MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrncvvdeqlem1 Structured version   Visualization version   GIF version

Theorem frgrncvvdeqlem1 27707
Description: Lemma 1 for frgrncvvdeq 27717. (Contributed by Alexander van der Vekens, 23-Dec-2017.) (Revised by AV, 8-May-2021.) (Proof shortened by AV, 12-Feb-2022.)
Hypotheses
Ref Expression
frgrncvvdeq.v1 𝑉 = (Vtx‘𝐺)
frgrncvvdeq.e 𝐸 = (Edg‘𝐺)
frgrncvvdeq.nx 𝐷 = (𝐺 NeighbVtx 𝑋)
frgrncvvdeq.ny 𝑁 = (𝐺 NeighbVtx 𝑌)
frgrncvvdeq.x (𝜑𝑋𝑉)
frgrncvvdeq.y (𝜑𝑌𝑉)
frgrncvvdeq.ne (𝜑𝑋𝑌)
frgrncvvdeq.xy (𝜑𝑌𝐷)
frgrncvvdeq.f (𝜑𝐺 ∈ FriendGraph )
frgrncvvdeq.a 𝐴 = (𝑥𝐷 ↦ (𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸))
Assertion
Ref Expression
frgrncvvdeqlem1 (𝜑𝑋𝑁)

Proof of Theorem frgrncvvdeqlem1
StepHypRef Expression
1 frgrncvvdeq.xy . . . 4 (𝜑𝑌𝐷)
2 df-nel 3076 . . . . 5 (𝑌𝐷 ↔ ¬ 𝑌𝐷)
3 frgrncvvdeq.nx . . . . . 6 𝐷 = (𝐺 NeighbVtx 𝑋)
43eleq2i 2851 . . . . 5 (𝑌𝐷𝑌 ∈ (𝐺 NeighbVtx 𝑋))
52, 4xchbinx 326 . . . 4 (𝑌𝐷 ↔ ¬ 𝑌 ∈ (𝐺 NeighbVtx 𝑋))
61, 5sylib 210 . . 3 (𝜑 → ¬ 𝑌 ∈ (𝐺 NeighbVtx 𝑋))
7 nbgrsym 26710 . . 3 (𝑋 ∈ (𝐺 NeighbVtx 𝑌) ↔ 𝑌 ∈ (𝐺 NeighbVtx 𝑋))
86, 7sylnibr 321 . 2 (𝜑 → ¬ 𝑋 ∈ (𝐺 NeighbVtx 𝑌))
9 frgrncvvdeq.ny . . . 4 𝑁 = (𝐺 NeighbVtx 𝑌)
10 neleq2 3081 . . . 4 (𝑁 = (𝐺 NeighbVtx 𝑌) → (𝑋𝑁𝑋 ∉ (𝐺 NeighbVtx 𝑌)))
119, 10ax-mp 5 . . 3 (𝑋𝑁𝑋 ∉ (𝐺 NeighbVtx 𝑌))
12 df-nel 3076 . . 3 (𝑋 ∉ (𝐺 NeighbVtx 𝑌) ↔ ¬ 𝑋 ∈ (𝐺 NeighbVtx 𝑌))
1311, 12bitri 267 . 2 (𝑋𝑁 ↔ ¬ 𝑋 ∈ (𝐺 NeighbVtx 𝑌))
148, 13sylibr 226 1 (𝜑𝑋𝑁)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198   = wceq 1601  wcel 2107  wne 2969  wnel 3075  {cpr 4400  cmpt 4965  cfv 6135  crio 6882  (class class class)co 6922  Vtxcvtx 26344  Edgcedg 26395   NeighbVtx cnbgr 26679   FriendGraph cfrgr 27664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-fal 1615  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4672  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-id 5261  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-iota 6099  df-fun 6137  df-fv 6143  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-1st 7445  df-2nd 7446  df-nbgr 26680
This theorem is referenced by:  frgrncvvdeqlem7  27713  frgrncvvdeqlem8  27714  frgrncvvdeqlem9  27715
  Copyright terms: Public domain W3C validator