Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simplbi2 | Structured version Visualization version GIF version |
Description: Deduction eliminating a conjunct. (Contributed by Alan Sare, 31-Dec-2011.) |
Ref | Expression |
---|---|
simplbi2.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
Ref | Expression |
---|---|
simplbi2 | ⊢ (𝜓 → (𝜒 → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplbi2.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
2 | 1 | biimpri 231 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜑) |
3 | 2 | ex 416 | 1 ⊢ (𝜓 → (𝜒 → 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 |
This theorem is referenced by: simplbi2com 506 sspss 4005 neldif 4035 reuss2 4217 pssdifn0 4264 elinxp 5861 ordunidif 6217 eceqoveq 8412 infxpenlem 9473 ackbij1lem18 9697 isf32lem2 9814 ingru 10275 indpi 10367 nqereu 10389 elpq 12415 elfz0ubfz0 13060 elfzmlbp 13067 elfzo0z 13128 fzofzim 13133 fzo1fzo0n0 13137 elfzodifsumelfzo 13152 swrdswrd 14114 swrdccatin1 14134 swrd2lsw 14361 p1modz1 15662 dfgcd2 15945 algcvga 15975 pcprendvds 16232 restntr 21882 filconn 22583 filssufilg 22611 ufileu 22619 ufilen 22630 alexsubALTlem3 22749 blcld 23207 causs 23998 itg2addlem 24458 rplogsum 26210 wlkonl1iedg 27554 trlf1 27587 spthdifv 27621 upgrwlkdvde 27625 usgr2pth 27652 pthdlem2 27656 uspgrn2crct 27693 crctcshwlkn0 27706 clwlkclwwlklem2 27884 clwwlknon0 27977 3spthd 28060 ofpreima2 30527 esumpinfval 31560 eulerpartlemf 31856 sltres 33450 fin2so 35346 fdc 35485 lshpcmp 36586 lfl1 36668 frege124d 40857 onfrALTlem2 41647 3ornot23VD 41948 ordelordALTVD 41968 onfrALTlem2VD 41990 ndmaovass 44152 elfz2z 44262 lighneallem4 44517 |
Copyright terms: Public domain | W3C validator |