MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  noinfep Structured version   Visualization version   GIF version

Theorem noinfep 8772
Description: Using the Axiom of Regularity in the form zfregfr 8716, show that there are no infinite descending -chains. Proposition 7.34 of [TakeutiZaring] p. 44. (Contributed by NM, 26-Jan-2006.) (Revised by Mario Carneiro, 22-Mar-2013.)
Assertion
Ref Expression
noinfep 𝑥 ∈ ω (𝐹‘suc 𝑥) ∉ (𝐹𝑥)
Distinct variable group:   𝑥,𝐹

Proof of Theorem noinfep
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omex 8755 . . . . 5 ω ∈ V
21mptex 6679 . . . 4 (𝑤 ∈ ω ↦ (𝐹𝑤)) ∈ V
32rnex 7298 . . 3 ran (𝑤 ∈ ω ↦ (𝐹𝑤)) ∈ V
4 zfregfr 8716 . . 3 E Fr ran (𝑤 ∈ ω ↦ (𝐹𝑤))
5 ssid 3783 . . 3 ran (𝑤 ∈ ω ↦ (𝐹𝑤)) ⊆ ran (𝑤 ∈ ω ↦ (𝐹𝑤))
6 dmmptg 5818 . . . . . 6 (∀𝑤 ∈ ω (𝐹𝑤) ∈ V → dom (𝑤 ∈ ω ↦ (𝐹𝑤)) = ω)
7 fvexd 6390 . . . . . 6 (𝑤 ∈ ω → (𝐹𝑤) ∈ V)
86, 7mprg 3073 . . . . 5 dom (𝑤 ∈ ω ↦ (𝐹𝑤)) = ω
9 peano1 7283 . . . . . 6 ∅ ∈ ω
109ne0ii 4088 . . . . 5 ω ≠ ∅
118, 10eqnetri 3007 . . . 4 dom (𝑤 ∈ ω ↦ (𝐹𝑤)) ≠ ∅
12 dm0rn0 5510 . . . . 5 (dom (𝑤 ∈ ω ↦ (𝐹𝑤)) = ∅ ↔ ran (𝑤 ∈ ω ↦ (𝐹𝑤)) = ∅)
1312necon3bii 2989 . . . 4 (dom (𝑤 ∈ ω ↦ (𝐹𝑤)) ≠ ∅ ↔ ran (𝑤 ∈ ω ↦ (𝐹𝑤)) ≠ ∅)
1411, 13mpbi 221 . . 3 ran (𝑤 ∈ ω ↦ (𝐹𝑤)) ≠ ∅
15 fri 5239 . . 3 (((ran (𝑤 ∈ ω ↦ (𝐹𝑤)) ∈ V ∧ E Fr ran (𝑤 ∈ ω ↦ (𝐹𝑤))) ∧ (ran (𝑤 ∈ ω ↦ (𝐹𝑤)) ⊆ ran (𝑤 ∈ ω ↦ (𝐹𝑤)) ∧ ran (𝑤 ∈ ω ↦ (𝐹𝑤)) ≠ ∅)) → ∃𝑦 ∈ ran (𝑤 ∈ ω ↦ (𝐹𝑤))∀𝑧 ∈ ran (𝑤 ∈ ω ↦ (𝐹𝑤)) ¬ 𝑧 E 𝑦)
163, 4, 5, 14, 15mp4an 684 . 2 𝑦 ∈ ran (𝑤 ∈ ω ↦ (𝐹𝑤))∀𝑧 ∈ ran (𝑤 ∈ ω ↦ (𝐹𝑤)) ¬ 𝑧 E 𝑦
17 fvex 6388 . . . . . . 7 (𝐹𝑤) ∈ V
18 eqid 2765 . . . . . . 7 (𝑤 ∈ ω ↦ (𝐹𝑤)) = (𝑤 ∈ ω ↦ (𝐹𝑤))
1917, 18fnmpti 6200 . . . . . 6 (𝑤 ∈ ω ↦ (𝐹𝑤)) Fn ω
