| Step | Hyp | Ref
| Expression |
| 1 | | df-fbas 21361 |
. . . 4
⊢ fBas =
(𝑧 ∈ V ↦ {𝑤 ∈ 𝒫 𝒫
𝑧 ∣ (𝑤 ≠ ∅ ∧ ∅
∉ 𝑤 ∧
∀𝑥 ∈ 𝑤 ∀𝑦 ∈ 𝑤 (𝑤 ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅)}) |
| 2 | | neeq1 3003 |
. . . . . 6
⊢ (𝑤 = 𝐹 → (𝑤 ≠ ∅ ↔ 𝐹 ≠ ∅)) |
| 3 | | neleq2 3053 |
. . . . . 6
⊢ (𝑤 = 𝐹 → (∅ ∉ 𝑤 ↔ ∅ ∉ 𝐹)) |
| 4 | | ineq1 4213 |
. . . . . . . . 9
⊢ (𝑤 = 𝐹 → (𝑤 ∩ 𝒫 (𝑥 ∩ 𝑦)) = (𝐹 ∩ 𝒫 (𝑥 ∩ 𝑦))) |
| 5 | 4 | neeq1d 3000 |
. . . . . . . 8
⊢ (𝑤 = 𝐹 → ((𝑤 ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅ ↔ (𝐹 ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅)) |
| 6 | 5 | raleqbi1dv 3338 |
. . . . . . 7
⊢ (𝑤 = 𝐹 → (∀𝑦 ∈ 𝑤 (𝑤 ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅ ↔ ∀𝑦 ∈ 𝐹 (𝐹 ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅)) |
| 7 | 6 | raleqbi1dv 3338 |
. . . . . 6
⊢ (𝑤 = 𝐹 → (∀𝑥 ∈ 𝑤 ∀𝑦 ∈ 𝑤 (𝑤 ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅ ↔ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 (𝐹 ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅)) |
| 8 | 2, 3, 7 | 3anbi123d 1438 |
. . . . 5
⊢ (𝑤 = 𝐹 → ((𝑤 ≠ ∅ ∧ ∅ ∉ 𝑤 ∧ ∀𝑥 ∈ 𝑤 ∀𝑦 ∈ 𝑤 (𝑤 ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅) ↔ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 (𝐹 ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅))) |
| 9 | 8 | adantl 481 |
. . . 4
⊢ ((𝑧 = 𝐵 ∧ 𝑤 = 𝐹) → ((𝑤 ≠ ∅ ∧ ∅ ∉ 𝑤 ∧ ∀𝑥 ∈ 𝑤 ∀𝑦 ∈ 𝑤 (𝑤 ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅) ↔ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 (𝐹 ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅))) |
| 10 | | pweq 4614 |
. . . . 5
⊢ (𝑧 = 𝐵 → 𝒫 𝑧 = 𝒫 𝐵) |
| 11 | 10 | pweqd 4617 |
. . . 4
⊢ (𝑧 = 𝐵 → 𝒫 𝒫 𝑧 = 𝒫 𝒫 𝐵) |
| 12 | | vpwex 5377 |
. . . . . 6
⊢ 𝒫
𝑧 ∈ V |
| 13 | 12 | pwex 5380 |
. . . . 5
⊢ 𝒫
𝒫 𝑧 ∈
V |
| 14 | 13 | a1i 11 |
. . . 4
⊢ (𝑧 ∈ V → 𝒫
𝒫 𝑧 ∈
V) |
| 15 | 1, 9, 11, 14 | elmptrab 23835 |
. . 3
⊢ (𝐹 ∈ (fBas‘𝐵) ↔ (𝐵 ∈ V ∧ 𝐹 ∈ 𝒫 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 (𝐹 ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅))) |
| 16 | | 3anass 1095 |
. . 3
⊢ ((𝐵 ∈ V ∧ 𝐹 ∈ 𝒫 𝒫
𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 (𝐹 ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅)) ↔ (𝐵 ∈ V ∧ (𝐹 ∈ 𝒫 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 (𝐹 ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅)))) |
| 17 | 15, 16 | bitri 275 |
. 2
⊢ (𝐹 ∈ (fBas‘𝐵) ↔ (𝐵 ∈ V ∧ (𝐹 ∈ 𝒫 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 (𝐹 ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅)))) |
| 18 | | pwexg 5378 |
. . . . 5
⊢ (𝐵 ∈ 𝐴 → 𝒫 𝐵 ∈ V) |
| 19 | | elpw2g 5333 |
. . . . 5
⊢
(𝒫 𝐵 ∈
V → (𝐹 ∈
𝒫 𝒫 𝐵
↔ 𝐹 ⊆ 𝒫
𝐵)) |
| 20 | 18, 19 | syl 17 |
. . . 4
⊢ (𝐵 ∈ 𝐴 → (𝐹 ∈ 𝒫 𝒫 𝐵 ↔ 𝐹 ⊆ 𝒫 𝐵)) |
| 21 | 20 | anbi1d 631 |
. . 3
⊢ (𝐵 ∈ 𝐴 → ((𝐹 ∈ 𝒫 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 (𝐹 ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅)) ↔ (𝐹 ⊆ 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 (𝐹 ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅)))) |
| 22 | | elex 3501 |
. . . 4
⊢ (𝐵 ∈ 𝐴 → 𝐵 ∈ V) |
| 23 | 22 | biantrurd 532 |
. . 3
⊢ (𝐵 ∈ 𝐴 → ((𝐹 ∈ 𝒫 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 (𝐹 ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅)) ↔ (𝐵 ∈ V ∧ (𝐹 ∈ 𝒫 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 (𝐹 ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅))))) |
| 24 | 21, 23 | bitr3d 281 |
. 2
⊢ (𝐵 ∈ 𝐴 → ((𝐹 ⊆ 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 (𝐹 ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅)) ↔ (𝐵 ∈ V ∧ (𝐹 ∈ 𝒫 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 (𝐹 ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅))))) |
| 25 | 17, 24 | bitr4id 290 |
1
⊢ (𝐵 ∈ 𝐴 → (𝐹 ∈ (fBas‘𝐵) ↔ (𝐹 ⊆ 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 (𝐹 ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅)))) |