![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frgrncvvdeqlem1 | Structured version Visualization version GIF version |
Description: Lemma 1 for frgrncvvdeq 29562. (Contributed by Alexander van der Vekens, 23-Dec-2017.) (Revised by AV, 8-May-2021.) (Proof shortened by AV, 12-Feb-2022.) |
Ref | Expression |
---|---|
frgrncvvdeq.v1 | ⊢ 𝑉 = (Vtx‘𝐺) |
frgrncvvdeq.e | ⊢ 𝐸 = (Edg‘𝐺) |
frgrncvvdeq.nx | ⊢ 𝐷 = (𝐺 NeighbVtx 𝑋) |
frgrncvvdeq.ny | ⊢ 𝑁 = (𝐺 NeighbVtx 𝑌) |
frgrncvvdeq.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
frgrncvvdeq.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
frgrncvvdeq.ne | ⊢ (𝜑 → 𝑋 ≠ 𝑌) |
frgrncvvdeq.xy | ⊢ (𝜑 → 𝑌 ∉ 𝐷) |
frgrncvvdeq.f | ⊢ (𝜑 → 𝐺 ∈ FriendGraph ) |
frgrncvvdeq.a | ⊢ 𝐴 = (𝑥 ∈ 𝐷 ↦ (℩𝑦 ∈ 𝑁 {𝑥, 𝑦} ∈ 𝐸)) |
Ref | Expression |
---|---|
frgrncvvdeqlem1 | ⊢ (𝜑 → 𝑋 ∉ 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frgrncvvdeq.xy | . . . 4 ⊢ (𝜑 → 𝑌 ∉ 𝐷) | |
2 | df-nel 3048 | . . . . 5 ⊢ (𝑌 ∉ 𝐷 ↔ ¬ 𝑌 ∈ 𝐷) | |
3 | frgrncvvdeq.nx | . . . . . 6 ⊢ 𝐷 = (𝐺 NeighbVtx 𝑋) | |
4 | 3 | eleq2i 2826 | . . . . 5 ⊢ (𝑌 ∈ 𝐷 ↔ 𝑌 ∈ (𝐺 NeighbVtx 𝑋)) |
5 | 2, 4 | xchbinx 334 | . . . 4 ⊢ (𝑌 ∉ 𝐷 ↔ ¬ 𝑌 ∈ (𝐺 NeighbVtx 𝑋)) |
6 | 1, 5 | sylib 217 | . . 3 ⊢ (𝜑 → ¬ 𝑌 ∈ (𝐺 NeighbVtx 𝑋)) |
7 | nbgrsym 28620 | . . 3 ⊢ (𝑋 ∈ (𝐺 NeighbVtx 𝑌) ↔ 𝑌 ∈ (𝐺 NeighbVtx 𝑋)) | |
8 | 6, 7 | sylnibr 329 | . 2 ⊢ (𝜑 → ¬ 𝑋 ∈ (𝐺 NeighbVtx 𝑌)) |
9 | frgrncvvdeq.ny | . . . 4 ⊢ 𝑁 = (𝐺 NeighbVtx 𝑌) | |
10 | neleq2 3054 | . . . 4 ⊢ (𝑁 = (𝐺 NeighbVtx 𝑌) → (𝑋 ∉ 𝑁 ↔ 𝑋 ∉ (𝐺 NeighbVtx 𝑌))) | |
11 | 9, 10 | ax-mp 5 | . . 3 ⊢ (𝑋 ∉ 𝑁 ↔ 𝑋 ∉ (𝐺 NeighbVtx 𝑌)) |
12 | df-nel 3048 | . . 3 ⊢ (𝑋 ∉ (𝐺 NeighbVtx 𝑌) ↔ ¬ 𝑋 ∈ (𝐺 NeighbVtx 𝑌)) | |
13 | 11, 12 | bitri 275 | . 2 ⊢ (𝑋 ∉ 𝑁 ↔ ¬ 𝑋 ∈ (𝐺 NeighbVtx 𝑌)) |
14 | 8, 13 | sylibr 233 | 1 ⊢ (𝜑 → 𝑋 ∉ 𝑁) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 = wceq 1542 ∈ wcel 2107 ≠ wne 2941 ∉ wnel 3047 {cpr 4631 ↦ cmpt 5232 ‘cfv 6544 ℩crio 7364 (class class class)co 7409 Vtxcvtx 28256 Edgcedg 28307 NeighbVtx cnbgr 28589 FriendGraph cfrgr 29511 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 df-1st 7975 df-2nd 7976 df-nbgr 28590 |
This theorem is referenced by: frgrncvvdeqlem7 29558 frgrncvvdeqlem8 29559 frgrncvvdeqlem9 29560 |
Copyright terms: Public domain | W3C validator |