MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfbas Structured version   Visualization version   GIF version

Theorem isfbas 23837
Description: The predicate "𝐹 is a filter base." Note that some authors require filter bases to be closed under pairwise intersections, but that is not necessary under our definition. One advantage of this definition is that tails in a directed set form a filter base under our meaning. (Contributed by Jeff Hankins, 1-Sep-2009.) (Revised by Mario Carneiro, 28-Jul-2015.)
Assertion
Ref Expression
isfbas (𝐵𝐴 → (𝐹 ∈ (fBas‘𝐵) ↔ (𝐹 ⊆ 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹 (𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅))))
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝐵,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)

Proof of Theorem isfbas
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-fbas 21361 . . . 4 fBas = (𝑧 ∈ V ↦ {𝑤 ∈ 𝒫 𝒫 𝑧 ∣ (𝑤 ≠ ∅ ∧ ∅ ∉ 𝑤 ∧ ∀𝑥𝑤𝑦𝑤 (𝑤 ∩ 𝒫 (𝑥𝑦)) ≠ ∅)})
2 neeq1 3003 . . . . . 6 (𝑤 = 𝐹 → (𝑤 ≠ ∅ ↔ 𝐹 ≠ ∅))
3 neleq2 3053 . . . . . 6 (𝑤 = 𝐹 → (∅ ∉ 𝑤 ↔ ∅ ∉ 𝐹))
4 ineq1 4213 . . . . . . . . 9 (𝑤 = 𝐹 → (𝑤 ∩ 𝒫 (𝑥𝑦)) = (𝐹 ∩ 𝒫 (𝑥𝑦)))
54neeq1d 3000 . . . . . . . 8 (𝑤 = 𝐹 → ((𝑤 ∩ 𝒫 (𝑥𝑦)) ≠ ∅ ↔ (𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅))
65raleqbi1dv 3338 . . . . . . 7 (𝑤 = 𝐹 → (∀𝑦𝑤 (𝑤 ∩ 𝒫 (𝑥𝑦)) ≠ ∅ ↔ ∀𝑦𝐹 (𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅))
76raleqbi1dv 3338 . . . . . 6 (𝑤 = 𝐹 → (∀𝑥𝑤𝑦𝑤 (𝑤 ∩ 𝒫 (𝑥𝑦)) ≠ ∅ ↔ ∀𝑥𝐹𝑦𝐹 (𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅))
82, 3, 73anbi123d 1438 . . . . 5 (𝑤 = 𝐹 → ((𝑤 ≠ ∅ ∧ ∅ ∉ 𝑤 ∧ ∀𝑥𝑤𝑦𝑤 (𝑤 ∩ 𝒫 (𝑥𝑦)) ≠ ∅) ↔ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹 (𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅)))
98adantl 481 . . . 4 ((𝑧 = 𝐵𝑤 = 𝐹) → ((𝑤 ≠ ∅ ∧ ∅ ∉ 𝑤 ∧ ∀𝑥𝑤𝑦𝑤 (𝑤 ∩ 𝒫 (𝑥𝑦)) ≠ ∅) ↔ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹 (𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅)))
10 pweq 4614 . . . . 5 (𝑧 = 𝐵 → 𝒫 𝑧 = 𝒫 𝐵)
1110pweqd 4617 . . . 4 (𝑧 = 𝐵 → 𝒫 𝒫 𝑧 = 𝒫 𝒫 𝐵)
12 vpwex 5377 . . . . . 6 𝒫 𝑧 ∈ V
1312pwex 5380 . . . . 5 𝒫 𝒫 𝑧 ∈ V
1413a1i 11 . . . 4 (𝑧 ∈ V → 𝒫 𝒫 𝑧 ∈ V)
151, 9, 11, 14elmptrab 23835 . . 3 (𝐹 ∈ (fBas‘𝐵) ↔ (𝐵 ∈ V ∧ 𝐹 ∈ 𝒫 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹 (𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅)))
16 3anass 1095 . . 3 ((𝐵 ∈ V ∧ 𝐹 ∈ 𝒫 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹 (𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅)) ↔ (𝐵 ∈ V ∧ (𝐹 ∈ 𝒫 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹 (𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅))))
1715, 16bitri 275 . 2 (𝐹 ∈ (fBas‘𝐵) ↔ (𝐵 ∈ V ∧ (𝐹 ∈ 𝒫 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹 (𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅))))
18 pwexg 5378 . . . . 5 (𝐵𝐴 → 𝒫 𝐵 ∈ V)
19 elpw2g 5333 . . . . 5 (𝒫 𝐵 ∈ V → (𝐹 ∈ 𝒫 𝒫 𝐵𝐹 ⊆ 𝒫 𝐵))
2018, 19syl 17 . . . 4 (𝐵𝐴 → (𝐹 ∈ 𝒫 𝒫 𝐵𝐹 ⊆ 𝒫 𝐵))
2120anbi1d 631 . . 3 (𝐵𝐴 → ((𝐹 ∈ 𝒫 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹 (𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅)) ↔ (𝐹 ⊆ 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹 (𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅))))
22 elex 3501 . . . 4 (𝐵𝐴𝐵 ∈ V)
2322biantrurd 532 . . 3 (𝐵𝐴 → ((𝐹 ∈ 𝒫 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹 (𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅)) ↔ (𝐵 ∈ V ∧ (𝐹 ∈ 𝒫 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹 (𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅)))))
2421, 23bitr3d 281 . 2 (𝐵𝐴 → ((𝐹 ⊆ 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹 (𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅)) ↔ (𝐵 ∈ V ∧ (𝐹 ∈ 𝒫 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹 (𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅)))))
2517, 24bitr4id 290 1 (𝐵𝐴 → (𝐹 ∈ (fBas‘𝐵) ↔ (𝐹 ⊆ 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹 (𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wne 2940  wnel 3046  wral 3061  Vcvv 3480  cin 3950  wss 3951  c0 4333  𝒫 cpw 4600  cfv 6561  fBascfbas 21352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fv 6569  df-fbas 21361
This theorem is referenced by:  fbasne0  23838  0nelfb  23839  fbsspw  23840  isfbas2  23843  trfbas2  23851  fbasweak  23873  zfbas  23904  tsmsfbas  24136  ustfilxp  24221  minveclem3b  25462
  Copyright terms: Public domain W3C validator