20 fvelrnb 6432 . . . . . 6 ((𝑤 ∈ ω ↦ (𝐹𝑤)) Fn ω → (𝑦 ∈ ran (𝑤 ∈ ω ↦ (𝐹𝑤)) ↔ ∃𝑥 ∈ ω ((𝑤 ∈ ω ↦ (𝐹𝑤))‘𝑥) = 𝑦))
2119, 20ax-mp 5 . . . . 5 (𝑦 ∈ ran (𝑤 ∈ ω ↦ (𝐹𝑤)) ↔ ∃𝑥 ∈ ω ((𝑤 ∈ ω ↦ (𝐹𝑤))‘𝑥) = 𝑦)
22 peano2 7284 . . . . . . . . . 10 (𝑥 ∈ ω → suc 𝑥 ∈ ω)
23 fveq2 6375 . . . . . . . . . . 11 (𝑤 = suc 𝑥 → (𝐹𝑤) = (𝐹‘suc 𝑥))
24 fvex 6388 . . . . . . . . . . 11 (𝐹‘suc 𝑥) ∈ V
2523, 18, 24fvmpt 6471 . . . . . . . . . 10 (suc 𝑥 ∈ ω → ((𝑤 ∈ ω ↦ (𝐹𝑤))‘suc 𝑥) = (𝐹‘suc 𝑥))
2622, 25syl 17 . . . . . . . . 9 (𝑥 ∈ ω → ((𝑤 ∈ ω ↦ (𝐹𝑤))‘suc 𝑥) = (𝐹‘suc 𝑥))
27 fnfvelrn 6546 . . . . . . . . . 10 (((𝑤 ∈ ω ↦ (𝐹𝑤)) Fn ω ∧ suc 𝑥 ∈ ω) → ((𝑤 ∈ ω ↦ (𝐹𝑤))‘suc 𝑥) ∈ ran (𝑤 ∈ ω ↦ (𝐹𝑤)))
2819, 22, 27sylancr 581 . . . . . . . . 9 (𝑥 ∈ ω → ((𝑤 ∈ ω ↦ (𝐹𝑤))‘suc 𝑥) ∈ ran (𝑤 ∈ ω ↦ (𝐹𝑤)))
2926, 28eqeltrrd 2845 . . . . . . . 8 (𝑥 ∈ ω → (𝐹‘suc 𝑥) ∈ ran (𝑤 ∈ ω ↦ (𝐹𝑤)))
30 epel 5193 . . . . . . . . . . . 12 (𝑧 E 𝑦𝑧𝑦)
31 eleq1 2832 . . . . . . . . . . . 12 (𝑧 = (𝐹‘suc 𝑥) → (𝑧𝑦 ↔ (𝐹‘suc 𝑥) ∈ 𝑦))
3230, 31syl5bb 274 . . . . . . . . . . 11 (𝑧 = (𝐹‘suc 𝑥) → (𝑧 E 𝑦 ↔ (𝐹‘suc 𝑥) ∈ 𝑦))
3332notbid 309 . . . . . . . . . 10 (𝑧 = (𝐹‘suc 𝑥) → (¬ 𝑧 E 𝑦 ↔ ¬ (𝐹‘suc 𝑥) ∈ 𝑦))
34 df-nel 3041 . . . . . . . . . 10 ((𝐹‘suc 𝑥) ∉ 𝑦 ↔ ¬ (𝐹‘suc 𝑥) ∈ 𝑦)
3533, 34syl6bbr 280 . . . . . . . . 9 (𝑧 = (𝐹‘suc 𝑥) → (¬ 𝑧 E 𝑦 ↔ (𝐹‘suc 𝑥) ∉ 𝑦))
3635rspccv 3458 . . . . . . . 8 (∀𝑧 ∈ ran (𝑤 ∈ ω ↦ (𝐹𝑤)) ¬ 𝑧 E 𝑦 → ((𝐹‘suc 𝑥) ∈ ran (𝑤 ∈ ω ↦ (𝐹𝑤)) → (𝐹‘suc 𝑥) ∉ 𝑦))
3729, 36syl5com 31 . . . . . . 7 (𝑥 ∈ ω → (∀𝑧 ∈ ran (𝑤 ∈ ω ↦ (𝐹𝑤)) ¬ 𝑧 E 𝑦 → (𝐹‘suc 𝑥) ∉ 𝑦))
38 fveq2 6375 . . . . . . . . . . 11 (𝑤 = 𝑥 → (𝐹𝑤) = (𝐹𝑥))
39 fvex 6388 . . . . . . . . . . 11 (𝐹𝑥) ∈ V
4038, 18, 39fvmpt 6471 . . . . . . . . . 10 (𝑥 ∈ ω → ((𝑤 ∈ ω ↦ (𝐹𝑤))‘𝑥) = (𝐹𝑥))
