MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nbupgrres Structured version   Visualization version   GIF version

Theorem nbupgrres 27634
Description: The neighborhood of a vertex in a restricted pseudograph (not necessarily valid for a hypergraph, because 𝑁, 𝐾 and 𝑀 could be connected by one edge, so 𝑀 is a neighbor of 𝐾 in the original graph, but not in the restricted graph, because the edge between 𝑀 and 𝐾, also incident with 𝑁, was removed). (Contributed by Alexander van der Vekens, 2-Jan-2018.) (Revised by AV, 8-Nov-2020.)
Hypotheses
Ref Expression
nbupgrres.v 𝑉 = (Vtx‘𝐺)
nbupgrres.e 𝐸 = (Edg‘𝐺)
nbupgrres.f 𝐹 = {𝑒𝐸𝑁𝑒}
nbupgrres.s 𝑆 = ⟨(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)⟩
Assertion
Ref Expression
nbupgrres (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑀 ∈ (𝑉 ∖ {𝑁, 𝐾})) → (𝑀 ∈ (𝐺 NeighbVtx 𝐾) → 𝑀 ∈ (𝑆 NeighbVtx 𝐾)))
Distinct variable groups:   𝑒,𝐸   𝑒,𝐺   𝑒,𝐾   𝑒,𝑁   𝑒,𝑀   𝑒,𝑉
Allowed substitution hints:   𝑆(𝑒)   𝐹(𝑒)

Proof of Theorem nbupgrres
StepHypRef Expression
1 simp1l 1195 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑀 ∈ (𝑉 ∖ {𝑁, 𝐾})) → 𝐺 ∈ UPGraph)
2 eldifi 4057 . . . . . . 7 (𝐾 ∈ (𝑉 ∖ {𝑁}) → 𝐾𝑉)
323ad2ant2 1132 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑀 ∈ (𝑉 ∖ {𝑁, 𝐾})) → 𝐾𝑉)
4 eldifsn 4717 . . . . . . . . 9 (𝑀 ∈ ((𝑉 ∖ {𝑁}) ∖ {𝐾}) ↔ (𝑀 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑀𝐾))
5 eldifi 4057 . . . . . . . . . 10 (𝑀 ∈ (𝑉 ∖ {𝑁}) → 𝑀𝑉)
65anim1i 614 . . . . . . . . 9 ((𝑀 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑀𝐾) → (𝑀𝑉𝑀𝐾))
74, 6sylbi 216 . . . . . . . 8 (𝑀 ∈ ((𝑉 ∖ {𝑁}) ∖ {𝐾}) → (𝑀𝑉𝑀𝐾))
8 difpr 4733 . . . . . . . 8 (𝑉 ∖ {𝑁, 𝐾}) = ((𝑉 ∖ {𝑁}) ∖ {𝐾})
97, 8eleq2s 2857 . . . . . . 7 (𝑀 ∈ (𝑉 ∖ {𝑁, 𝐾}) → (𝑀𝑉𝑀𝐾))
1093ad2ant3 1133 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑀 ∈ (𝑉 ∖ {𝑁, 𝐾})) → (𝑀𝑉𝑀𝐾))
11 nbupgrres.v . . . . . . 7 𝑉 = (Vtx‘𝐺)
12 nbupgrres.e . . . . . . 7 𝐸 = (Edg‘𝐺)
1311, 12nbupgrel 27615 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝐾𝑉) ∧ (𝑀𝑉𝑀𝐾)) → (𝑀 ∈ (𝐺 NeighbVtx 𝐾) ↔ {𝑀, 𝐾} ∈ 𝐸))
141, 3, 10, 13syl21anc 834 . . . . 5 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑀 ∈ (𝑉 ∖ {𝑁, 𝐾})) → (𝑀 ∈ (𝐺 NeighbVtx 𝐾) ↔ {𝑀, 𝐾} ∈ 𝐸))
1514biimpa 476 . . . 4 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑀 ∈ (𝑉 ∖ {𝑁, 𝐾})) ∧ 𝑀 ∈ (𝐺 NeighbVtx 𝐾)) → {𝑀, 𝐾} ∈ 𝐸)
