Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simplbi2 | Structured version Visualization version GIF version |
Description: Deduction eliminating a conjunct. (Contributed by Alan Sare, 31-Dec-2011.) |
Ref | Expression |
---|---|
simplbi2.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
Ref | Expression |
---|---|
simplbi2 | ⊢ (𝜓 → (𝜒 → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplbi2.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
2 | 1 | biimpri 227 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜑) |
3 | 2 | ex 413 | 1 ⊢ (𝜓 → (𝜒 → 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: simplbi2com 503 sspss 4034 neldif 4064 reuss2 4249 pssdifn0 4299 dfiun2g 4960 elinxp 5929 ordunidif 6314 eceqoveq 8611 infxpenlem 9769 ackbij1lem18 9993 isf32lem2 10110 ingru 10571 indpi 10663 nqereu 10685 elpq 12715 elfz0ubfz0 13360 elfzmlbp 13367 elfzo0z 13429 fzofzim 13434 fzo1fzo0n0 13438 elfzodifsumelfzo 13453 swrdswrd 14418 swrdccatin1 14438 swrd2lsw 14665 p1modz1 15970 dfgcd2 16254 algcvga 16284 pcprendvds 16541 restntr 22333 filconn 23034 filssufilg 23062 ufileu 23070 ufilen 23081 alexsubALTlem3 23200 blcld 23661 causs 24462 itg2addlem 24923 rplogsum 26675 wlkonl1iedg 28033 trlf1 28066 spthdifv 28101 upgrwlkdvde 28105 usgr2pth 28132 pthdlem2 28136 uspgrn2crct 28173 crctcshwlkn0 28186 clwlkclwwlklem2 28364 clwwlknon0 28457 3spthd 28540 ofpreima2 31003 esumpinfval 32041 eulerpartlemf 32337 sltres 33865 fin2so 35764 fdc 35903 lshpcmp 37002 lfl1 37084 frege124d 41369 onfrALTlem2 42166 3ornot23VD 42467 ordelordALTVD 42487 onfrALTlem2VD 42509 ndmaovass 44698 elfz2z 44807 lighneallem4 45062 |
Copyright terms: Public domain | W3C validator |