MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  noinfep Structured version   Visualization version   GIF version

Theorem noinfep 9700
Description: Using the Axiom of Regularity in the form zfregfr 9645, show that there are no infinite descending -chains. Proposition 7.34 of [TakeutiZaring] p. 44. (Contributed by NM, 26-Jan-2006.) (Revised by Mario Carneiro, 22-Mar-2013.)
Assertion
Ref Expression
noinfep 𝑥 ∈ ω (𝐹‘suc 𝑥) ∉ (𝐹𝑥)
Distinct variable group:   𝑥,𝐹

Proof of Theorem noinfep
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omex 9683 . . . . 5 ω ∈ V
21mptex 7243 . . . 4 (𝑤 ∈ ω ↦ (𝐹𝑤)) ∈ V
32rnex 7932 . . 3 ran (𝑤 ∈ ω ↦ (𝐹𝑤)) ∈ V
4 zfregfr 9645 . . 3 E Fr ran (𝑤 ∈ ω ↦ (𝐹𝑤))
5 ssid 4006 . . 3 ran (𝑤 ∈ ω ↦ (𝐹𝑤)) ⊆ ran (𝑤 ∈ ω ↦ (𝐹𝑤))
6 dmmptg 6262 . . . . . 6 (∀𝑤 ∈ ω (𝐹𝑤) ∈ V → dom (𝑤 ∈ ω ↦ (𝐹𝑤)) = ω)
7 fvexd 6921 . . . . . 6 (𝑤 ∈ ω → (𝐹𝑤) ∈ V)
86, 7mprg 3067 . . . . 5 dom (𝑤 ∈ ω ↦ (𝐹𝑤)) = ω
9 peano1 7910 . . . . . 6 ∅ ∈ ω
109ne0ii 4344 . . . . 5 ω ≠ ∅
118, 10eqnetri 3011 . . . 4 dom (𝑤 ∈ ω ↦ (𝐹𝑤)) ≠ ∅
12 dm0rn0 5935 . . . . 5 (dom (𝑤 ∈ ω ↦ (𝐹𝑤)) = ∅ ↔ ran (𝑤 ∈ ω ↦ (𝐹𝑤)) = ∅)
1312necon3bii 2993 . . . 4 (dom (𝑤 ∈ ω ↦ (𝐹𝑤)) ≠ ∅ ↔ ran (𝑤 ∈ ω ↦ (𝐹𝑤)) ≠ ∅)
1411, 13mpbi 230 . . 3 ran (𝑤 ∈ ω ↦ (𝐹𝑤)) ≠ ∅
15 fri 5642 . . 3 (((ran (𝑤 ∈ ω ↦ (𝐹𝑤)) ∈ V ∧ E Fr ran (𝑤 ∈ ω ↦ (𝐹𝑤))) ∧ (ran (𝑤 ∈ ω ↦ (𝐹𝑤)) ⊆ ran (𝑤 ∈ ω ↦ (𝐹𝑤)) ∧ ran (𝑤 ∈ ω ↦ (𝐹𝑤)) ≠ ∅)) → ∃𝑦 ∈ ran (𝑤 ∈ ω ↦ (𝐹𝑤))∀𝑧 ∈ ran (𝑤 ∈ ω ↦ (𝐹𝑤)) ¬ 𝑧 E 𝑦)
163, 4, 5, 14, 15mp4an 693 . 2 𝑦 ∈ ran (𝑤 ∈ ω ↦ (𝐹𝑤))∀𝑧 ∈ ran (𝑤 ∈ ω ↦ (𝐹𝑤)) ¬ 𝑧 E 𝑦
17 fvex 6919 . . . . . . 7 (𝐹𝑤) ∈ V
18 eqid 2737 . . . . . . 7 (𝑤 ∈ ω ↦ (𝐹𝑤)) = (𝑤 ∈ ω ↦ (𝐹𝑤))
1917, 18fnmpti 6711 . . . . . 6 (𝑤 ∈ ω ↦ (𝐹𝑤)) Fn ω
