| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simplbi2 | Structured version Visualization version GIF version | ||
| Description: Deduction eliminating a conjunct. (Contributed by Alan Sare, 31-Dec-2011.) |
| Ref | Expression |
|---|---|
| simplbi2.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
| Ref | Expression |
|---|---|
| simplbi2 | ⊢ (𝜓 → (𝜒 → 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplbi2.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
| 2 | 1 | biimpri 228 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜑) |
| 3 | 2 | ex 412 | 1 ⊢ (𝜓 → (𝜒 → 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: simplbi2com 502 sspss 4051 neldif 4083 reuss2 4275 pssdifn0 4317 dfiun2g 4980 elinxp 5972 ordunidif 6361 eceqoveq 8752 infxpenlem 9911 ackbij1lem18 10134 isf32lem2 10252 ingru 10713 indpi 10805 nqereu 10827 elpq 12875 elfz0ubfz0 13534 elfzmlbp 13541 elfzo0z 13603 fzofzim 13611 fzo1fzo0n0 13617 elfzodifsumelfzo 13633 swrdswrd 14614 swrdccatin1 14634 swrd2lsw 14861 p1modz1 16172 dfgcd2 16459 algcvga 16492 pcprendvds 16754 restntr 23098 filconn 23799 filssufilg 23827 ufileu 23835 ufilen 23846 alexsubALTlem3 23965 blcld 24421 causs 25226 itg2addlem 25687 rplogsum 27466 sltres 27602 wlkonl1iedg 29644 trlf1 29677 spthdifv 29713 upgrwlkdvde 29717 usgr2pth 29744 pthdlem2 29748 uspgrn2crct 29788 crctcshwlkn0 29801 clwlkclwwlklem2 29982 clwwlknon0 30075 3spthd 30158 ofpreima2 32650 esumpinfval 34107 eulerpartlemf 34404 fin2so 37667 fdc 37805 lshpcmp 39107 lfl1 39189 frege124d 43878 onfrALTlem2 44663 3ornot23VD 44963 ordelordALTVD 44983 onfrALTlem2VD 45005 ndmaovass 47330 elfz2z 47439 lighneallem4 47734 |
| Copyright terms: Public domain | W3C validator |