MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfbas Structured version   Visualization version   GIF version

Theorem isfbas 22888
Description: The predicate "𝐹 is a filter base." Note that some authors require filter bases to be closed under pairwise intersections, but that is not necessary under our definition. One advantage of this definition is that tails in a directed set form a filter base under our meaning. (Contributed by Jeff Hankins, 1-Sep-2009.) (Revised by Mario Carneiro, 28-Jul-2015.)
Assertion
Ref Expression
isfbas (𝐵𝐴 → (𝐹 ∈ (fBas‘𝐵) ↔ (𝐹 ⊆ 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹 (𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅))))
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝐵,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)

Proof of Theorem isfbas
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-fbas 20507 . . . 4 fBas = (𝑧 ∈ V ↦ {𝑤 ∈ 𝒫 𝒫 𝑧 ∣ (𝑤 ≠ ∅ ∧ ∅ ∉ 𝑤 ∧ ∀𝑥𝑤𝑦𝑤 (𝑤 ∩ 𝒫 (𝑥𝑦)) ≠ ∅)})
2 neeq1 3005 . . . . . 6 (𝑤 = 𝐹 → (𝑤 ≠ ∅ ↔ 𝐹 ≠ ∅))
3 neleq2 3054 . . . . . 6 (𝑤 = 𝐹 → (∅ ∉ 𝑤 ↔ ∅ ∉ 𝐹))
4 ineq1 4136 . . . . . . . . 9 (𝑤 = 𝐹 → (𝑤 ∩ 𝒫 (𝑥𝑦)) = (𝐹 ∩ 𝒫 (𝑥𝑦)))
54neeq1d 3002 . . . . . . . 8 (𝑤 = 𝐹 → ((𝑤 ∩ 𝒫 (𝑥𝑦)) ≠ ∅ ↔ (𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅))
65raleqbi1dv 3331 . . . . . . 7 (𝑤 = 𝐹 → (∀𝑦𝑤 (𝑤 ∩ 𝒫 (𝑥𝑦)) ≠ ∅ ↔ ∀𝑦𝐹 (𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅))
76raleqbi1dv 3331 . . . . . 6 (𝑤 = 𝐹 → (∀𝑥𝑤𝑦𝑤 (𝑤 ∩ 𝒫 (𝑥𝑦)) ≠ ∅ ↔ ∀𝑥𝐹𝑦𝐹 (𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅))
82, 3, 73anbi123d 1434 . . . . 5 (𝑤 = 𝐹 → ((𝑤 ≠ ∅ ∧ ∅ ∉ 𝑤 ∧ ∀𝑥𝑤𝑦𝑤 (𝑤 ∩ 𝒫 (𝑥𝑦)) ≠ ∅) ↔ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹 (𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅)))
98adantl 481 . . . 4 ((𝑧 = 𝐵𝑤 = 𝐹) → ((𝑤 ≠ ∅ ∧ ∅ ∉ 𝑤 ∧ ∀𝑥𝑤𝑦𝑤 (𝑤 ∩ 𝒫 (𝑥𝑦)) ≠ ∅) ↔ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹 (𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅)))
10 pweq 4546 . . . . 5 (𝑧 = 𝐵 → 𝒫 𝑧 = 𝒫 𝐵)
1110pweqd 4549 . . . 4 (𝑧 = 𝐵 → 𝒫 𝒫 𝑧 = 𝒫 𝒫 𝐵)
12 vpwex 5295 . . . . . 6 𝒫 𝑧 ∈ V
1312pwex 5298 . . . . 5 𝒫 𝒫 𝑧 ∈ V
1413a1i 11 . . . 4 (𝑧 ∈ V → 𝒫 𝒫 𝑧 ∈ V)
151, 9, 11, 14elmptrab 22886 . . 3 (𝐹 ∈ (fBas‘𝐵) ↔ (𝐵 ∈ V ∧ 𝐹 ∈ 𝒫 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹 (𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅)))
16 3anass 1093 . . 3 ((𝐵 ∈ V ∧ 𝐹 ∈ 𝒫 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹 (𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅)) ↔ (𝐵 ∈ V ∧ (𝐹 ∈ 𝒫 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹 (𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅))))
1715, 16bitri 274 . 2 (𝐹 ∈ (fBas‘𝐵) ↔ (𝐵 ∈ V ∧ (𝐹 ∈ 𝒫 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹 (𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅))))
18 pwexg 5296 . . . . 5 (𝐵𝐴 → 𝒫 𝐵 ∈ V)
19 elpw2g 5263 . . . . 5 (𝒫 𝐵 ∈ V → (𝐹 ∈ 𝒫 𝒫 𝐵𝐹 ⊆ 𝒫 𝐵))
2018, 19syl 17 . . . 4 (𝐵𝐴 → (𝐹 ∈ 𝒫 𝒫 𝐵𝐹 ⊆ 𝒫 𝐵))
2120anbi1d 629 . . 3 (𝐵𝐴 → ((𝐹 ∈ 𝒫 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹 (𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅)) ↔ (𝐹 ⊆ 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹 (𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅))))
22 elex 3440 . . . 4 (𝐵𝐴𝐵 ∈ V)
2322biantrurd 532 . . 3 (𝐵𝐴 → ((𝐹 ∈ 𝒫 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹 (𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅)) ↔ (𝐵 ∈ V ∧ (𝐹 ∈ 𝒫 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹 (𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅)))))
2421, 23bitr3d 280 . 2 (𝐵𝐴 → ((𝐹 ⊆ 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹 (𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅)) ↔ (𝐵 ∈ V ∧ (𝐹 ∈ 𝒫 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹 (𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅)))))
2517, 24bitr4id 289 1 (𝐵𝐴 → (𝐹 ∈ (fBas‘𝐵) ↔ (𝐹 ⊆ 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹 (𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wnel 3048  wral 3063  Vcvv 3422  cin 3882  wss 3883  c0 4253  𝒫 cpw 4530  cfv 6418  fBascfbas 20498
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fv 6426  df-fbas 20507
This theorem is referenced by:  fbasne0  22889  0nelfb  22890  fbsspw  22891  isfbas2  22894  trfbas2  22902  fbasweak  22924  zfbas  22955  tsmsfbas  23187  ustfilxp  23272  minveclem3b  24497
  Copyright terms: Public domain W3C validator