MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrncvvdeqlem1 Structured version   Visualization version   GIF version

Theorem frgrncvvdeqlem1 30331
Description: Lemma 1 for frgrncvvdeq 30341. (Contributed by Alexander van der Vekens, 23-Dec-2017.) (Revised by AV, 8-May-2021.) (Proof shortened by AV, 12-Feb-2022.)
Hypotheses
Ref Expression
frgrncvvdeq.v1 𝑉 = (Vtx‘𝐺)
frgrncvvdeq.e 𝐸 = (Edg‘𝐺)
frgrncvvdeq.nx 𝐷 = (𝐺 NeighbVtx 𝑋)
frgrncvvdeq.ny 𝑁 = (𝐺 NeighbVtx 𝑌)
frgrncvvdeq.x (𝜑𝑋𝑉)
frgrncvvdeq.y (𝜑𝑌𝑉)
frgrncvvdeq.ne (𝜑𝑋𝑌)
frgrncvvdeq.xy (𝜑𝑌𝐷)
frgrncvvdeq.f (𝜑𝐺 ∈ FriendGraph )
frgrncvvdeq.a 𝐴 = (𝑥𝐷 ↦ (𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸))
Assertion
Ref Expression
frgrncvvdeqlem1 (𝜑𝑋𝑁)

Proof of Theorem frgrncvvdeqlem1
StepHypRef Expression
1 frgrncvvdeq.xy . . . 4 (𝜑𝑌𝐷)
2 df-nel 3053 . . . . 5 (𝑌𝐷 ↔ ¬ 𝑌𝐷)
3 frgrncvvdeq.nx . . . . . 6 𝐷 = (𝐺 NeighbVtx 𝑋)
43eleq2i 2836 . . . . 5 (𝑌𝐷𝑌 ∈ (𝐺 NeighbVtx 𝑋))
52, 4xchbinx 334 . . . 4 (𝑌𝐷 ↔ ¬ 𝑌 ∈ (𝐺 NeighbVtx 𝑋))
61, 5sylib 218 . . 3 (𝜑 → ¬ 𝑌 ∈ (𝐺 NeighbVtx 𝑋))
7 nbgrsym 29398 . . 3 (𝑋 ∈ (𝐺 NeighbVtx 𝑌) ↔ 𝑌 ∈ (𝐺 NeighbVtx 𝑋))
86, 7sylnibr 329 . 2 (𝜑 → ¬ 𝑋 ∈ (𝐺 NeighbVtx 𝑌))
9 frgrncvvdeq.ny . . . 4 𝑁 = (𝐺 NeighbVtx 𝑌)
10 neleq2 3059 . . . 4 (𝑁 = (𝐺 NeighbVtx 𝑌) → (𝑋𝑁𝑋 ∉ (𝐺 NeighbVtx 𝑌)))
119, 10ax-mp 5 . . 3 (𝑋𝑁𝑋 ∉ (𝐺 NeighbVtx 𝑌))
12 df-nel 3053 . . 3 (𝑋 ∉ (𝐺 NeighbVtx 𝑌) ↔ ¬ 𝑋 ∈ (𝐺 NeighbVtx 𝑌))
1311, 12bitri 275 . 2 (𝑋𝑁 ↔ ¬ 𝑋 ∈ (𝐺 NeighbVtx 𝑌))
148, 13sylibr 234 1 (𝜑𝑋𝑁)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206   = wceq 1537  wcel 2108  wne 2946  wnel 3052  {cpr 4650  cmpt 5249  cfv 6573  crio 7403  (class class class)co 7448  Vtxcvtx 29031  Edgcedg 29082   NeighbVtx cnbgr 29367   FriendGraph cfrgr 30290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-nbgr 29368
This theorem is referenced by:  frgrncvvdeqlem7  30337  frgrncvvdeqlem8  30338  frgrncvvdeqlem9  30339
  Copyright terms: Public domain W3C validator