| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > frgrncvvdeqlem1 | Structured version Visualization version GIF version | ||
| Description: Lemma 1 for frgrncvvdeq 30288. (Contributed by Alexander van der Vekens, 23-Dec-2017.) (Revised by AV, 8-May-2021.) (Proof shortened by AV, 12-Feb-2022.) |
| Ref | Expression |
|---|---|
| frgrncvvdeq.v1 | ⊢ 𝑉 = (Vtx‘𝐺) |
| frgrncvvdeq.e | ⊢ 𝐸 = (Edg‘𝐺) |
| frgrncvvdeq.nx | ⊢ 𝐷 = (𝐺 NeighbVtx 𝑋) |
| frgrncvvdeq.ny | ⊢ 𝑁 = (𝐺 NeighbVtx 𝑌) |
| frgrncvvdeq.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| frgrncvvdeq.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
| frgrncvvdeq.ne | ⊢ (𝜑 → 𝑋 ≠ 𝑌) |
| frgrncvvdeq.xy | ⊢ (𝜑 → 𝑌 ∉ 𝐷) |
| frgrncvvdeq.f | ⊢ (𝜑 → 𝐺 ∈ FriendGraph ) |
| frgrncvvdeq.a | ⊢ 𝐴 = (𝑥 ∈ 𝐷 ↦ (℩𝑦 ∈ 𝑁 {𝑥, 𝑦} ∈ 𝐸)) |
| Ref | Expression |
|---|---|
| frgrncvvdeqlem1 | ⊢ (𝜑 → 𝑋 ∉ 𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frgrncvvdeq.xy | . . . 4 ⊢ (𝜑 → 𝑌 ∉ 𝐷) | |
| 2 | df-nel 3030 | . . . . 5 ⊢ (𝑌 ∉ 𝐷 ↔ ¬ 𝑌 ∈ 𝐷) | |
| 3 | frgrncvvdeq.nx | . . . . . 6 ⊢ 𝐷 = (𝐺 NeighbVtx 𝑋) | |
| 4 | 3 | eleq2i 2820 | . . . . 5 ⊢ (𝑌 ∈ 𝐷 ↔ 𝑌 ∈ (𝐺 NeighbVtx 𝑋)) |
| 5 | 2, 4 | xchbinx 334 | . . . 4 ⊢ (𝑌 ∉ 𝐷 ↔ ¬ 𝑌 ∈ (𝐺 NeighbVtx 𝑋)) |
| 6 | 1, 5 | sylib 218 | . . 3 ⊢ (𝜑 → ¬ 𝑌 ∈ (𝐺 NeighbVtx 𝑋)) |
| 7 | nbgrsym 29343 | . . 3 ⊢ (𝑋 ∈ (𝐺 NeighbVtx 𝑌) ↔ 𝑌 ∈ (𝐺 NeighbVtx 𝑋)) | |
| 8 | 6, 7 | sylnibr 329 | . 2 ⊢ (𝜑 → ¬ 𝑋 ∈ (𝐺 NeighbVtx 𝑌)) |
| 9 | frgrncvvdeq.ny | . . . 4 ⊢ 𝑁 = (𝐺 NeighbVtx 𝑌) | |
| 10 | neleq2 3036 | . . . 4 ⊢ (𝑁 = (𝐺 NeighbVtx 𝑌) → (𝑋 ∉ 𝑁 ↔ 𝑋 ∉ (𝐺 NeighbVtx 𝑌))) | |
| 11 | 9, 10 | ax-mp 5 | . . 3 ⊢ (𝑋 ∉ 𝑁 ↔ 𝑋 ∉ (𝐺 NeighbVtx 𝑌)) |
| 12 | df-nel 3030 | . . 3 ⊢ (𝑋 ∉ (𝐺 NeighbVtx 𝑌) ↔ ¬ 𝑋 ∈ (𝐺 NeighbVtx 𝑌)) | |
| 13 | 11, 12 | bitri 275 | . 2 ⊢ (𝑋 ∉ 𝑁 ↔ ¬ 𝑋 ∈ (𝐺 NeighbVtx 𝑌)) |
| 14 | 8, 13 | sylibr 234 | 1 ⊢ (𝜑 → 𝑋 ∉ 𝑁) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∉ wnel 3029 {cpr 4587 ↦ cmpt 5183 ‘cfv 6499 ℩crio 7325 (class class class)co 7369 Vtxcvtx 28976 Edgcedg 29027 NeighbVtx cnbgr 29312 FriendGraph cfrgr 30237 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 df-nbgr 29313 |
| This theorem is referenced by: frgrncvvdeqlem7 30284 frgrncvvdeqlem8 30285 frgrncvvdeqlem9 30286 |
| Copyright terms: Public domain | W3C validator |