MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgrreslem Structured version   Visualization version   GIF version

Theorem umgrreslem 28253
Description: Lemma for umgrres 28255 and usgrres 28256. (Contributed by AV, 27-Nov-2020.) (Revised by AV, 19-Dec-2021.)
Hypotheses
Ref Expression
upgrres.v 𝑉 = (Vtx‘𝐺)
upgrres.e 𝐸 = (iEdg‘𝐺)
upgrres.f 𝐹 = {𝑖 ∈ dom 𝐸𝑁 ∉ (𝐸𝑖)}
Assertion
Ref Expression
umgrreslem ((𝐺 ∈ UMGraph ∧ 𝑁𝑉) → ran (𝐸𝐹) ⊆ {𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2})
Distinct variable groups:   𝑖,𝐸   𝐸,𝑝   𝐺,𝑝   𝑖,𝑁   𝑁,𝑝   𝑉,𝑝
Allowed substitution hints:   𝐹(𝑖,𝑝)   𝐺(𝑖)   𝑉(𝑖)

Proof of Theorem umgrreslem
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 df-ima 5646 . 2 (𝐸𝐹) = ran (𝐸𝐹)
2 fveq2 6842 . . . . . . 7 (𝑖 = 𝑗 → (𝐸𝑖) = (𝐸𝑗))
3 neleq2 3055 . . . . . . 7 ((𝐸𝑖) = (𝐸𝑗) → (𝑁 ∉ (𝐸𝑖) ↔ 𝑁 ∉ (𝐸𝑗)))
42, 3syl 17 . . . . . 6 (𝑖 = 𝑗 → (𝑁 ∉ (𝐸𝑖) ↔ 𝑁 ∉ (𝐸𝑗)))
5 upgrres.f . . . . . 6 𝐹 = {𝑖 ∈ dom 𝐸𝑁 ∉ (𝐸𝑖)}
64, 5elrab2 3648 . . . . 5 (𝑗𝐹 ↔ (𝑗 ∈ dom 𝐸𝑁 ∉ (𝐸𝑗)))
7 upgrres.v . . . . . . . 8 𝑉 = (Vtx‘𝐺)
8 upgrres.e . . . . . . . 8 𝐸 = (iEdg‘𝐺)
97, 8umgrf 28049 . . . . . . 7 (𝐺 ∈ UMGraph → 𝐸:dom 𝐸⟶{𝑝 ∈ 𝒫 𝑉 ∣ (♯‘𝑝) = 2})
10 ffvelcdm 7032 . . . . . . . . . 10 ((𝐸:dom 𝐸⟶{𝑝 ∈ 𝒫 𝑉 ∣ (♯‘𝑝) = 2} ∧ 𝑗 ∈ dom 𝐸) → (𝐸𝑗) ∈ {𝑝 ∈ 𝒫 𝑉 ∣ (♯‘𝑝) = 2})
11 fveqeq2 6851 . . . . . . . . . . . 12 (𝑝 = (𝐸𝑗) → ((♯‘𝑝) = 2 ↔ (♯‘(𝐸𝑗)) = 2))
1211elrab 3645 . . . . . . . . . . 11 ((𝐸𝑗) ∈ {𝑝 ∈ 𝒫 𝑉 ∣ (♯‘𝑝) = 2} ↔ ((𝐸𝑗) ∈ 𝒫 𝑉 ∧ (♯‘(𝐸𝑗)) = 2))
13 simpll 765 . . . . . . . . . . . . . . 15 ((((𝐸𝑗) ∈ 𝒫 𝑉 ∧ (♯‘(𝐸𝑗)) = 2) ∧ 𝑁 ∉ (𝐸𝑗)) → (𝐸𝑗) ∈ 𝒫 𝑉)
14 elpwi 4567 . . . . . . . . . . . . . . . . 17 ((𝐸𝑗) ∈ 𝒫 𝑉 → (𝐸𝑗) ⊆ 𝑉)
1514adantr 481 . . . . . . . . . . . . . . . 16 (((𝐸𝑗) ∈ 𝒫 𝑉 ∧ (♯‘(𝐸𝑗)) = 2) → (𝐸𝑗) ⊆ 𝑉)
1615adantr 481 . . . . . . . . . . . . . . 15 ((((𝐸𝑗) ∈ 𝒫 𝑉 ∧ (♯‘(𝐸𝑗)) = 2) ∧ 𝑁 ∉ (𝐸𝑗)) → (𝐸𝑗) ⊆ 𝑉)
17 simpr 485 . . . . . . . . . . . . . . 15 ((((𝐸𝑗) ∈ 𝒫 𝑉 ∧ (♯‘(𝐸𝑗)) = 2) ∧ 𝑁 ∉ (𝐸𝑗)) → 𝑁 ∉ (𝐸𝑗))
18 elpwdifsn 4749 . . . . . . . . . . . . . . 15 (((𝐸𝑗) ∈ 𝒫 𝑉 ∧ (𝐸𝑗) ⊆ 𝑉𝑁 ∉ (𝐸𝑗)) → (𝐸𝑗) ∈ 𝒫 (𝑉 ∖ {𝑁}))
1913, 16, 17, 18syl3anc 1371 . . . . . . . . . . . . . 14 ((((𝐸𝑗) ∈ 𝒫 𝑉 ∧ (♯‘(𝐸𝑗)) = 2) ∧ 𝑁 ∉ (𝐸𝑗)) → (𝐸𝑗) ∈ 𝒫 (𝑉 ∖ {𝑁}))
20 simpr 485 . . . . . . . . . . . . . . 15 (((𝐸𝑗) ∈ 𝒫 𝑉 ∧ (♯‘(𝐸𝑗)) = 2) → (♯‘(𝐸𝑗)) = 2)
2120adantr 481 . . . . . . . . . . . . . 14 ((((𝐸𝑗) ∈ 𝒫 𝑉 ∧ (♯‘(𝐸𝑗)) = 2) ∧ 𝑁 ∉ (𝐸𝑗)) → (♯‘(𝐸𝑗)) = 2)
2211, 19, 21elrabd 3647 . . . . . . . . . . . . 13 ((((𝐸𝑗) ∈ 𝒫 𝑉 ∧ (♯‘(𝐸𝑗)) = 2) ∧ 𝑁 ∉ (𝐸𝑗)) → (𝐸𝑗) ∈ {𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2})
2322ex 413 . . . . . . . . . . . 12 (((𝐸𝑗) ∈ 𝒫 𝑉 ∧ (♯‘(𝐸𝑗)) = 2) → (𝑁 ∉ (𝐸𝑗) → (𝐸𝑗) ∈ {𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2}))
