MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfbas Structured version   Visualization version   GIF version

Theorem isfbas 22434
Description: The predicate "𝐹 is a filter base." Note that some authors require filter bases to be closed under pairwise intersections, but that is not necessary under our definition. One advantage of this definition is that tails in a directed set form a filter base under our meaning. (Contributed by Jeff Hankins, 1-Sep-2009.) (Revised by Mario Carneiro, 28-Jul-2015.)
Assertion
Ref Expression
isfbas (𝐵𝐴 → (𝐹 ∈ (fBas‘𝐵) ↔ (𝐹 ⊆ 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹 (𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅))))
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝐵,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)

Proof of Theorem isfbas
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-fbas 20088 . . . 4 fBas = (𝑧 ∈ V ↦ {𝑤 ∈ 𝒫 𝒫 𝑧 ∣ (𝑤 ≠ ∅ ∧ ∅ ∉ 𝑤 ∧ ∀𝑥𝑤𝑦𝑤 (𝑤 ∩ 𝒫 (𝑥𝑦)) ≠ ∅)})
2 neeq1 3049 . . . . . 6 (𝑤 = 𝐹 → (𝑤 ≠ ∅ ↔ 𝐹 ≠ ∅))
3 neleq2 3097 . . . . . 6 (𝑤 = 𝐹 → (∅ ∉ 𝑤 ↔ ∅ ∉ 𝐹))
4 ineq1 4131 . . . . . . . . 9 (𝑤 = 𝐹 → (𝑤 ∩ 𝒫 (𝑥𝑦)) = (𝐹 ∩ 𝒫 (𝑥𝑦)))
54neeq1d 3046 . . . . . . . 8 (𝑤 = 𝐹 → ((𝑤 ∩ 𝒫 (𝑥𝑦)) ≠ ∅ ↔ (𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅))
65raleqbi1dv 3356 . . . . . . 7 (𝑤 = 𝐹 → (∀𝑦𝑤 (𝑤 ∩ 𝒫 (𝑥𝑦)) ≠ ∅ ↔ ∀𝑦𝐹 (𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅))
76raleqbi1dv 3356 . . . . . 6 (𝑤 = 𝐹 → (∀𝑥𝑤𝑦𝑤 (𝑤 ∩ 𝒫 (𝑥𝑦)) ≠ ∅ ↔ ∀𝑥𝐹𝑦𝐹 (𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅))
82, 3, 73anbi123d 1433 . . . . 5 (𝑤 = 𝐹 → ((𝑤 ≠ ∅ ∧ ∅ ∉ 𝑤 ∧ ∀𝑥𝑤𝑦𝑤 (𝑤 ∩ 𝒫 (𝑥𝑦)) ≠ ∅) ↔ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹 (𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅)))
98adantl 485 . . . 4 ((𝑧 = 𝐵𝑤 = 𝐹) → ((𝑤 ≠ ∅ ∧ ∅ ∉ 𝑤 ∧ ∀𝑥𝑤𝑦𝑤 (𝑤 ∩ 𝒫 (𝑥𝑦)) ≠ ∅) ↔ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹 (𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅)))
10 pweq 4513 . . . . 5 (𝑧 = 𝐵 → 𝒫 𝑧 = 𝒫 𝐵)
1110pweqd 4516 . . . 4 (𝑧 = 𝐵 → 𝒫 𝒫 𝑧 = 𝒫 𝒫 𝐵)
12 vpwex 5243 . . . . . 6 𝒫 𝑧 ∈ V
1312pwex 5246 . . . . 5 𝒫 𝒫 𝑧 ∈ V
1413a1i 11 . . . 4 (𝑧 ∈ V → 𝒫 𝒫 𝑧 ∈ V)
151, 9, 11, 14elmptrab 22432 . . 3 (𝐹 ∈ (fBas‘𝐵) ↔ (𝐵 ∈ V ∧ 𝐹 ∈ 𝒫 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹 (𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅)))
16 3anass 1092 . . 3 ((𝐵 ∈ V ∧ 𝐹 ∈ 𝒫 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹 (𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅)) ↔ (𝐵 ∈ V ∧ (𝐹 ∈ 𝒫 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹 (𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅))))
1715, 16bitri 278 . 2 (𝐹 ∈ (fBas‘𝐵) ↔ (𝐵 ∈ V ∧ (𝐹 ∈ 𝒫 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹 (𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅))))
18 pwexg 5244 . . . . 5 (𝐵𝐴 → 𝒫 𝐵 ∈ V)
19 elpw2g 5211 . . . . 5 (𝒫 𝐵 ∈ V → (𝐹 ∈ 𝒫 𝒫 𝐵𝐹 ⊆ 𝒫 𝐵))
2018, 19syl 17 . . . 4 (𝐵𝐴 → (𝐹 ∈ 𝒫 𝒫 𝐵𝐹 ⊆ 𝒫 𝐵))
2120anbi1d 632 . . 3 (𝐵𝐴 → ((𝐹 ∈ 𝒫 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹 (𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅)) ↔ (𝐹 ⊆ 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹 (𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅))))
22 elex 3459 . . . 4 (𝐵𝐴𝐵 ∈ V)
2322biantrurd 536 . . 3 (𝐵𝐴 → ((𝐹 ∈ 𝒫 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹 (𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅)) ↔ (𝐵 ∈ V ∧ (𝐹 ∈ 𝒫 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹 (𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅)))))
2421, 23bitr3d 284 . 2 (𝐵𝐴 → ((𝐹 ⊆ 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹 (𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅)) ↔ (𝐵 ∈ V ∧ (𝐹 ∈ 𝒫 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹 (𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅)))))
2517, 24bitr4id 293 1 (𝐵𝐴 → (𝐹 ∈ (fBas‘𝐵) ↔ (𝐹 ⊆ 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹 (𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987  wnel 3091  wral 3106  Vcvv 3441  cin 3880  wss 3881  c0 4243  𝒫 cpw 4497  cfv 6324  fBascfbas 20079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fv 6332  df-fbas 20088
This theorem is referenced by:  fbasne0  22435  0nelfb  22436  fbsspw  22437  isfbas2  22440  trfbas2  22448  fbasweak  22470  zfbas  22501  tsmsfbas  22733  ustfilxp  22818  minveclem3b  24032
  Copyright terms: Public domain W3C validator