168eleq2i 2830 . . . . . . . . . 10 (𝑀 ∈ (𝑉 ∖ {𝑁, 𝐾}) ↔ 𝑀 ∈ ((𝑉 ∖ {𝑁}) ∖ {𝐾}))
17 eldifsn 4717 . . . . . . . . . . 11 (𝑀 ∈ (𝑉 ∖ {𝑁}) ↔ (𝑀𝑉𝑀𝑁))
1817anbi1i 623 . . . . . . . . . 10 ((𝑀 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑀𝐾) ↔ ((𝑀𝑉𝑀𝑁) ∧ 𝑀𝐾))
1916, 4, 183bitri 296 . . . . . . . . 9 (𝑀 ∈ (𝑉 ∖ {𝑁, 𝐾}) ↔ ((𝑀𝑉𝑀𝑁) ∧ 𝑀𝐾))
20 simpr 484 . . . . . . . . . . 11 ((𝑀𝑉𝑀𝑁) → 𝑀𝑁)
2120necomd 2998 . . . . . . . . . 10 ((𝑀𝑉𝑀𝑁) → 𝑁𝑀)
2221adantr 480 . . . . . . . . 9 (((𝑀𝑉𝑀𝑁) ∧ 𝑀𝐾) → 𝑁𝑀)
2319, 22sylbi 216 . . . . . . . 8 (𝑀 ∈ (𝑉 ∖ {𝑁, 𝐾}) → 𝑁𝑀)
24233ad2ant3 1133 . . . . . . 7 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑀 ∈ (𝑉 ∖ {𝑁, 𝐾})) → 𝑁𝑀)
25 eldifsn 4717 . . . . . . . . 9 (𝐾 ∈ (𝑉 ∖ {𝑁}) ↔ (𝐾𝑉𝐾𝑁))
26 simpr 484 . . . . . . . . . 10 ((𝐾𝑉𝐾𝑁) → 𝐾𝑁)
2726necomd 2998 . . . . . . . . 9 ((𝐾𝑉𝐾𝑁) → 𝑁𝐾)
2825, 27sylbi 216 . . . . . . . 8 (𝐾 ∈ (𝑉 ∖ {𝑁}) → 𝑁𝐾)
29283ad2ant2 1132 . . . . . . 7 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑀 ∈ (𝑉 ∖ {𝑁, 𝐾})) → 𝑁𝐾)
3024, 29nelprd 4589 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑀 ∈ (𝑉 ∖ {𝑁, 𝐾})) → ¬ 𝑁 ∈ {𝑀, 𝐾})
31 df-nel 3049 . . . . . 6 (𝑁 ∉ {𝑀, 𝐾} ↔ ¬ 𝑁 ∈ {𝑀, 𝐾})
3230, 31sylibr 233 . . . . 5 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑀 ∈ (𝑉 ∖ {𝑁, 𝐾})) → 𝑁 ∉ {𝑀, 𝐾})
3332adantr 480 . . . 4 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑀 ∈ (𝑉 ∖ {𝑁, 𝐾})) ∧ 𝑀 ∈ (𝐺 NeighbVtx 𝐾)) → 𝑁 ∉ {𝑀, 𝐾})
34 neleq2 3054 . . . . 5 (𝑒 = {𝑀, 𝐾} → (𝑁𝑒𝑁 ∉ {𝑀, 𝐾}))
35 nbupgrres.f . . . . 5 𝐹 = {𝑒𝐸𝑁𝑒}
3634, 35elrab2 3620 . . . 4 ({𝑀, 𝐾} ∈ 𝐹 ↔ ({𝑀, 𝐾} ∈ 𝐸𝑁 ∉ {𝑀, 𝐾}))
3715, 33, 36sylanbrc 582 . . 3 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑀 ∈ (𝑉 ∖ {𝑁, 𝐾})) ∧ 𝑀 ∈ (𝐺 NeighbVtx 𝐾)) → {𝑀, 𝐾} ∈ 𝐹)
38 nbupgrres.s . . . . . . . 8 𝑆 = ⟨(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)⟩
3911, 12, 35, 38upgrres1 27583 . . . . . . 7 ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → 𝑆 ∈ UPGraph)
40393ad2ant1 1131 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑀 ∈ (𝑉 ∖ {𝑁, 𝐾})) → 𝑆 ∈ UPGraph)
41 simp2 1135 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑀 ∈ (𝑉 ∖ {𝑁, 𝐾})) → 𝐾 ∈ (𝑉 ∖ {𝑁}))
4216, 4sylbb 218 . . . . . . 7 (𝑀 ∈ (𝑉 ∖ {𝑁, 𝐾}) → (𝑀 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑀𝐾))