20 fvelrnb 6969 . . . . . 6 ((𝑤 ∈ ω ↦ (𝐹𝑤)) Fn ω → (𝑦 ∈ ran (𝑤 ∈ ω ↦ (𝐹𝑤)) ↔ ∃𝑥 ∈ ω ((𝑤 ∈ ω ↦ (𝐹𝑤))‘𝑥) = 𝑦))
2119, 20ax-mp 5 . . . . 5 (𝑦 ∈ ran (𝑤 ∈ ω ↦ (𝐹𝑤)) ↔ ∃𝑥 ∈ ω ((𝑤 ∈ ω ↦ (𝐹𝑤))‘𝑥) = 𝑦)
22 peano2 7912 . . . . . . . . . 10 (𝑥 ∈ ω → suc 𝑥 ∈ ω)
23 fveq2 6906 . . . . . . . . . . 11 (𝑤 = suc 𝑥 → (𝐹𝑤) = (𝐹‘suc 𝑥))
24 fvex 6919 . . . . . . . . . . 11 (𝐹‘suc 𝑥) ∈ V
2523, 18, 24fvmpt 7016 . . . . . . . . . 10 (suc 𝑥 ∈ ω → ((𝑤 ∈ ω ↦ (𝐹𝑤))‘suc 𝑥) = (𝐹‘suc 𝑥))
2622, 25syl 17 . . . . . . . . 9 (𝑥 ∈ ω → ((𝑤 ∈ ω ↦ (𝐹𝑤))‘suc 𝑥) = (𝐹‘suc 𝑥))
27 fnfvelrn 7100 . . . . . . . . . 10 (((𝑤 ∈ ω ↦ (𝐹𝑤)) Fn ω ∧ suc 𝑥 ∈ ω) → ((𝑤 ∈ ω ↦ (𝐹𝑤))‘suc 𝑥) ∈ ran (𝑤 ∈ ω ↦ (𝐹𝑤)))
2819, 22, 27sylancr 587 . . . . . . . . 9 (𝑥 ∈ ω → ((𝑤 ∈ ω ↦ (𝐹𝑤))‘suc 𝑥) ∈ ran (𝑤 ∈ ω ↦ (𝐹𝑤)))
2926, 28eqeltrrd 2842 . . . . . . . 8 (𝑥 ∈ ω → (𝐹‘suc 𝑥) ∈ ran (𝑤 ∈ ω ↦ (𝐹𝑤)))
30 epel 5587 . . . . . . . . . . . 12 (𝑧 E 𝑦𝑧𝑦)
31 eleq1 2829 . . . . . . . . . . . 12 (𝑧 = (𝐹‘suc 𝑥) → (𝑧𝑦 ↔ (𝐹‘suc 𝑥) ∈ 𝑦))
3230, 31bitrid 283 . . . . . . . . . . 11 (𝑧 = (𝐹‘suc 𝑥) → (𝑧 E 𝑦 ↔ (𝐹‘suc 𝑥) ∈ 𝑦))
3332notbid 318 . . . . . . . . . 10 (𝑧 = (𝐹‘suc 𝑥) → (¬ 𝑧 E 𝑦 ↔ ¬ (𝐹‘suc 𝑥) ∈ 𝑦))
34 df-nel 3047 . . . . . . . . . 10 ((𝐹‘suc 𝑥) ∉ 𝑦 ↔ ¬ (𝐹‘suc 𝑥) ∈ 𝑦)
3533, 34bitr4di 289 . . . . . . . . 9 (𝑧 = (𝐹‘suc 𝑥) → (¬ 𝑧 E 𝑦 ↔ (𝐹‘suc 𝑥) ∉ 𝑦))
3635rspccv 3619 . . . . . . . 8 (∀𝑧 ∈ ran (𝑤 ∈ ω ↦ (𝐹𝑤)) ¬ 𝑧 E 𝑦 → ((𝐹‘suc 𝑥) ∈ ran (𝑤 ∈ ω ↦ (𝐹𝑤)) → (𝐹‘suc 𝑥) ∉ 𝑦))
3729, 36syl5com 31 . . . . . . 7 (𝑥 ∈ ω → (∀𝑧 ∈ ran (𝑤 ∈ ω ↦ (𝐹𝑤)) ¬ 𝑧 E 𝑦 → (𝐹‘suc 𝑥) ∉ 𝑦))
38 fveq2 6906 . . . . . . . . . . 11 (𝑤 = 𝑥 → (𝐹𝑤) = (𝐹𝑥))
39 fvex 6919 . . . . . . . . . . 11 (𝐹𝑥) ∈ V
4038, 18, 39fvmpt 7016 . . . . . . . . . 10 (𝑥 ∈ ω → ((𝑤 ∈ ω ↦ (𝐹𝑤))‘𝑥) = (𝐹𝑥))