2423a1d 25 . . . . . . . . . . 11 (((𝐸𝑗) ∈ 𝒫 𝑉 ∧ (♯‘(𝐸𝑗)) = 2) → (𝑁𝑉 → (𝑁 ∉ (𝐸𝑗) → (𝐸𝑗) ∈ {𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2})))
2512, 24sylbi 216 . . . . . . . . . 10 ((𝐸𝑗) ∈ {𝑝 ∈ 𝒫 𝑉 ∣ (♯‘𝑝) = 2} → (𝑁𝑉 → (𝑁 ∉ (𝐸𝑗) → (𝐸𝑗) ∈ {𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2})))
2610, 25syl 17 . . . . . . . . 9 ((𝐸:dom 𝐸⟶{𝑝 ∈ 𝒫 𝑉 ∣ (♯‘𝑝) = 2} ∧ 𝑗 ∈ dom 𝐸) → (𝑁𝑉 → (𝑁 ∉ (𝐸𝑗) → (𝐸𝑗) ∈ {𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2})))
2726ex 413 . . . . . . . 8 (𝐸:dom 𝐸⟶{𝑝 ∈ 𝒫 𝑉 ∣ (♯‘𝑝) = 2} → (𝑗 ∈ dom 𝐸 → (𝑁𝑉 → (𝑁 ∉ (𝐸𝑗) → (𝐸𝑗) ∈ {𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2}))))
2827com23 86 . . . . . . 7 (𝐸:dom 𝐸⟶{𝑝 ∈ 𝒫 𝑉 ∣ (♯‘𝑝) = 2} → (𝑁𝑉 → (𝑗 ∈ dom 𝐸 → (𝑁 ∉ (𝐸𝑗) → (𝐸𝑗) ∈ {𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2}))))
299, 28syl 17 . . . . . 6 (𝐺 ∈ UMGraph → (𝑁𝑉 → (𝑗 ∈ dom 𝐸 → (𝑁 ∉ (𝐸𝑗) → (𝐸𝑗) ∈ {𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2}))))
3029imp4b 422 . . . . 5 ((𝐺 ∈ UMGraph ∧ 𝑁𝑉) → ((𝑗 ∈ dom 𝐸𝑁 ∉ (𝐸𝑗)) → (𝐸𝑗) ∈ {𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2}))
316, 30biimtrid 241 . . . 4 ((𝐺 ∈ UMGraph ∧ 𝑁𝑉) → (𝑗𝐹 → (𝐸𝑗) ∈ {𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2}))
3231ralrimiv 3142 . . 3 ((𝐺 ∈ UMGraph ∧ 𝑁𝑉) → ∀𝑗𝐹 (𝐸𝑗) ∈ {𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2})
33 umgruhgr 28055 . . . . . 6 (𝐺 ∈ UMGraph → 𝐺 ∈ UHGraph)
348uhgrfun 28017 . . . . . 6 (𝐺 ∈ UHGraph → Fun 𝐸)
3533, 34syl 17 . . . . 5 (𝐺 ∈ UMGraph → Fun 𝐸)
3635adantr 481 . . . 4 ((𝐺 ∈ UMGraph ∧ 𝑁𝑉) → Fun 𝐸)
375ssrab3 4040 . . . 4 𝐹 ⊆ dom 𝐸
38 funimass4 6907 . . . 4 ((Fun 𝐸𝐹 ⊆ dom 𝐸) → ((𝐸𝐹) ⊆ {𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2} ↔ ∀𝑗𝐹 (𝐸𝑗) ∈ {𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2}))
3936, 37, 38sylancl 586 . . 3 ((𝐺 ∈ UMGraph ∧ 𝑁𝑉) → ((𝐸𝐹) ⊆ {𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2} ↔ ∀𝑗𝐹 (𝐸𝑗) ∈ {𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2}))
4032, 39mpbird 256 . 2 ((𝐺 ∈ UMGraph ∧ 𝑁𝑉) → (𝐸𝐹) ⊆ {𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2})
411, 40eqsstrrid 3993 1 ((𝐺 ∈ UMGraph ∧ 𝑁𝑉) → ran (𝐸𝐹) ⊆ {𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wnel 3049  wral 3064  {crab 3407  cdif 3907  wss 3910  𝒫 cpw 4560  {csn 4586  dom cdm 5633  ran crn 5634  cres 5635  cima 5636  Fun wfun 6490  wf 6492  cfv 6496  2c2 12208  chash 14230  Vtxcvtx 27947  iEdgciedg 27948  UHGraphcuhgr 28007  UMGraphcumgr 28032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-n0 12414  df-z 12500  df-uz 12764  df-fz 13425  df-hash 14231  df-uhgr 28009  df-upgr 28033  df-umgr 28034
This theorem is referenced by:  umgrres  28255  usgrres  28256
  Copyright terms: Public domain W3C validator