Step | Hyp | Ref
| Expression |
1 | | eldifn 4062 |
. . . . . 6
⊢ (𝑦 ∈ (ω ∖ 𝐴) → ¬ 𝑦 ∈ 𝐴) |
2 | 1 | adantl 482 |
. . . . 5
⊢
(((∅ ∈ 𝐴
∧ ∀𝑥 ∈
ω (𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴)) ∧ 𝑦 ∈ (ω ∖ 𝐴)) → ¬ 𝑦 ∈ 𝐴) |
3 | | eldifi 4061 |
. . . . . . . 8
⊢ (𝑦 ∈ (ω ∖ 𝐴) → 𝑦 ∈ ω) |
4 | | elndif 4063 |
. . . . . . . . 9
⊢ (∅
∈ 𝐴 → ¬
∅ ∈ (ω ∖ 𝐴)) |
5 | | eleq1 2826 |
. . . . . . . . . . 11
⊢ (𝑦 = ∅ → (𝑦 ∈ (ω ∖ 𝐴) ↔ ∅ ∈ (ω
∖ 𝐴))) |
6 | 5 | biimpcd 248 |
. . . . . . . . . 10
⊢ (𝑦 ∈ (ω ∖ 𝐴) → (𝑦 = ∅ → ∅ ∈ (ω
∖ 𝐴))) |
7 | 6 | necon3bd 2957 |
. . . . . . . . 9
⊢ (𝑦 ∈ (ω ∖ 𝐴) → (¬ ∅ ∈
(ω ∖ 𝐴) →
𝑦 ≠
∅)) |
8 | 4, 7 | mpan9 507 |
. . . . . . . 8
⊢ ((∅
∈ 𝐴 ∧ 𝑦 ∈ (ω ∖ 𝐴)) → 𝑦 ≠ ∅) |
9 | | nnsuc 7730 |
. . . . . . . 8
⊢ ((𝑦 ∈ ω ∧ 𝑦 ≠ ∅) →
∃𝑥 ∈ ω
𝑦 = suc 𝑥) |
10 | 3, 8, 9 | syl2an2 683 |
. . . . . . 7
⊢ ((∅
∈ 𝐴 ∧ 𝑦 ∈ (ω ∖ 𝐴)) → ∃𝑥 ∈ ω 𝑦 = suc 𝑥) |
11 | 10 | ad4ant13 748 |
. . . . . 6
⊢
((((∅ ∈ 𝐴
∧ ∀𝑥 ∈
ω (𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴)) ∧ 𝑦 ∈ (ω ∖ 𝐴)) ∧ ((ω ∖ 𝐴) ∩ 𝑦) = ∅) → ∃𝑥 ∈ ω 𝑦 = suc 𝑥) |
12 | | nfra1 3144 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥∀𝑥 ∈ ω (𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴) |
13 | | nfv 1917 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥(𝑦 ∈ (ω ∖ 𝐴) ∧ ((ω ∖ 𝐴) ∩ 𝑦) = ∅) |
14 | 12, 13 | nfan 1902 |
. . . . . . . . . 10
⊢
Ⅎ𝑥(∀𝑥 ∈ ω (𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴) ∧ (𝑦 ∈ (ω ∖ 𝐴) ∧ ((ω ∖ 𝐴) ∩ 𝑦) = ∅)) |
15 | | nfv 1917 |
. . . . . . . . . 10
⊢
Ⅎ𝑥 𝑦 ∈ 𝐴 |
16 | | rsp 3131 |
. . . . . . . . . . 11
⊢
(∀𝑥 ∈
ω (𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴) → (𝑥 ∈ ω → (𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴))) |
17 | | vex 3436 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑥 ∈ V |
18 | 17 | sucid 6345 |
. . . . . . . . . . . . . . . . 17
⊢ 𝑥 ∈ suc 𝑥 |
19 | | eleq2 2827 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = suc 𝑥 → (𝑥 ∈ 𝑦 ↔ 𝑥 ∈ suc 𝑥)) |