41 eqeq1 2769 . . . . . . . . . 10 (((𝑤 ∈ ω ↦ (𝐹𝑤))‘𝑥) = 𝑦 → (((𝑤 ∈ ω ↦ (𝐹𝑤))‘𝑥) = (𝐹𝑥) ↔ 𝑦 = (𝐹𝑥)))
4240, 41syl5ibcom 236 . . . . . . . . 9 (𝑥 ∈ ω → (((𝑤 ∈ ω ↦ (𝐹𝑤))‘𝑥) = 𝑦𝑦 = (𝐹𝑥)))
43 neleq2 3046 . . . . . . . . . 10 (𝑦 = (𝐹𝑥) → ((𝐹‘suc 𝑥) ∉ 𝑦 ↔ (𝐹‘suc 𝑥) ∉ (𝐹𝑥)))
4443biimpd 220 . . . . . . . . 9 (𝑦 = (𝐹𝑥) → ((𝐹‘suc 𝑥) ∉ 𝑦 → (𝐹‘suc 𝑥) ∉ (𝐹𝑥)))
4542, 44syl6 35 . . . . . . . 8 (𝑥 ∈ ω → (((𝑤 ∈ ω ↦ (𝐹𝑤))‘𝑥) = 𝑦 → ((𝐹‘suc 𝑥) ∉ 𝑦 → (𝐹‘suc 𝑥) ∉ (𝐹𝑥))))
4645com23 86 . . . . . . 7 (𝑥 ∈ ω → ((𝐹‘suc 𝑥) ∉ 𝑦 → (((𝑤 ∈ ω ↦ (𝐹𝑤))‘𝑥) = 𝑦 → (𝐹‘suc 𝑥) ∉ (𝐹𝑥))))
4737, 46syldc 48 . . . . . 6 (∀𝑧 ∈ ran (𝑤 ∈ ω ↦ (𝐹𝑤)) ¬ 𝑧 E 𝑦 → (𝑥 ∈ ω → (((𝑤 ∈ ω ↦ (𝐹𝑤))‘𝑥) = 𝑦 → (𝐹‘suc 𝑥) ∉ (𝐹𝑥))))
4847reximdvai 3161 . . . . 5 (∀𝑧 ∈ ran (𝑤 ∈ ω ↦ (𝐹𝑤)) ¬ 𝑧 E 𝑦 → (∃𝑥 ∈ ω ((𝑤 ∈ ω ↦ (𝐹𝑤))‘𝑥) = 𝑦 → ∃𝑥 ∈ ω (𝐹‘suc 𝑥) ∉ (𝐹𝑥)))
4921, 48syl5bi 233 . . . 4 (∀𝑧 ∈ ran (𝑤 ∈ ω ↦ (𝐹𝑤)) ¬ 𝑧 E 𝑦 → (𝑦 ∈ ran (𝑤 ∈ ω ↦ (𝐹𝑤)) → ∃𝑥 ∈ ω (𝐹‘suc 𝑥) ∉ (𝐹𝑥)))
5049com12 32 . . 3 (𝑦 ∈ ran (𝑤 ∈ ω ↦ (𝐹𝑤)) → (∀𝑧 ∈ ran (𝑤 ∈ ω ↦ (𝐹𝑤)) ¬ 𝑧 E 𝑦 → ∃𝑥 ∈ ω (𝐹‘suc 𝑥) ∉ (𝐹𝑥)))
5150rexlimiv 3174 . 2 (∃𝑦 ∈ ran (𝑤 ∈ ω ↦ (𝐹𝑤))∀𝑧 ∈ ran (𝑤 ∈ ω ↦ (𝐹𝑤)) ¬ 𝑧 E 𝑦 → ∃𝑥 ∈ ω (𝐹‘suc 𝑥) ∉ (𝐹𝑥))
5216, 51ax-mp 5 1 𝑥 ∈ ω (𝐹‘suc 𝑥) ∉ (𝐹𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197   = wceq 1652  wcel 2155  wne 2937  wnel 3040  wral 3055  wrex 3056  Vcvv 3350  wss 3732  c0 4079   class class class wbr 4809  cmpt 4888   E cep 5189   Fr wfr 5233  dom cdm 5277  ran crn 5278  suc csuc 5910   Fn wfn 6063  cfv 6068  ωcom 7263
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pr 5062  ax-un 7147  ax-reg 8704  ax-inf2 8753
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-om 7264
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator