![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simplbi2 | Structured version Visualization version GIF version |
Description: Deduction eliminating a conjunct. (Contributed by Alan Sare, 31-Dec-2011.) |
Ref | Expression |
---|---|
simplbi2.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
Ref | Expression |
---|---|
simplbi2 | ⊢ (𝜓 → (𝜒 → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplbi2.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
2 | 1 | biimpri 228 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜑) |
3 | 2 | ex 412 | 1 ⊢ (𝜓 → (𝜒 → 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: simplbi2com 502 sspss 4125 neldif 4157 reuss2 4345 pssdifn0 4391 dfiun2g 5053 elinxp 6048 ordunidif 6444 eceqoveq 8880 infxpenlem 10082 ackbij1lem18 10305 isf32lem2 10423 ingru 10884 indpi 10976 nqereu 10998 elpq 13040 elfz0ubfz0 13689 elfzmlbp 13696 elfzo0z 13758 fzofzim 13763 fzo1fzo0n0 13767 elfzodifsumelfzo 13782 swrdswrd 14753 swrdccatin1 14773 swrd2lsw 15001 p1modz1 16309 dfgcd2 16593 algcvga 16626 pcprendvds 16887 restntr 23211 filconn 23912 filssufilg 23940 ufileu 23948 ufilen 23959 alexsubALTlem3 24078 blcld 24539 causs 25351 itg2addlem 25813 rplogsum 27589 sltres 27725 wlkonl1iedg 29701 trlf1 29734 spthdifv 29769 upgrwlkdvde 29773 usgr2pth 29800 pthdlem2 29804 uspgrn2crct 29841 crctcshwlkn0 29854 clwlkclwwlklem2 30032 clwwlknon0 30125 3spthd 30208 ofpreima2 32684 esumpinfval 34037 eulerpartlemf 34335 fin2so 37567 fdc 37705 lshpcmp 38944 lfl1 39026 frege124d 43723 onfrALTlem2 44517 3ornot23VD 44818 ordelordALTVD 44838 onfrALTlem2VD 44860 ndmaovass 47121 elfz2z 47230 lighneallem4 47484 |
Copyright terms: Public domain | W3C validator |