20 | 18, 19 | mpbiri 257 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = suc 𝑥 → 𝑥 ∈ 𝑦) |
21 | | eleq1 2826 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = suc 𝑥 → (𝑦 ∈ ω ↔ suc 𝑥 ∈ ω)) |
22 | | peano2b 7729 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ ω ↔ suc 𝑥 ∈
ω) |
23 | 21, 22 | bitr4di 289 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = suc 𝑥 → (𝑦 ∈ ω ↔ 𝑥 ∈ ω)) |
24 | | minel 4399 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑥 ∈ 𝑦 ∧ ((ω ∖ 𝐴) ∩ 𝑦) = ∅) → ¬ 𝑥 ∈ (ω ∖ 𝐴)) |
25 | | neldif 4064 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑥 ∈ ω ∧ ¬
𝑥 ∈ (ω ∖
𝐴)) → 𝑥 ∈ 𝐴) |
26 | 24, 25 | sylan2 593 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 ∈ ω ∧ (𝑥 ∈ 𝑦 ∧ ((ω ∖ 𝐴) ∩ 𝑦) = ∅)) → 𝑥 ∈ 𝐴) |
27 | 26 | exp32 421 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ ω → (𝑥 ∈ 𝑦 → (((ω ∖ 𝐴) ∩ 𝑦) = ∅ → 𝑥 ∈ 𝐴))) |
28 | 23, 27 | syl6bi 252 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = suc 𝑥 → (𝑦 ∈ ω → (𝑥 ∈ 𝑦 → (((ω ∖ 𝐴) ∩ 𝑦) = ∅ → 𝑥 ∈ 𝐴)))) |
29 | 20, 28 | mpid 44 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = suc 𝑥 → (𝑦 ∈ ω → (((ω ∖
𝐴) ∩ 𝑦) = ∅ → 𝑥 ∈ 𝐴))) |
30 | 3, 29 | syl5 34 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = suc 𝑥 → (𝑦 ∈ (ω ∖ 𝐴) → (((ω ∖ 𝐴) ∩ 𝑦) = ∅ → 𝑥 ∈ 𝐴))) |
31 | 30 | impd 411 |
. . . . . . . . . . . . 13
⊢ (𝑦 = suc 𝑥 → ((𝑦 ∈ (ω ∖ 𝐴) ∧ ((ω ∖ 𝐴) ∩ 𝑦) = ∅) → 𝑥 ∈ 𝐴)) |
32 | | eleq1a 2834 |
. . . . . . . . . . . . . 14
⊢ (suc
𝑥 ∈ 𝐴 → (𝑦 = suc 𝑥 → 𝑦 ∈ 𝐴)) |
33 | 32 | com12 32 |
. . . . . . . . . . . . 13
⊢ (𝑦 = suc 𝑥 → (suc 𝑥 ∈ 𝐴 → 𝑦 ∈ 𝐴)) |
34 | 31, 33 | imim12d 81 |
. . . . . . . . . . . 12
⊢ (𝑦 = suc 𝑥 → ((𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴) → ((𝑦 ∈ (ω ∖ 𝐴) ∧ ((ω ∖ 𝐴) ∩ 𝑦) = ∅) → 𝑦 ∈ 𝐴))) |
35 | 34 | com13 88 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ (ω ∖ 𝐴) ∧ ((ω ∖ 𝐴) ∩ 𝑦) = ∅) → ((𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴) → (𝑦 = suc 𝑥 → 𝑦 ∈ 𝐴))) |
36 | 16, 35 | sylan9 508 |
. . . . . . . . . 10
⊢
((∀𝑥 ∈
