MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfbas Structured version   Visualization version   GIF version

Theorem isfbas 22978
Description: The predicate "𝐹 is a filter base." Note that some authors require filter bases to be closed under pairwise intersections, but that is not necessary under our definition. One advantage of this definition is that tails in a directed set form a filter base under our meaning. (Contributed by Jeff Hankins, 1-Sep-2009.) (Revised by Mario Carneiro, 28-Jul-2015.)
Assertion
Ref Expression
isfbas (𝐵𝐴 → (𝐹 ∈ (fBas‘𝐵) ↔ (𝐹 ⊆ 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹 (𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅))))
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝐵,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)

Proof of Theorem isfbas
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-fbas 20592 . . . 4 fBas = (𝑧 ∈ V ↦ {𝑤 ∈ 𝒫 𝒫 𝑧 ∣ (𝑤 ≠ ∅ ∧ ∅ ∉ 𝑤 ∧ ∀𝑥𝑤𝑦𝑤 (𝑤 ∩ 𝒫 (𝑥𝑦)) ≠ ∅)})
2 neeq1 3008 . . . . . 6 (𝑤 = 𝐹 → (𝑤 ≠ ∅ ↔ 𝐹 ≠ ∅))
3 neleq2 3057 . . . . . 6 (𝑤 = 𝐹 → (∅ ∉ 𝑤 ↔ ∅ ∉ 𝐹))
4 ineq1 4145 . . . . . . . . 9 (𝑤 = 𝐹 → (𝑤 ∩ 𝒫 (𝑥𝑦)) = (𝐹 ∩ 𝒫 (𝑥𝑦)))
54neeq1d 3005 . . . . . . . 8 (𝑤 = 𝐹 → ((𝑤 ∩ 𝒫 (𝑥𝑦)) ≠ ∅ ↔ (𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅))
65raleqbi1dv 3339 . . . . . . 7 (𝑤 = 𝐹 → (∀𝑦𝑤 (𝑤 ∩ 𝒫 (𝑥𝑦)) ≠ ∅ ↔ ∀𝑦𝐹 (𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅))
76raleqbi1dv 3339 . . . . . 6 (𝑤 = 𝐹 → (∀𝑥𝑤𝑦𝑤 (𝑤 ∩ 𝒫 (𝑥𝑦)) ≠ ∅ ↔ ∀𝑥𝐹𝑦𝐹 (𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅))
82, 3, 73anbi123d 1435 . . . . 5 (𝑤 = 𝐹 → ((𝑤 ≠ ∅ ∧ ∅ ∉ 𝑤 ∧ ∀𝑥𝑤𝑦𝑤 (𝑤 ∩ 𝒫 (𝑥𝑦)) ≠ ∅) ↔ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹 (𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅)))
98adantl 482 . . . 4 ((𝑧 = 𝐵𝑤 = 𝐹) → ((𝑤 ≠ ∅ ∧ ∅ ∉ 𝑤 ∧ ∀𝑥𝑤𝑦𝑤 (𝑤 ∩ 𝒫 (𝑥𝑦)) ≠ ∅) ↔ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹 (𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅)))
10 pweq 4555 . . . . 5 (𝑧 = 𝐵 → 𝒫 𝑧 = 𝒫 𝐵)
1110pweqd 4558 . . . 4 (𝑧 = 𝐵 → 𝒫 𝒫 𝑧 = 𝒫 𝒫 𝐵)
12 vpwex 5304 . . . . . 6 𝒫 𝑧 ∈ V
1312pwex 5307 . . . . 5 𝒫 𝒫 𝑧 ∈ V
1413a1i 11 . . . 4 (𝑧 ∈ V → 𝒫 𝒫 𝑧 ∈ V)
151, 9, 11, 14elmptrab 22976 . . 3 (𝐹 ∈ (fBas‘𝐵) ↔ (𝐵 ∈ V ∧ 𝐹 ∈ 𝒫 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹 (𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅)))
16 3anass 1094 . . 3 ((𝐵 ∈ V ∧ 𝐹 ∈ 𝒫 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹 (𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅)) ↔ (𝐵 ∈ V ∧ (𝐹 ∈ 𝒫 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹 (𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅))))
1715, 16bitri 274 . 2 (𝐹 ∈ (fBas‘𝐵) ↔ (𝐵 ∈ V ∧ (𝐹 ∈ 𝒫 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹 (𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅))))
18 pwexg 5305 . . . . 5 (𝐵𝐴 → 𝒫 𝐵 ∈ V)
19 elpw2g 5272 . . . . 5 (𝒫 𝐵 ∈ V → (𝐹 ∈ 𝒫 𝒫 𝐵𝐹 ⊆ 𝒫 𝐵))
2018, 19syl 17 . . . 4 (𝐵𝐴 → (𝐹 ∈ 𝒫 𝒫 𝐵𝐹 ⊆ 𝒫 𝐵))
2120anbi1d 630 . . 3 (𝐵𝐴 → ((𝐹 ∈ 𝒫 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹 (𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅)) ↔ (𝐹 ⊆ 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹 (𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅))))
22 elex 3449 . . . 4 (𝐵𝐴𝐵 ∈ V)
2322biantrurd 533 . . 3 (𝐵𝐴 → ((𝐹 ∈ 𝒫 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹 (𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅)) ↔ (𝐵 ∈ V ∧ (𝐹 ∈ 𝒫 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹 (𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅)))))
2421, 23bitr3d 280 . 2 (𝐵𝐴 → ((𝐹 ⊆ 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹 (𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅)) ↔ (𝐵 ∈ V ∧ (𝐹 ∈ 𝒫 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹 (𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅)))))
2517, 24bitr4id 290 1 (𝐵𝐴 → (𝐹 ∈ (fBas‘𝐵) ↔ (𝐹 ⊆ 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹 (𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1542  wcel 2110  wne 2945  wnel 3051  wral 3066  Vcvv 3431  cin 3891  wss 3892  c0 4262  𝒫 cpw 4539  cfv 6432  fBascfbas 20583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-br 5080  df-opab 5142  df-mpt 5163  df-id 5490  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-iota 6390  df-fun 6434  df-fv 6440  df-fbas 20592
This theorem is referenced by:  fbasne0  22979  0nelfb  22980  fbsspw  22981  isfbas2  22984  trfbas2  22992  fbasweak  23014  zfbas  23045  tsmsfbas  23277  ustfilxp  23362  minveclem3b  24590
  Copyright terms: Public domain W3C validator