Step | Hyp | Ref
| Expression |
1 | | pwexg 5090 |
. . . . 5
⊢ (𝐵 ∈ 𝐴 → 𝒫 𝐵 ∈ V) |
2 | | elpw2g 5061 |
. . . . 5
⊢
(𝒫 𝐵 ∈
V → (𝐹 ∈
𝒫 𝒫 𝐵
↔ 𝐹 ⊆ 𝒫
𝐵)) |
3 | 1, 2 | syl 17 |
. . . 4
⊢ (𝐵 ∈ 𝐴 → (𝐹 ∈ 𝒫 𝒫 𝐵 ↔ 𝐹 ⊆ 𝒫 𝐵)) |
4 | 3 | anbi1d 623 |
. . 3
⊢ (𝐵 ∈ 𝐴 → ((𝐹 ∈ 𝒫 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 (𝐹 ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅)) ↔ (𝐹 ⊆ 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 (𝐹 ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅)))) |
5 | | elex 3413 |
. . . 4
⊢ (𝐵 ∈ 𝐴 → 𝐵 ∈ V) |
6 | 5 | biantrurd 528 |
. . 3
⊢ (𝐵 ∈ 𝐴 → ((𝐹 ∈ 𝒫 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 (𝐹 ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅)) ↔ (𝐵 ∈ V ∧ (𝐹 ∈ 𝒫 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 (𝐹 ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅))))) |
7 | 4, 6 | bitr3d 273 |
. 2
⊢ (𝐵 ∈ 𝐴 → ((𝐹 ⊆ 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 (𝐹 ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅)) ↔ (𝐵 ∈ V ∧ (𝐹 ∈ 𝒫 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 (𝐹 ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅))))) |
8 | | df-fbas 20139 |
. . . 4
⊢ fBas =
(𝑧 ∈ V ↦ {𝑤 ∈ 𝒫 𝒫
𝑧 ∣ (𝑤 ≠ ∅ ∧ ∅
∉ 𝑤 ∧
∀𝑥 ∈ 𝑤 ∀𝑦 ∈ 𝑤 (𝑤 ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅)}) |
9 | | neeq1 3030 |
. . . . . 6
⊢ (𝑤 = 𝐹 → (𝑤 ≠ ∅ ↔ 𝐹 ≠ ∅)) |
10 | | neleq2 3080 |
. . . . . 6
⊢ (𝑤 = 𝐹 → (∅ ∉ 𝑤 ↔ ∅ ∉ 𝐹)) |
11 | | ineq1 4029 |
. . . . . . . . 9
⊢ (𝑤 = 𝐹 → (𝑤 ∩ 𝒫 (𝑥 ∩ 𝑦)) = (𝐹 ∩ 𝒫 (𝑥 ∩ 𝑦))) |
12 | 11 | neeq1d 3027 |
. . . . . . . 8
⊢ (𝑤 = 𝐹 → ((𝑤 ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅ ↔ (𝐹 ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅)) |
13 | 12 | raleqbi1dv 3327 |
. . . . . . 7
⊢ (𝑤 = 𝐹 → (∀𝑦 ∈ 𝑤 (𝑤 ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅ ↔ ∀𝑦 ∈ 𝐹 (𝐹 ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅)) |
14 | 13 | raleqbi1dv 3327 |
. . . . . 6
⊢ (𝑤 = 𝐹 → (∀𝑥 ∈ 𝑤 ∀𝑦 ∈ 𝑤 (𝑤 ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅ ↔ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 (𝐹 ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅)) |
15 | 9, 10, 14 | 3anbi123d 1509 |
. . . . 5
⊢ (𝑤 = 𝐹 → ((𝑤 ≠ ∅ ∧ ∅ ∉ 𝑤 ∧ ∀𝑥 ∈ 𝑤 ∀𝑦 ∈ 𝑤 (𝑤 ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅) ↔ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 (𝐹 ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅))) |
16 | 15 | adantl 475 |
. . . 4
⊢ ((𝑧 = 𝐵 ∧ 𝑤 = 𝐹) → ((𝑤 ≠ ∅ ∧ ∅ ∉ 𝑤 ∧ ∀𝑥 ∈ 𝑤 ∀𝑦 ∈ 𝑤 (𝑤 ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅) ↔ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 (𝐹 ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅))) |
17 | | pweq 4381 |
. . . . 5
⊢ (𝑧 = 𝐵 → 𝒫 𝑧 = 𝒫 𝐵) |
18 | 17 | pweqd 4383 |
. . . 4
⊢ (𝑧 = 𝐵 → 𝒫 𝒫 𝑧 = 𝒫 𝒫 𝐵) |
19 | | vpwex 5089 |
. . . . . 6
⊢ 𝒫
𝑧 ∈ V |
20 | 19 | pwex 5092 |
. . . . 5
⊢ 𝒫
𝒫 𝑧 ∈
V |
21 | 20 | a1i 11 |
. . . 4
⊢ (𝑧 ∈ V → 𝒫
𝒫 𝑧 ∈
V) |
22 | 8, 16, 18, 21 | elmptrab 22039 |
. . 3
⊢ (𝐹 ∈ (fBas‘𝐵) ↔ (𝐵 ∈ V ∧ 𝐹 ∈ 𝒫 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 (𝐹 ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅))) |
23 | | 3anass 1079 |
. . 3
⊢ ((𝐵 ∈ V ∧ 𝐹 ∈ 𝒫 𝒫
𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 (𝐹 ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅)) ↔ (𝐵 ∈ V ∧ (𝐹 ∈ 𝒫 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 (𝐹 ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅)))) |
24 | 22, 23 | bitri 267 |
. 2
⊢ (𝐹 ∈ (fBas‘𝐵) ↔ (𝐵 ∈ V ∧ (𝐹 ∈ 𝒫 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 (𝐹 ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅)))) |
25 | 7, 24 | syl6rbbr 282 |
1
⊢ (𝐵 ∈ 𝐴 → (𝐹 ∈ (fBas‘𝐵) ↔ (𝐹 ⊆ 𝒫 𝐵 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥 ∈ 𝐹 ∀𝑦 ∈ 𝐹 (𝐹 ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅)))) |