| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simplbi2 | Structured version Visualization version GIF version | ||
| Description: Deduction eliminating a conjunct. (Contributed by Alan Sare, 31-Dec-2011.) |
| Ref | Expression |
|---|---|
| simplbi2.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
| Ref | Expression |
|---|---|
| simplbi2 | ⊢ (𝜓 → (𝜒 → 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplbi2.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
| 2 | 1 | biimpri 228 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜑) |
| 3 | 2 | ex 412 | 1 ⊢ (𝜓 → (𝜒 → 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: simplbi2com 502 sspss 4077 neldif 4109 reuss2 4301 pssdifn0 4343 dfiun2g 5006 elinxp 6006 ordunidif 6402 eceqoveq 8834 infxpenlem 10025 ackbij1lem18 10248 isf32lem2 10366 ingru 10827 indpi 10919 nqereu 10941 elpq 12989 elfz0ubfz0 13647 elfzmlbp 13654 elfzo0z 13716 fzofzim 13724 fzo1fzo0n0 13729 elfzodifsumelfzo 13745 swrdswrd 14721 swrdccatin1 14741 swrd2lsw 14969 p1modz1 16277 dfgcd2 16563 algcvga 16596 pcprendvds 16858 restntr 23118 filconn 23819 filssufilg 23847 ufileu 23855 ufilen 23866 alexsubALTlem3 23985 blcld 24442 causs 25248 itg2addlem 25709 rplogsum 27488 sltres 27624 wlkonl1iedg 29591 trlf1 29624 spthdifv 29661 upgrwlkdvde 29665 usgr2pth 29692 pthdlem2 29696 uspgrn2crct 29736 crctcshwlkn0 29749 clwlkclwwlklem2 29927 clwwlknon0 30020 3spthd 30103 ofpreima2 32590 esumpinfval 34050 eulerpartlemf 34348 fin2so 37577 fdc 37715 lshpcmp 38952 lfl1 39034 frege124d 43732 onfrALTlem2 44519 3ornot23VD 44819 ordelordALTVD 44839 onfrALTlem2VD 44861 ndmaovass 47183 elfz2z 47292 lighneallem4 47572 |
| Copyright terms: Public domain | W3C validator |