈ (ω ∖ 𝐴) ∧ ((ω ∖ 𝐴) ∩ 𝑦) = ∅) → 𝑥𝐴))
32 eleq1a 2824 . . . . . . . . . . . . . 14 (suc 𝑥𝐴 → (𝑦 = suc 𝑥𝑦𝐴))
3332com12 32 . . . . . . . . . . . . 13 (𝑦 = suc 𝑥 → (suc 𝑥𝐴𝑦𝐴))
3431, 33imim12d 81 . . . . . . . . . . . 12 (𝑦 = suc 𝑥 → ((𝑥𝐴 → suc 𝑥𝐴) → ((𝑦 ∈ (ω ∖ 𝐴) ∧ ((ω ∖ 𝐴) ∩ 𝑦) = ∅) → 𝑦𝐴)))
3534com13 88 . . . . . . . . . . 11 ((𝑦 ∈ (ω ∖ 𝐴) ∧ ((ω ∖ 𝐴) ∩ 𝑦) = ∅) → ((𝑥𝐴 → suc 𝑥𝐴) → (𝑦 = suc 𝑥𝑦𝐴)))
3616, 35sylan9 507 . . . . . . . . . 10 ((∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴) ∧ (𝑦 ∈ (ω ∖ 𝐴) ∧ ((ω ∖ 𝐴) ∩ 𝑦) = ∅)) → (𝑥 ∈ ω → (𝑦 = suc 𝑥𝑦𝐴)))
3714, 15, 36rexlimd 3259 . . . . . . . . 9 ((∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴) ∧ (𝑦 ∈ (ω ∖ 𝐴) ∧ ((ω ∖ 𝐴) ∩ 𝑦) = ∅)) → (∃𝑥 ∈ ω 𝑦 = suc 𝑥𝑦𝐴))
3837exp32 420 . . . . . . . 8 (∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴) → (𝑦 ∈ (ω ∖ 𝐴) → (((ω ∖ 𝐴) ∩ 𝑦) = ∅ → (∃𝑥 ∈ ω 𝑦 = suc 𝑥𝑦𝐴))))
3938a1i 11 . . . . . . 7 (∅ ∈ 𝐴 → (∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴) → (𝑦 ∈ (ω ∖ 𝐴) → (((ω ∖ 𝐴) ∩ 𝑦) = ∅ → (∃𝑥 ∈ ω 𝑦 = suc 𝑥𝑦𝐴)))))
4039imp41 425 . . . . . 6 ((((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴)) ∧ 𝑦 ∈ (ω ∖ 𝐴)) ∧ ((ω ∖ 𝐴) ∩ 𝑦) = ∅) → (∃𝑥 ∈ ω 𝑦 = suc 𝑥𝑦𝐴))
4111, 40mpd 15 . . . . 5 ((((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴)) ∧ 𝑦 ∈ (ω ∖ 𝐴)) ∧ ((ω ∖ 𝐴) ∩ 𝑦) = ∅) → 𝑦𝐴)
422, 41mtand 815 . . . 4 (((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴)) ∧ 𝑦 ∈ (ω ∖ 𝐴)) → ¬ ((ω ∖ 𝐴) ∩ 𝑦) = ∅)
4342nrexdv 3145 . . 3 ((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴)) → ¬ ∃𝑦 ∈ (ω ∖ 𝐴)((ω ∖ 𝐴) ∩ 𝑦) = ∅)
44 ordom 7875 . . . . 5 Ord ω
45 difss 4128 . . . . 5 (ω ∖ 𝐴) ⊆ ω
46 tz7.5 6385 . . . . 5 ((Ord ω ∧ (ω ∖ 𝐴) ⊆ ω ∧ (ω ∖ 𝐴) ≠ ∅) → ∃𝑦 ∈ (ω ∖ 𝐴)((ω ∖ 𝐴) ∩ 𝑦) = ∅)
4744, 45, 46mp3an12 1448 . . . 4 ((ω ∖ 𝐴) ≠ ∅ → ∃𝑦 ∈ (ω ∖ 𝐴)((ω ∖ 𝐴) ∩ 𝑦) = ∅)
4847necon1bi 2965 . . 3 (¬ ∃𝑦 ∈ (ω ∖ 𝐴)((ω ∖ 𝐴) ∩ 𝑦) = ∅ → (ω ∖ 𝐴) = ∅)
4943, 48syl 17 . 2 ((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴)) → (ω ∖ 𝐴) = ∅)
50 ssdif0 4360 . 2 (ω ⊆ 𝐴 ↔ (ω ∖ 𝐴) = ∅)
5149, 50sylibr 233 1 ((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴)) → ω ⊆ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1534  wcel 2099  wne 2936  wral 3057  wrex 3066  cdif 3942  cin 3944  wss 3945  c0 4319  Ord word 6363  suc csuc 6366  ωcom 7865
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-12 2167  ax-ext 2699  ax-sep 5294  ax-nul 5301  ax-pr 5424  ax-un 7735
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-ne 2937  df-ral 3058  df-rex 3067  df-rab 3429  df-v 3472  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-br 5144  df-opab 5206  df-tr 5261  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-we 5630  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-om 7866
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator