![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simplbi2 | Structured version Visualization version GIF version |
Description: Deduction eliminating a conjunct. (Contributed by Alan Sare, 31-Dec-2011.) |
Ref | Expression |
---|---|
simplbi2.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
Ref | Expression |
---|---|
simplbi2 | ⊢ (𝜓 → (𝜒 → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplbi2.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
2 | 1 | biimpri 228 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜑) |
3 | 2 | ex 412 | 1 ⊢ (𝜓 → (𝜒 → 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: simplbi2com 502 sspss 4111 neldif 4143 reuss2 4331 pssdifn0 4373 dfiun2g 5034 elinxp 6038 ordunidif 6434 eceqoveq 8860 infxpenlem 10050 ackbij1lem18 10273 isf32lem2 10391 ingru 10852 indpi 10944 nqereu 10966 elpq 13014 elfz0ubfz0 13668 elfzmlbp 13675 elfzo0z 13737 fzofzim 13745 fzo1fzo0n0 13750 elfzodifsumelfzo 13766 swrdswrd 14739 swrdccatin1 14759 swrd2lsw 14987 p1modz1 16293 dfgcd2 16579 algcvga 16612 pcprendvds 16873 restntr 23205 filconn 23906 filssufilg 23934 ufileu 23942 ufilen 23953 alexsubALTlem3 24072 blcld 24533 causs 25345 itg2addlem 25807 rplogsum 27585 sltres 27721 wlkonl1iedg 29697 trlf1 29730 spthdifv 29765 upgrwlkdvde 29769 usgr2pth 29796 pthdlem2 29800 uspgrn2crct 29837 crctcshwlkn0 29850 clwlkclwwlklem2 30028 clwwlknon0 30121 3spthd 30204 ofpreima2 32682 esumpinfval 34053 eulerpartlemf 34351 fin2so 37593 fdc 37731 lshpcmp 38969 lfl1 39051 frege124d 43750 onfrALTlem2 44543 3ornot23VD 44844 ordelordALTVD 44864 onfrALTlem2VD 44886 ndmaovass 47155 elfz2z 47264 lighneallem4 47534 |
Copyright terms: Public domain | W3C validator |