MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nbupgrres Structured version   Visualization version   GIF version

Theorem nbupgrres 29300
Description: The neighborhood of a vertex in a restricted pseudograph (not necessarily valid for a hypergraph, because 𝑁, 𝐾 and 𝑀 could be connected by one edge, so 𝑀 is a neighbor of 𝐾 in the original graph, but not in the restricted graph, because the edge between 𝑀 and 𝐾, also incident with 𝑁, was removed). (Contributed by Alexander van der Vekens, 2-Jan-2018.) (Revised by AV, 8-Nov-2020.)
Hypotheses
Ref Expression
nbupgrres.v 𝑉 = (Vtx‘𝐺)
nbupgrres.e 𝐸 = (Edg‘𝐺)
nbupgrres.f 𝐹 = {𝑒𝐸𝑁𝑒}
nbupgrres.s 𝑆 = ⟨(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)⟩
Assertion
Ref Expression
nbupgrres (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑀 ∈ (𝑉 ∖ {𝑁, 𝐾})) → (𝑀 ∈ (𝐺 NeighbVtx 𝐾) → 𝑀 ∈ (𝑆 NeighbVtx 𝐾)))
Distinct variable groups:   𝑒,𝐸   𝑒,𝐺   𝑒,𝐾   𝑒,𝑁   𝑒,𝑀   𝑒,𝑉
Allowed substitution hints:   𝑆(𝑒)   𝐹(𝑒)

Proof of Theorem nbupgrres
StepHypRef Expression
1 simp1l 1194 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑀 ∈ (𝑉 ∖ {𝑁, 𝐾})) → 𝐺 ∈ UPGraph)
2 eldifi 4126 . . . . . . 7 (𝐾 ∈ (𝑉 ∖ {𝑁}) → 𝐾𝑉)
323ad2ant2 1131 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑀 ∈ (𝑉 ∖ {𝑁, 𝐾})) → 𝐾𝑉)
4 eldifsn 4795 . . . . . . . . 9 (𝑀 ∈ ((𝑉 ∖ {𝑁}) ∖ {𝐾}) ↔ (𝑀 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑀𝐾))
5 eldifi 4126 . . . . . . . . . 10 (𝑀 ∈ (𝑉 ∖ {𝑁}) → 𝑀𝑉)
65anim1i 613 . . . . . . . . 9 ((𝑀 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑀𝐾) → (𝑀𝑉𝑀𝐾))
74, 6sylbi 216 . . . . . . . 8 (𝑀 ∈ ((𝑉 ∖ {𝑁}) ∖ {𝐾}) → (𝑀𝑉𝑀𝐾))
8 difpr 4812 . . . . . . . 8 (𝑉 ∖ {𝑁, 𝐾}) = ((𝑉 ∖ {𝑁}) ∖ {𝐾})
97, 8eleq2s 2844 . . . . . . 7 (𝑀 ∈ (𝑉 ∖ {𝑁, 𝐾}) → (𝑀𝑉𝑀𝐾))
1093ad2ant3 1132 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑀 ∈ (𝑉 ∖ {𝑁, 𝐾})) → (𝑀𝑉𝑀𝐾))
11 nbupgrres.v . . . . . . 7 𝑉 = (Vtx‘𝐺)
12 nbupgrres.e . . . . . . 7 𝐸 = (Edg‘𝐺)
1311, 12nbupgrel 29281 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝐾𝑉) ∧ (𝑀𝑉𝑀𝐾)) → (𝑀 ∈ (𝐺 NeighbVtx 𝐾) ↔ {𝑀, 𝐾} ∈ 𝐸))
141, 3, 10, 13syl21anc 836 . . . . 5 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑀 ∈ (𝑉 ∖ {𝑁, 𝐾})) → (𝑀 ∈ (𝐺 NeighbVtx 𝐾) ↔ {𝑀, 𝐾} ∈ 𝐸))
1514biimpa 475 . . . 4 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑀 ∈ (𝑉 ∖ {𝑁, 𝐾})) ∧ 𝑀 ∈ (𝐺 NeighbVtx 𝐾)) → {𝑀, 𝐾} ∈ 𝐸)
168eleq2i 2818 . . . . . . . . . 10 (𝑀 ∈ (𝑉 ∖ {𝑁, 𝐾}) ↔ 𝑀 ∈ ((𝑉 ∖ {𝑁}) ∖ {𝐾}))