43423ad2ant3 1133 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑀 ∈ (𝑉 ∖ {𝑁, 𝐾})) → (𝑀 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑀𝐾))
4440, 41, 43jca31 514 . . . . 5 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑀 ∈ (𝑉 ∖ {𝑁, 𝐾})) → ((𝑆 ∈ UPGraph ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) ∧ (𝑀 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑀𝐾)))
4544adantr 480 . . . 4 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑀 ∈ (𝑉 ∖ {𝑁, 𝐾})) ∧ 𝑀 ∈ (𝐺 NeighbVtx 𝐾)) → ((𝑆 ∈ UPGraph ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) ∧ (𝑀 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑀𝐾)))
4611, 12, 35, 38upgrres1lem2 27581 . . . . . 6 (Vtx‘𝑆) = (𝑉 ∖ {𝑁})
4746eqcomi 2747 . . . . 5 (𝑉 ∖ {𝑁}) = (Vtx‘𝑆)
48 edgval 27322 . . . . . 6 (Edg‘𝑆) = ran (iEdg‘𝑆)
4911, 12, 35, 38upgrres1lem3 27582 . . . . . . 7 (iEdg‘𝑆) = ( I ↾ 𝐹)
5049rneqi 5835 . . . . . 6 ran (iEdg‘𝑆) = ran ( I ↾ 𝐹)
51 rnresi 5972 . . . . . 6 ran ( I ↾ 𝐹) = 𝐹
5248, 50, 513eqtrri 2771 . . . . 5 𝐹 = (Edg‘𝑆)
5347, 52nbupgrel 27615 . . . 4 (((𝑆 ∈ UPGraph ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) ∧ (𝑀 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑀𝐾)) → (𝑀 ∈ (𝑆 NeighbVtx 𝐾) ↔ {𝑀, 𝐾} ∈ 𝐹))
5445, 53syl 17 . . 3 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑀 ∈ (𝑉 ∖ {𝑁, 𝐾})) ∧ 𝑀 ∈ (𝐺 NeighbVtx 𝐾)) → (𝑀 ∈ (𝑆 NeighbVtx 𝐾) ↔ {𝑀, 𝐾} ∈ 𝐹))
5537, 54mpbird 256 . 2 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑀 ∈ (𝑉 ∖ {𝑁, 𝐾})) ∧ 𝑀 ∈ (𝐺 NeighbVtx 𝐾)) → 𝑀 ∈ (𝑆 NeighbVtx 𝐾))
5655ex 412 1 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑀 ∈ (𝑉 ∖ {𝑁, 𝐾})) → (𝑀 ∈ (𝐺 NeighbVtx 𝐾) → 𝑀 ∈ (𝑆 NeighbVtx 𝐾)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wnel 3048  {crab 3067  cdif 3880  {csn 4558  {cpr 4560  cop 4564   I cid 5479  ran crn 5581  cres 5582  cfv 6418  (class class class)co 7255  Vtxcvtx 27269  iEdgciedg 27270  Edgcedg 27320  UPGraphcupgr 27353   NeighbVtx cnbgr 27602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-n0 12164  df-xnn0 12236  df-z 12250  df-uz 12512  df-fz 13169  df-hash 13973  df-vtx 27271  df-iedg 27272  df-edg 27321  df-upgr 27355  df-nbgr 27603
This theorem is referenced by:  nbupgruvtxres  27677
  Copyright terms: Public domain W3C validator