| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > frgrncvvdeqlem1 | Structured version Visualization version GIF version | ||
| Description: Lemma 1 for frgrncvvdeq 30289. (Contributed by Alexander van der Vekens, 23-Dec-2017.) (Revised by AV, 8-May-2021.) (Proof shortened by AV, 12-Feb-2022.) |
| Ref | Expression |
|---|---|
| frgrncvvdeq.v1 | ⊢ 𝑉 = (Vtx‘𝐺) |
| frgrncvvdeq.e | ⊢ 𝐸 = (Edg‘𝐺) |
| frgrncvvdeq.nx | ⊢ 𝐷 = (𝐺 NeighbVtx 𝑋) |
| frgrncvvdeq.ny | ⊢ 𝑁 = (𝐺 NeighbVtx 𝑌) |
| frgrncvvdeq.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| frgrncvvdeq.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
| frgrncvvdeq.ne | ⊢ (𝜑 → 𝑋 ≠ 𝑌) |
| frgrncvvdeq.xy | ⊢ (𝜑 → 𝑌 ∉ 𝐷) |
| frgrncvvdeq.f | ⊢ (𝜑 → 𝐺 ∈ FriendGraph ) |
| frgrncvvdeq.a | ⊢ 𝐴 = (𝑥 ∈ 𝐷 ↦ (℩𝑦 ∈ 𝑁 {𝑥, 𝑦} ∈ 𝐸)) |
| Ref | Expression |
|---|---|
| frgrncvvdeqlem1 | ⊢ (𝜑 → 𝑋 ∉ 𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frgrncvvdeq.xy | . . . 4 ⊢ (𝜑 → 𝑌 ∉ 𝐷) | |
| 2 | df-nel 3033 | . . . . 5 ⊢ (𝑌 ∉ 𝐷 ↔ ¬ 𝑌 ∈ 𝐷) | |
| 3 | frgrncvvdeq.nx | . . . . . 6 ⊢ 𝐷 = (𝐺 NeighbVtx 𝑋) | |
| 4 | 3 | eleq2i 2823 | . . . . 5 ⊢ (𝑌 ∈ 𝐷 ↔ 𝑌 ∈ (𝐺 NeighbVtx 𝑋)) |
| 5 | 2, 4 | xchbinx 334 | . . . 4 ⊢ (𝑌 ∉ 𝐷 ↔ ¬ 𝑌 ∈ (𝐺 NeighbVtx 𝑋)) |
| 6 | 1, 5 | sylib 218 | . . 3 ⊢ (𝜑 → ¬ 𝑌 ∈ (𝐺 NeighbVtx 𝑋)) |
| 7 | nbgrsym 29341 | . . 3 ⊢ (𝑋 ∈ (𝐺 NeighbVtx 𝑌) ↔ 𝑌 ∈ (𝐺 NeighbVtx 𝑋)) | |
| 8 | 6, 7 | sylnibr 329 | . 2 ⊢ (𝜑 → ¬ 𝑋 ∈ (𝐺 NeighbVtx 𝑌)) |
| 9 | frgrncvvdeq.ny | . . . 4 ⊢ 𝑁 = (𝐺 NeighbVtx 𝑌) | |
| 10 | neleq2 3039 | . . . 4 ⊢ (𝑁 = (𝐺 NeighbVtx 𝑌) → (𝑋 ∉ 𝑁 ↔ 𝑋 ∉ (𝐺 NeighbVtx 𝑌))) | |
| 11 | 9, 10 | ax-mp 5 | . . 3 ⊢ (𝑋 ∉ 𝑁 ↔ 𝑋 ∉ (𝐺 NeighbVtx 𝑌)) |
| 12 | df-nel 3033 | . . 3 ⊢ (𝑋 ∉ (𝐺 NeighbVtx 𝑌) ↔ ¬ 𝑋 ∈ (𝐺 NeighbVtx 𝑌)) | |
| 13 | 11, 12 | bitri 275 | . 2 ⊢ (𝑋 ∉ 𝑁 ↔ ¬ 𝑋 ∈ (𝐺 NeighbVtx 𝑌)) |
| 14 | 8, 13 | sylibr 234 | 1 ⊢ (𝜑 → 𝑋 ∉ 𝑁) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∉ wnel 3032 {cpr 4575 ↦ cmpt 5170 ‘cfv 6481 ℩crio 7302 (class class class)co 7346 Vtxcvtx 28974 Edgcedg 29025 NeighbVtx cnbgr 29310 FriendGraph cfrgr 30238 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-nbgr 29311 |
| This theorem is referenced by: frgrncvvdeqlem7 30285 frgrncvvdeqlem8 30286 frgrncvvdeqlem9 30287 |
| Copyright terms: Public domain | W3C validator |