17 eldifsn 4795 . . . . . . . . . . 11 (𝑀 ∈ (𝑉 ∖ {𝑁}) ↔ (𝑀𝑉𝑀𝑁))
1817anbi1i 622 . . . . . . . . . 10 ((𝑀 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑀𝐾) ↔ ((𝑀𝑉𝑀𝑁) ∧ 𝑀𝐾))
1916, 4, 183bitri 296 . . . . . . . . 9 (𝑀 ∈ (𝑉 ∖ {𝑁, 𝐾}) ↔ ((𝑀𝑉𝑀𝑁) ∧ 𝑀𝐾))
20 simpr 483 . . . . . . . . . . 11 ((𝑀𝑉𝑀𝑁) → 𝑀𝑁)
2120necomd 2986 . . . . . . . . . 10 ((𝑀𝑉𝑀𝑁) → 𝑁𝑀)
2221adantr 479 . . . . . . . . 9 (((𝑀𝑉𝑀𝑁) ∧ 𝑀𝐾) → 𝑁𝑀)
2319, 22sylbi 216 . . . . . . . 8 (𝑀 ∈ (𝑉 ∖ {𝑁, 𝐾}) → 𝑁𝑀)
24233ad2ant3 1132 . . . . . . 7 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑀 ∈ (𝑉 ∖ {𝑁, 𝐾})) → 𝑁𝑀)
25 eldifsn 4795 . . . . . . . . 9 (𝐾 ∈ (𝑉 ∖ {𝑁}) ↔ (𝐾𝑉𝐾𝑁))
26 simpr 483 . . . . . . . . . 10 ((𝐾𝑉𝐾𝑁) → 𝐾𝑁)
2726necomd 2986 . . . . . . . . 9 ((𝐾𝑉𝐾𝑁) → 𝑁𝐾)
2825, 27sylbi 216 . . . . . . . 8 (𝐾 ∈ (𝑉 ∖ {𝑁}) → 𝑁𝐾)
29283ad2ant2 1131 . . . . . . 7 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑀 ∈ (𝑉 ∖ {𝑁, 𝐾})) → 𝑁𝐾)
3024, 29nelprd 4664 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑀 ∈ (𝑉 ∖ {𝑁, 𝐾})) → ¬ 𝑁 ∈ {𝑀, 𝐾})
31 df-nel 3037 . . . . . 6 (𝑁 ∉ {𝑀, 𝐾} ↔ ¬ 𝑁 ∈ {𝑀, 𝐾})
3230, 31sylibr 233 . . . . 5 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑀 ∈ (𝑉 ∖ {𝑁, 𝐾})) → 𝑁 ∉ {𝑀, 𝐾})
3332adantr 479 . . . 4 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑀 ∈ (𝑉 ∖ {𝑁, 𝐾})) ∧ 𝑀 ∈ (𝐺 NeighbVtx 𝐾)) → 𝑁 ∉ {𝑀, 𝐾})
34 neleq2 3043 . . . . 5 (𝑒 = {𝑀, 𝐾} → (𝑁𝑒𝑁 ∉ {𝑀, 𝐾}))
35 nbupgrres.f . . . . 5 𝐹 = {𝑒𝐸𝑁𝑒}
3634, 35elrab2 3684 . . . 4 ({𝑀, 𝐾} ∈ 𝐹 ↔ ({𝑀, 𝐾} ∈ 𝐸𝑁 ∉ {𝑀, 𝐾}))
3715, 33, 36sylanbrc 581 . . 3 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑀 ∈ (𝑉 ∖ {𝑁, 𝐾})) ∧ 𝑀 ∈ (𝐺 NeighbVtx 𝐾)) → {𝑀, 𝐾} ∈ 𝐹)
38 nbupgrres.s . . . . . . . 8 𝑆 = ⟨(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)⟩
3911, 12, 35, 38upgrres1 29249 . . . . . . 7 ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → 𝑆 ∈ UPGraph)
40393ad2ant1 1130 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑀 ∈ (𝑉 ∖ {𝑁, 𝐾})) → 𝑆 ∈ UPGraph)
41 simp2 1134 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑀 ∈ (𝑉 ∖ {𝑁, 𝐾})) → 𝐾 ∈ (𝑉 ∖ {𝑁}))
4216, 4sylbb 218 . . . . . . 7 (𝑀 ∈ (𝑉 ∖ {𝑁, 𝐾}) → (𝑀 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑀𝐾))
43423ad2ant3 1132 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑀 ∈ (𝑉 ∖ {𝑁, 𝐾})) → (𝑀 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑀𝐾))
