![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frgrncvvdeqlem1 | Structured version Visualization version GIF version |
Description: Lemma 1 for frgrncvvdeq 30242. (Contributed by Alexander van der Vekens, 23-Dec-2017.) (Revised by AV, 8-May-2021.) (Proof shortened by AV, 12-Feb-2022.) |
Ref | Expression |
---|---|
frgrncvvdeq.v1 | ⊢ 𝑉 = (Vtx‘𝐺) |
frgrncvvdeq.e | ⊢ 𝐸 = (Edg‘𝐺) |
frgrncvvdeq.nx | ⊢ 𝐷 = (𝐺 NeighbVtx 𝑋) |
frgrncvvdeq.ny | ⊢ 𝑁 = (𝐺 NeighbVtx 𝑌) |
frgrncvvdeq.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
frgrncvvdeq.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
frgrncvvdeq.ne | ⊢ (𝜑 → 𝑋 ≠ 𝑌) |
frgrncvvdeq.xy | ⊢ (𝜑 → 𝑌 ∉ 𝐷) |
frgrncvvdeq.f | ⊢ (𝜑 → 𝐺 ∈ FriendGraph ) |
frgrncvvdeq.a | ⊢ 𝐴 = (𝑥 ∈ 𝐷 ↦ (℩𝑦 ∈ 𝑁 {𝑥, 𝑦} ∈ 𝐸)) |
Ref | Expression |
---|---|
frgrncvvdeqlem1 | ⊢ (𝜑 → 𝑋 ∉ 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frgrncvvdeq.xy | . . . 4 ⊢ (𝜑 → 𝑌 ∉ 𝐷) | |
2 | df-nel 3037 | . . . . 5 ⊢ (𝑌 ∉ 𝐷 ↔ ¬ 𝑌 ∈ 𝐷) | |
3 | frgrncvvdeq.nx | . . . . . 6 ⊢ 𝐷 = (𝐺 NeighbVtx 𝑋) | |
4 | 3 | eleq2i 2818 | . . . . 5 ⊢ (𝑌 ∈ 𝐷 ↔ 𝑌 ∈ (𝐺 NeighbVtx 𝑋)) |
5 | 2, 4 | xchbinx 333 | . . . 4 ⊢ (𝑌 ∉ 𝐷 ↔ ¬ 𝑌 ∈ (𝐺 NeighbVtx 𝑋)) |
6 | 1, 5 | sylib 217 | . . 3 ⊢ (𝜑 → ¬ 𝑌 ∈ (𝐺 NeighbVtx 𝑋)) |
7 | nbgrsym 29299 | . . 3 ⊢ (𝑋 ∈ (𝐺 NeighbVtx 𝑌) ↔ 𝑌 ∈ (𝐺 NeighbVtx 𝑋)) | |
8 | 6, 7 | sylnibr 328 | . 2 ⊢ (𝜑 → ¬ 𝑋 ∈ (𝐺 NeighbVtx 𝑌)) |
9 | frgrncvvdeq.ny | . . . 4 ⊢ 𝑁 = (𝐺 NeighbVtx 𝑌) | |
10 | neleq2 3043 | . . . 4 ⊢ (𝑁 = (𝐺 NeighbVtx 𝑌) → (𝑋 ∉ 𝑁 ↔ 𝑋 ∉ (𝐺 NeighbVtx 𝑌))) | |
11 | 9, 10 | ax-mp 5 | . . 3 ⊢ (𝑋 ∉ 𝑁 ↔ 𝑋 ∉ (𝐺 NeighbVtx 𝑌)) |
12 | df-nel 3037 | . . 3 ⊢ (𝑋 ∉ (𝐺 NeighbVtx 𝑌) ↔ ¬ 𝑋 ∈ (𝐺 NeighbVtx 𝑌)) | |
13 | 11, 12 | bitri 274 | . 2 ⊢ (𝑋 ∉ 𝑁 ↔ ¬ 𝑋 ∈ (𝐺 NeighbVtx 𝑌)) |
14 | 8, 13 | sylibr 233 | 1 ⊢ (𝜑 → 𝑋 ∉ 𝑁) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 = wceq 1534 ∈ wcel 2099 ≠ wne 2930 ∉ wnel 3036 {cpr 4635 ↦ cmpt 5236 ‘cfv 6554 ℩crio 7379 (class class class)co 7424 Vtxcvtx 28932 Edgcedg 28983 NeighbVtx cnbgr 29268 FriendGraph cfrgr 30191 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4326 df-if 4534 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6506 df-fun 6556 df-fv 6562 df-ov 7427 df-oprab 7428 df-mpo 7429 df-1st 8003 df-2nd 8004 df-nbgr 29269 |
This theorem is referenced by: frgrncvvdeqlem7 30238 frgrncvvdeqlem8 30239 frgrncvvdeqlem9 30240 |
Copyright terms: Public domain | W3C validator |