MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrncvvdeqlem1 Structured version   Visualization version   GIF version

Theorem frgrncvvdeqlem1 30285
Description: Lemma 1 for frgrncvvdeq 30295. (Contributed by Alexander van der Vekens, 23-Dec-2017.) (Revised by AV, 8-May-2021.) (Proof shortened by AV, 12-Feb-2022.)
Hypotheses
Ref Expression
frgrncvvdeq.v1 𝑉 = (Vtx‘𝐺)
frgrncvvdeq.e 𝐸 = (Edg‘𝐺)
frgrncvvdeq.nx 𝐷 = (𝐺 NeighbVtx 𝑋)
frgrncvvdeq.ny 𝑁 = (𝐺 NeighbVtx 𝑌)
frgrncvvdeq.x (𝜑𝑋𝑉)
frgrncvvdeq.y (𝜑𝑌𝑉)
frgrncvvdeq.ne (𝜑𝑋𝑌)
frgrncvvdeq.xy (𝜑𝑌𝐷)
frgrncvvdeq.f (𝜑𝐺 ∈ FriendGraph )
frgrncvvdeq.a 𝐴 = (𝑥𝐷 ↦ (𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸))
Assertion
Ref Expression
frgrncvvdeqlem1 (𝜑𝑋𝑁)

Proof of Theorem frgrncvvdeqlem1
StepHypRef Expression
1 frgrncvvdeq.xy . . . 4 (𝜑𝑌𝐷)
2 df-nel 3038 . . . . 5 (𝑌𝐷 ↔ ¬ 𝑌𝐷)
3 frgrncvvdeq.nx . . . . . 6 𝐷 = (𝐺 NeighbVtx 𝑋)
43eleq2i 2827 . . . . 5 (𝑌𝐷𝑌 ∈ (𝐺 NeighbVtx 𝑋))
52, 4xchbinx 334 . . . 4 (𝑌𝐷 ↔ ¬ 𝑌 ∈ (𝐺 NeighbVtx 𝑋))
61, 5sylib 218 . . 3 (𝜑 → ¬ 𝑌 ∈ (𝐺 NeighbVtx 𝑋))
7 nbgrsym 29347 . . 3 (𝑋 ∈ (𝐺 NeighbVtx 𝑌) ↔ 𝑌 ∈ (𝐺 NeighbVtx 𝑋))
86, 7sylnibr 329 . 2 (𝜑 → ¬ 𝑋 ∈ (𝐺 NeighbVtx 𝑌))
9 frgrncvvdeq.ny . . . 4 𝑁 = (𝐺 NeighbVtx 𝑌)
10 neleq2 3044 . . . 4 (𝑁 = (𝐺 NeighbVtx 𝑌) → (𝑋𝑁𝑋 ∉ (𝐺 NeighbVtx 𝑌)))
119, 10ax-mp 5 . . 3 (𝑋𝑁𝑋 ∉ (𝐺 NeighbVtx 𝑌))
12 df-nel 3038 . . 3 (𝑋 ∉ (𝐺 NeighbVtx 𝑌) ↔ ¬ 𝑋 ∈ (𝐺 NeighbVtx 𝑌))
1311, 12bitri 275 . 2 (𝑋𝑁 ↔ ¬ 𝑋 ∈ (𝐺 NeighbVtx 𝑌))
148, 13sylibr 234 1 (𝜑𝑋𝑁)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206   = wceq 1540  wcel 2109  wne 2933  wnel 3037  {cpr 4608  cmpt 5206  cfv 6536  crio 7366  (class class class)co 7410  Vtxcvtx 28980  Edgcedg 29031   NeighbVtx cnbgr 29316   FriendGraph cfrgr 30244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-1st 7993  df-2nd 7994  df-nbgr 29317
This theorem is referenced by:  frgrncvvdeqlem7  30291  frgrncvvdeqlem8  30292  frgrncvvdeqlem9  30293
  Copyright terms: Public domain W3C validator