4440, 41, 43jca31 513 . . . . 5 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑀 ∈ (𝑉 ∖ {𝑁, 𝐾})) → ((𝑆 ∈ UPGraph ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) ∧ (𝑀 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑀𝐾)))
4544adantr 479 . . . 4 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑀 ∈ (𝑉 ∖ {𝑁, 𝐾})) ∧ 𝑀 ∈ (𝐺 NeighbVtx 𝐾)) → ((𝑆 ∈ UPGraph ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) ∧ (𝑀 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑀𝐾)))
4611, 12, 35, 38upgrres1lem2 29247 . . . . . 6 (Vtx‘𝑆) = (𝑉 ∖ {𝑁})
4746eqcomi 2735 . . . . 5 (𝑉 ∖ {𝑁}) = (Vtx‘𝑆)
48 edgval 28985 . . . . . 6 (Edg‘𝑆) = ran (iEdg‘𝑆)
4911, 12, 35, 38upgrres1lem3 29248 . . . . . . 7 (iEdg‘𝑆) = ( I ↾ 𝐹)
5049rneqi 5943 . . . . . 6 ran (iEdg‘𝑆) = ran ( I ↾ 𝐹)
51 rnresi 6084 . . . . . 6 ran ( I ↾ 𝐹) = 𝐹
5248, 50, 513eqtrri 2759 . . . . 5 𝐹 = (Edg‘𝑆)
5347, 52nbupgrel 29281 . . . 4 (((𝑆 ∈ UPGraph ∧ 𝐾 ∈ (𝑉 ∖ {𝑁})) ∧ (𝑀 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑀𝐾)) → (𝑀 ∈ (𝑆 NeighbVtx 𝐾) ↔ {𝑀, 𝐾} ∈ 𝐹))
5445, 53syl 17 . . 3 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑀 ∈ (𝑉 ∖ {𝑁, 𝐾})) ∧ 𝑀 ∈ (𝐺 NeighbVtx 𝐾)) → (𝑀 ∈ (𝑆 NeighbVtx 𝐾) ↔ {𝑀, 𝐾} ∈ 𝐹))
5537, 54mpbird 256 . 2 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑀 ∈ (𝑉 ∖ {𝑁, 𝐾})) ∧ 𝑀 ∈ (𝐺 NeighbVtx 𝐾)) → 𝑀 ∈ (𝑆 NeighbVtx 𝐾))
5655ex 411 1 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝐾 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑀 ∈ (𝑉 ∖ {𝑁, 𝐾})) → (𝑀 ∈ (𝐺 NeighbVtx 𝐾) → 𝑀 ∈ (𝑆 NeighbVtx 𝐾)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  w3a 1084   = wceq 1534  wcel 2099  wne 2930  wnel 3036  {crab 3419  cdif 3944  {csn 4633  {cpr 4635  cop 4639   I cid 5579  ran crn 5683  cres 5684  cfv 6554  (class class class)co 7424  Vtxcvtx 28932  iEdgciedg 28933  Edgcedg 28983  UPGraphcupgr 29016   NeighbVtx cnbgr 29268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-int 4955  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7877  df-1st 8003  df-2nd 8004  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-1o 8496  df-2o 8497  df-oadd 8500  df-er 8734  df-en 8975  df-dom 8976  df-sdom 8977  df-fin 8978  df-dju 9944  df-card 9982  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-nn 12265  df-2 12327  df-n0 12525  df-xnn0 12597  df-z 12611  df-uz 12875  df-fz 13539  df-hash 14348  df-vtx 28934  df-iedg 28935  df-edg 28984  df-upgr 29018  df-nbgr 29269
This theorem is referenced by:  nbupgruvtxres  29343
  Copyright terms: Public domain W3C validator