| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simplbi2 | Structured version Visualization version GIF version | ||
| Description: Deduction eliminating a conjunct. (Contributed by Alan Sare, 31-Dec-2011.) |
| Ref | Expression |
|---|---|
| simplbi2.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
| Ref | Expression |
|---|---|
| simplbi2 | ⊢ (𝜓 → (𝜒 → 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplbi2.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
| 2 | 1 | biimpri 228 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜑) |
| 3 | 2 | ex 412 | 1 ⊢ (𝜓 → (𝜒 → 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: simplbi2com 502 sspss 4065 neldif 4097 reuss2 4289 pssdifn0 4331 dfiun2g 4994 elinxp 5990 ordunidif 6382 eceqoveq 8795 infxpenlem 9966 ackbij1lem18 10189 isf32lem2 10307 ingru 10768 indpi 10860 nqereu 10882 elpq 12934 elfz0ubfz0 13593 elfzmlbp 13600 elfzo0z 13662 fzofzim 13670 fzo1fzo0n0 13676 elfzodifsumelfzo 13692 swrdswrd 14670 swrdccatin1 14690 swrd2lsw 14918 p1modz1 16229 dfgcd2 16516 algcvga 16549 pcprendvds 16811 restntr 23069 filconn 23770 filssufilg 23798 ufileu 23806 ufilen 23817 alexsubALTlem3 23936 blcld 24393 causs 25198 itg2addlem 25659 rplogsum 27438 sltres 27574 wlkonl1iedg 29593 trlf1 29626 spthdifv 29663 upgrwlkdvde 29667 usgr2pth 29694 pthdlem2 29698 uspgrn2crct 29738 crctcshwlkn0 29751 clwlkclwwlklem2 29929 clwwlknon0 30022 3spthd 30105 ofpreima2 32590 esumpinfval 34063 eulerpartlemf 34361 fin2so 37601 fdc 37739 lshpcmp 38981 lfl1 39063 frege124d 43750 onfrALTlem2 44536 3ornot23VD 44836 ordelordALTVD 44856 onfrALTlem2VD 44878 ndmaovass 47207 elfz2z 47316 lighneallem4 47611 |
| Copyright terms: Public domain | W3C validator |