MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfbas Structured version   Visualization version   GIF version

Theorem isfbas 23732
Description: The predicate "𝐹 is a filter base." Note that some authors require filter bases to be closed under pairwise intersections, but that is not necessary under our definition. One advantage of this definition is that tails in a directed set form a filter base under our meaning. (Contributed by Jeff Hankins, 1-Sep-2009.) (Revised by Mario Carneiro, 28-Jul-2015.)
Assertion
Ref Expression
isfbas (𝐵𝐴 → (𝐹 ∈ (fBas‘𝐵) ↔ (𝐹 ⊆ 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹 (𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅))))
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝐵,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)

Proof of Theorem isfbas
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-fbas 21276 . . . 4 fBas = (𝑧 ∈ V ↦ {𝑤 ∈ 𝒫 𝒫 𝑧 ∣ (𝑤 ≠ ∅ ∧ ∅ ∉ 𝑤 ∧ ∀𝑥𝑤𝑦𝑤 (𝑤 ∩ 𝒫 (𝑥𝑦)) ≠ ∅)})
2 neeq1 2987 . . . . . 6 (𝑤 = 𝐹 → (𝑤 ≠ ∅ ↔ 𝐹 ≠ ∅))
3 neleq2 3036 . . . . . 6 (𝑤 = 𝐹 → (∅ ∉ 𝑤 ↔ ∅ ∉ 𝐹))
4 ineq1 4166 . . . . . . . . 9 (𝑤 = 𝐹 → (𝑤 ∩ 𝒫 (𝑥𝑦)) = (𝐹 ∩ 𝒫 (𝑥𝑦)))
54neeq1d 2984 . . . . . . . 8 (𝑤 = 𝐹 → ((𝑤 ∩ 𝒫 (𝑥𝑦)) ≠ ∅ ↔ (𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅))
65raleqbi1dv 3302 . . . . . . 7 (𝑤 = 𝐹 → (∀𝑦𝑤 (𝑤 ∩ 𝒫 (𝑥𝑦)) ≠ ∅ ↔ ∀𝑦𝐹 (𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅))
76raleqbi1dv 3302 . . . . . 6 (𝑤 = 𝐹 → (∀𝑥𝑤𝑦𝑤 (𝑤 ∩ 𝒫 (𝑥𝑦)) ≠ ∅ ↔ ∀𝑥𝐹𝑦𝐹 (𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅))
82, 3, 73anbi123d 1438 . . . . 5 (𝑤 = 𝐹 → ((𝑤 ≠ ∅ ∧ ∅ ∉ 𝑤 ∧ ∀𝑥𝑤𝑦𝑤 (𝑤 ∩ 𝒫 (𝑥𝑦)) ≠ ∅) ↔ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹 (𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅)))
98adantl 481 . . . 4 ((𝑧 = 𝐵𝑤 = 𝐹) → ((𝑤 ≠ ∅ ∧ ∅ ∉ 𝑤 ∧ ∀𝑥𝑤𝑦𝑤 (𝑤 ∩ 𝒫 (𝑥𝑦)) ≠ ∅) ↔ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹 (𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅)))
10 pweq 4567 . . . . 5 (𝑧 = 𝐵 → 𝒫 𝑧 = 𝒫 𝐵)
1110pweqd 4570 . . . 4 (𝑧 = 𝐵 → 𝒫 𝒫 𝑧 = 𝒫 𝒫 𝐵)
12 vpwex 5319 . . . . . 6 𝒫 𝑧 ∈ V
1312pwex 5322 . . . . 5 𝒫 𝒫 𝑧 ∈ V
1413a1i 11 . . . 4 (𝑧 ∈ V → 𝒫 𝒫 𝑧 ∈ V)
151, 9, 11, 14elmptrab 23730 . . 3 (𝐹 ∈ (fBas‘𝐵) ↔ (𝐵 ∈ V ∧ 𝐹 ∈ 𝒫 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹 (𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅)))
16 3anass 1094 . . 3 ((𝐵 ∈ V ∧ 𝐹 ∈ 𝒫 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹 (𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅)) ↔ (𝐵 ∈ V ∧ (𝐹 ∈ 𝒫 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹 (𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅))))
1715, 16bitri 275 . 2 (𝐹 ∈ (fBas‘𝐵) ↔ (𝐵 ∈ V ∧ (𝐹 ∈ 𝒫 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹 (𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅))))
18 pwexg 5320 . . . . 5 (𝐵𝐴 → 𝒫 𝐵 ∈ V)
19 elpw2g 5275 . . . . 5 (𝒫 𝐵 ∈ V → (𝐹 ∈ 𝒫 𝒫 𝐵𝐹 ⊆ 𝒫 𝐵))
2018, 19syl 17 . . . 4 (𝐵𝐴 → (𝐹 ∈ 𝒫 𝒫 𝐵𝐹 ⊆ 𝒫 𝐵))
2120anbi1d 631 . . 3 (𝐵𝐴 → ((𝐹 ∈ 𝒫 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹 (𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅)) ↔ (𝐹 ⊆ 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹 (𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅))))
22 elex 3459 . . . 4 (𝐵𝐴𝐵 ∈ V)
2322biantrurd 532 . . 3 (𝐵𝐴 → ((𝐹 ∈ 𝒫 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹 (𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅)) ↔ (𝐵 ∈ V ∧ (𝐹 ∈ 𝒫 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹 (𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅)))))
2421, 23bitr3d 281 . 2 (𝐵𝐴 → ((𝐹 ⊆ 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹 (𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅)) ↔ (𝐵 ∈ V ∧ (𝐹 ∈ 𝒫 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹 (𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅)))))
2517, 24bitr4id 290 1 (𝐵𝐴 → (𝐹 ∈ (fBas‘𝐵) ↔ (𝐹 ⊆ 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹 (𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wnel 3029  wral 3044  Vcvv 3438  cin 3904  wss 3905  c0 4286  𝒫 cpw 4553  cfv 6486  fBascfbas 21267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fv 6494  df-fbas 21276
This theorem is referenced by:  fbasne0  23733  0nelfb  23734  fbsspw  23735  isfbas2  23738  trfbas2  23746  fbasweak  23768  zfbas  23799  tsmsfbas  24031  ustfilxp  24116  minveclem3b  25344
  Copyright terms: Public domain W3C validator