ω (𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴) ∧ (𝑦 ∈ (ω ∖ 𝐴) ∧ ((ω ∖ 𝐴) ∩ 𝑦) = ∅)) → (𝑥 ∈ ω → (𝑦 = suc 𝑥 → 𝑦 ∈ 𝐴))) |
37 | 14, 15, 36 | rexlimd 3250 |
. . . . . . . . 9
⊢
((∀𝑥 ∈
ω (𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴) ∧ (𝑦 ∈ (ω ∖ 𝐴) ∧ ((ω ∖ 𝐴) ∩ 𝑦) = ∅)) → (∃𝑥 ∈ ω 𝑦 = suc 𝑥 → 𝑦 ∈ 𝐴)) |
38 | 37 | exp32 421 |
. . . . . . . 8
⊢
(∀𝑥 ∈
ω (𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴) → (𝑦 ∈ (ω ∖ 𝐴) → (((ω ∖ 𝐴) ∩ 𝑦) = ∅ → (∃𝑥 ∈ ω 𝑦 = suc 𝑥 → 𝑦 ∈ 𝐴)))) |
39 | 38 | a1i 11 |
. . . . . . 7
⊢ (∅
∈ 𝐴 →
(∀𝑥 ∈ ω
(𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴) → (𝑦 ∈ (ω ∖ 𝐴) → (((ω ∖ 𝐴) ∩ 𝑦) = ∅ → (∃𝑥 ∈ ω 𝑦 = suc 𝑥 → 𝑦 ∈ 𝐴))))) |
40 | 39 | imp41 426 |
. . . . . 6
⊢
((((∅ ∈ 𝐴
∧ ∀𝑥 ∈
ω (𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴)) ∧ 𝑦 ∈ (ω ∖ 𝐴)) ∧ ((ω ∖ 𝐴) ∩ 𝑦) = ∅) → (∃𝑥 ∈ ω 𝑦 = suc 𝑥 → 𝑦 ∈ 𝐴)) |
41 | 11, 40 | mpd 15 |
. . . . 5
⊢
((((∅ ∈ 𝐴
∧ ∀𝑥 ∈
ω (𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴)) ∧ 𝑦 ∈ (ω ∖ 𝐴)) ∧ ((ω ∖ 𝐴) ∩ 𝑦) = ∅) → 𝑦 ∈ 𝐴) |
42 | 2, 41 | mtand 813 |
. . . 4
⊢
(((∅ ∈ 𝐴
∧ ∀𝑥 ∈
ω (𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴)) ∧ 𝑦 ∈ (ω ∖ 𝐴)) → ¬ ((ω ∖ 𝐴) ∩ 𝑦) = ∅) |
43 | 42 | nrexdv 3198 |
. . 3
⊢ ((∅
∈ 𝐴 ∧
∀𝑥 ∈ ω
(𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴)) → ¬ ∃𝑦 ∈ (ω ∖ 𝐴)((ω ∖ 𝐴) ∩ 𝑦) = ∅) |
44 | | ordom 7722 |
. . . . 5
⊢ Ord
ω |
45 | | difss 4066 |
. . . . 5
⊢ (ω
∖ 𝐴) ⊆
ω |
46 | | tz7.5 6287 |
. . . . 5
⊢ ((Ord
ω ∧ (ω ∖ 𝐴) ⊆ ω ∧ (ω ∖
𝐴) ≠ ∅) →
∃𝑦 ∈ (ω
∖ 𝐴)((ω ∖
𝐴) ∩ 𝑦) = ∅) |
47 | 44, 45, 46 | mp3an12 1450 |
. . . 4
⊢ ((ω
∖ 𝐴) ≠ ∅
→ ∃𝑦 ∈
(ω ∖ 𝐴)((ω ∖ 𝐴) ∩ 𝑦) = ∅) |
48 | 47 | necon1bi 2972 |
. . 3
⊢ (¬
∃𝑦 ∈ (ω
∖ 𝐴)((ω ∖
𝐴) ∩ 𝑦) = ∅ → (ω ∖ 𝐴) = ∅) |
49 | 43, 48 | syl 17 |
. 2
⊢ ((∅
∈ 𝐴 ∧
∀𝑥 ∈ ω
(𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴)) → (ω ∖ 𝐴) = ∅) |
50 | | ssdif0 4297 |
. 2
⊢ (ω
⊆ 𝐴 ↔ (ω
∖ 𝐴) =
∅) |
51 | 49, 50 | sylibr 233 |
1
⊢ ((∅
∈ 𝐴 ∧
∀𝑥 ∈ ω
(𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴)) → ω ⊆ 𝐴) |