| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simplbi2 | Structured version Visualization version GIF version | ||
| Description: Deduction eliminating a conjunct. (Contributed by Alan Sare, 31-Dec-2011.) |
| Ref | Expression |
|---|---|
| simplbi2.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
| Ref | Expression |
|---|---|
| simplbi2 | ⊢ (𝜓 → (𝜒 → 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplbi2.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
| 2 | 1 | biimpri 228 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜑) |
| 3 | 2 | ex 412 | 1 ⊢ (𝜓 → (𝜒 → 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: simplbi2com 502 sspss 4052 neldif 4084 reuss2 4276 pssdifn0 4318 dfiun2g 4980 elinxp 5968 ordunidif 6356 eceqoveq 8746 infxpenlem 9901 ackbij1lem18 10124 isf32lem2 10242 ingru 10703 indpi 10795 nqereu 10817 elpq 12870 elfz0ubfz0 13529 elfzmlbp 13536 elfzo0z 13598 fzofzim 13606 fzo1fzo0n0 13612 elfzodifsumelfzo 13628 swrdswrd 14609 swrdccatin1 14629 swrd2lsw 14856 p1modz1 16167 dfgcd2 16454 algcvga 16487 pcprendvds 16749 restntr 23095 filconn 23796 filssufilg 23824 ufileu 23832 ufilen 23843 alexsubALTlem3 23962 blcld 24418 causs 25223 itg2addlem 25684 rplogsum 27463 sltres 27599 wlkonl1iedg 29640 trlf1 29673 spthdifv 29709 upgrwlkdvde 29713 usgr2pth 29740 pthdlem2 29744 uspgrn2crct 29784 crctcshwlkn0 29797 clwlkclwwlklem2 29975 clwwlknon0 30068 3spthd 30151 ofpreima2 32643 esumpinfval 34081 eulerpartlemf 34378 fin2so 37646 fdc 37784 lshpcmp 39026 lfl1 39108 frege124d 43793 onfrALTlem2 44578 3ornot23VD 44878 ordelordALTVD 44898 onfrALTlem2VD 44920 ndmaovass 47236 elfz2z 47345 lighneallem4 47640 |
| Copyright terms: Public domain | W3C validator |