![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frgrncvvdeqlem1 | Structured version Visualization version GIF version |
Description: Lemma 1 for frgrncvvdeq 27717. (Contributed by Alexander van der Vekens, 23-Dec-2017.) (Revised by AV, 8-May-2021.) (Proof shortened by AV, 12-Feb-2022.) |
Ref | Expression |
---|---|
frgrncvvdeq.v1 | ⊢ 𝑉 = (Vtx‘𝐺) |
frgrncvvdeq.e | ⊢ 𝐸 = (Edg‘𝐺) |
frgrncvvdeq.nx | ⊢ 𝐷 = (𝐺 NeighbVtx 𝑋) |
frgrncvvdeq.ny | ⊢ 𝑁 = (𝐺 NeighbVtx 𝑌) |
frgrncvvdeq.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
frgrncvvdeq.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
frgrncvvdeq.ne | ⊢ (𝜑 → 𝑋 ≠ 𝑌) |
frgrncvvdeq.xy | ⊢ (𝜑 → 𝑌 ∉ 𝐷) |
frgrncvvdeq.f | ⊢ (𝜑 → 𝐺 ∈ FriendGraph ) |
frgrncvvdeq.a | ⊢ 𝐴 = (𝑥 ∈ 𝐷 ↦ (℩𝑦 ∈ 𝑁 {𝑥, 𝑦} ∈ 𝐸)) |
Ref | Expression |
---|---|
frgrncvvdeqlem1 | ⊢ (𝜑 → 𝑋 ∉ 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frgrncvvdeq.xy | . . . 4 ⊢ (𝜑 → 𝑌 ∉ 𝐷) | |
2 | df-nel 3076 | . . . . 5 ⊢ (𝑌 ∉ 𝐷 ↔ ¬ 𝑌 ∈ 𝐷) | |
3 | frgrncvvdeq.nx | . . . . . 6 ⊢ 𝐷 = (𝐺 NeighbVtx 𝑋) | |
4 | 3 | eleq2i 2851 | . . . . 5 ⊢ (𝑌 ∈ 𝐷 ↔ 𝑌 ∈ (𝐺 NeighbVtx 𝑋)) |
5 | 2, 4 | xchbinx 326 | . . . 4 ⊢ (𝑌 ∉ 𝐷 ↔ ¬ 𝑌 ∈ (𝐺 NeighbVtx 𝑋)) |
6 | 1, 5 | sylib 210 | . . 3 ⊢ (𝜑 → ¬ 𝑌 ∈ (𝐺 NeighbVtx 𝑋)) |
7 | nbgrsym 26710 | . . 3 ⊢ (𝑋 ∈ (𝐺 NeighbVtx 𝑌) ↔ 𝑌 ∈ (𝐺 NeighbVtx 𝑋)) | |
8 | 6, 7 | sylnibr 321 | . 2 ⊢ (𝜑 → ¬ 𝑋 ∈ (𝐺 NeighbVtx 𝑌)) |
9 | frgrncvvdeq.ny | . . . 4 ⊢ 𝑁 = (𝐺 NeighbVtx 𝑌) | |
10 | neleq2 3081 | . . . 4 ⊢ (𝑁 = (𝐺 NeighbVtx 𝑌) → (𝑋 ∉ 𝑁 ↔ 𝑋 ∉ (𝐺 NeighbVtx 𝑌))) | |
11 | 9, 10 | ax-mp 5 | . . 3 ⊢ (𝑋 ∉ 𝑁 ↔ 𝑋 ∉ (𝐺 NeighbVtx 𝑌)) |
12 | df-nel 3076 | . . 3 ⊢ (𝑋 ∉ (𝐺 NeighbVtx 𝑌) ↔ ¬ 𝑋 ∈ (𝐺 NeighbVtx 𝑌)) | |
13 | 11, 12 | bitri 267 | . 2 ⊢ (𝑋 ∉ 𝑁 ↔ ¬ 𝑋 ∈ (𝐺 NeighbVtx 𝑌)) |
14 | 8, 13 | sylibr 226 | 1 ⊢ (𝜑 → 𝑋 ∉ 𝑁) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 = wceq 1601 ∈ wcel 2107 ≠ wne 2969 ∉ wnel 3075 {cpr 4400 ↦ cmpt 4965 ‘cfv 6135 ℩crio 6882 (class class class)co 6922 Vtxcvtx 26344 Edgcedg 26395 NeighbVtx cnbgr 26679 FriendGraph cfrgr 27664 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-fal 1615 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4672 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-id 5261 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-iota 6099 df-fun 6137 df-fv 6143 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-1st 7445 df-2nd 7446 df-nbgr 26680 |
This theorem is referenced by: frgrncvvdeqlem7 27713 frgrncvvdeqlem8 27714 frgrncvvdeqlem9 27715 |
Copyright terms: Public domain | W3C validator |