| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simplbi2 | Structured version Visualization version GIF version | ||
| Description: Deduction eliminating a conjunct. (Contributed by Alan Sare, 31-Dec-2011.) |
| Ref | Expression |
|---|---|
| simplbi2.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
| Ref | Expression |
|---|---|
| simplbi2 | ⊢ (𝜓 → (𝜒 → 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplbi2.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
| 2 | 1 | biimpri 228 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜑) |
| 3 | 2 | ex 412 | 1 ⊢ (𝜓 → (𝜒 → 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: simplbi2com 502 sspss 4068 neldif 4100 reuss2 4292 pssdifn0 4334 dfiun2g 4997 elinxp 5993 ordunidif 6385 eceqoveq 8798 infxpenlem 9973 ackbij1lem18 10196 isf32lem2 10314 ingru 10775 indpi 10867 nqereu 10889 elpq 12941 elfz0ubfz0 13600 elfzmlbp 13607 elfzo0z 13669 fzofzim 13677 fzo1fzo0n0 13683 elfzodifsumelfzo 13699 swrdswrd 14677 swrdccatin1 14697 swrd2lsw 14925 p1modz1 16236 dfgcd2 16523 algcvga 16556 pcprendvds 16818 restntr 23076 filconn 23777 filssufilg 23805 ufileu 23813 ufilen 23824 alexsubALTlem3 23943 blcld 24400 causs 25205 itg2addlem 25666 rplogsum 27445 sltres 27581 wlkonl1iedg 29600 trlf1 29633 spthdifv 29670 upgrwlkdvde 29674 usgr2pth 29701 pthdlem2 29705 uspgrn2crct 29745 crctcshwlkn0 29758 clwlkclwwlklem2 29936 clwwlknon0 30029 3spthd 30112 ofpreima2 32597 esumpinfval 34070 eulerpartlemf 34368 fin2so 37608 fdc 37746 lshpcmp 38988 lfl1 39070 frege124d 43757 onfrALTlem2 44543 3ornot23VD 44843 ordelordALTVD 44863 onfrALTlem2VD 44885 ndmaovass 47211 elfz2z 47320 lighneallem4 47615 |
| Copyright terms: Public domain | W3C validator |