41 eqeq1 2741 . . . . . . . . . 10 (((𝑤 ∈ ω ↦ (𝐹𝑤))‘𝑥) = 𝑦 → (((𝑤 ∈ ω ↦ (𝐹𝑤))‘𝑥) = (𝐹𝑥) ↔ 𝑦 = (𝐹𝑥)))
4240, 41syl5ibcom 245 . . . . . . . . 9 (𝑥 ∈ ω → (((𝑤 ∈ ω ↦ (𝐹𝑤))‘𝑥) = 𝑦𝑦 = (𝐹𝑥)))
43 neleq2 3053 . . . . . . . . . 10 (𝑦 = (𝐹𝑥) → ((𝐹‘suc 𝑥) ∉ 𝑦 ↔ (𝐹‘suc 𝑥) ∉ (𝐹𝑥)))
4443biimpd 229 . . . . . . . . 9 (𝑦 = (𝐹𝑥) → ((𝐹‘suc 𝑥) ∉ 𝑦 → (𝐹‘suc 𝑥) ∉ (𝐹𝑥)))
4542, 44syl6 35 . . . . . . . 8 (𝑥 ∈ ω → (((𝑤 ∈ ω ↦ (𝐹𝑤))‘𝑥) = 𝑦 → ((𝐹‘suc 𝑥) ∉ 𝑦 → (𝐹‘suc 𝑥) ∉ (𝐹𝑥))))
4645com23 86 . . . . . . 7 (𝑥 ∈ ω → ((𝐹‘suc 𝑥) ∉ 𝑦 → (((𝑤 ∈ ω ↦ (𝐹𝑤))‘𝑥) = 𝑦 → (𝐹‘suc 𝑥) ∉ (𝐹𝑥))))
4737, 46syldc 48 . . . . . 6 (∀𝑧 ∈ ran (𝑤 ∈ ω ↦ (𝐹𝑤)) ¬ 𝑧 E 𝑦 → (𝑥 ∈ ω → (((𝑤 ∈ ω ↦ (𝐹𝑤))‘𝑥) = 𝑦 → (𝐹‘suc 𝑥) ∉ (𝐹𝑥))))
4847reximdvai 3165 . . . . 5 (∀𝑧 ∈ ran (𝑤 ∈ ω ↦ (𝐹𝑤)) ¬ 𝑧 E 𝑦 → (∃𝑥 ∈ ω ((𝑤 ∈ ω ↦ (𝐹𝑤))‘𝑥) = 𝑦 → ∃𝑥 ∈ ω (𝐹‘suc 𝑥) ∉ (𝐹𝑥)))
4921, 48biimtrid 242 . . . 4 (∀𝑧 ∈ ran (𝑤 ∈ ω ↦ (𝐹𝑤)) ¬ 𝑧 E 𝑦 → (𝑦 ∈ ran (𝑤 ∈ ω ↦ (𝐹𝑤)) → ∃𝑥 ∈ ω (𝐹‘suc 𝑥) ∉ (𝐹𝑥)))
5049com12 32 . . 3 (𝑦 ∈ ran (𝑤 ∈ ω ↦ (𝐹𝑤)) → (∀𝑧 ∈ ran (𝑤 ∈ ω ↦ (𝐹𝑤)) ¬ 𝑧 E 𝑦 → ∃𝑥 ∈ ω (𝐹‘suc 𝑥) ∉ (𝐹𝑥)))
5150rexlimiv 3148 . 2 (∃𝑦 ∈ ran (𝑤 ∈ ω ↦ (𝐹𝑤))∀𝑧 ∈ ran (𝑤 ∈ ω ↦ (𝐹𝑤)) ¬ 𝑧 E 𝑦 → ∃𝑥 ∈ ω (𝐹‘suc 𝑥) ∉ (𝐹𝑥))
5216, 51ax-mp 5 1 𝑥 ∈ ω (𝐹‘suc 𝑥) ∉ (𝐹𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206   = wceq 1540  wcel 2108  wne 2940  wnel 3046  wral 3061  wrex 3070  Vcvv 3480  wss 3951  c0 4333   class class class wbr 5143  cmpt 5225   E cep 5583   Fr wfr 5634  dom cdm 5685  ran crn 5686  suc csuc 6386   Fn wfn 6556  cfv 6561  ωcom 7887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pr 5432  ax-un 7755  ax-reg 9632  ax-inf2 9681
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-om 7888
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator