Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simplbi2 | Structured version Visualization version GIF version |
Description: Deduction eliminating a conjunct. (Contributed by Alan Sare, 31-Dec-2011.) |
Ref | Expression |
---|---|
simplbi2.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
Ref | Expression |
---|---|
simplbi2 | ⊢ (𝜓 → (𝜒 → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplbi2.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
2 | 1 | biimpri 227 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜑) |
3 | 2 | ex 412 | 1 ⊢ (𝜓 → (𝜒 → 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: simplbi2com 502 sspss 4030 neldif 4060 reuss2 4246 pssdifn0 4296 elinxp 5918 ordunidif 6299 eceqoveq 8569 infxpenlem 9700 ackbij1lem18 9924 isf32lem2 10041 ingru 10502 indpi 10594 nqereu 10616 elpq 12644 elfz0ubfz0 13289 elfzmlbp 13296 elfzo0z 13357 fzofzim 13362 fzo1fzo0n0 13366 elfzodifsumelfzo 13381 swrdswrd 14346 swrdccatin1 14366 swrd2lsw 14593 p1modz1 15898 dfgcd2 16182 algcvga 16212 pcprendvds 16469 restntr 22241 filconn 22942 filssufilg 22970 ufileu 22978 ufilen 22989 alexsubALTlem3 23108 blcld 23567 causs 24367 itg2addlem 24828 rplogsum 26580 wlkonl1iedg 27935 trlf1 27968 spthdifv 28002 upgrwlkdvde 28006 usgr2pth 28033 pthdlem2 28037 uspgrn2crct 28074 crctcshwlkn0 28087 clwlkclwwlklem2 28265 clwwlknon0 28358 3spthd 28441 ofpreima2 30905 esumpinfval 31941 eulerpartlemf 32237 sltres 33792 fin2so 35691 fdc 35830 lshpcmp 36929 lfl1 37011 frege124d 41258 onfrALTlem2 42055 3ornot23VD 42356 ordelordALTVD 42376 onfrALTlem2VD 42398 ndmaovass 44585 elfz2z 44695 lighneallem4 44950 |
Copyright terms: Public domain | W3C validator |