MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrwopreglem4a Structured version   Visualization version   GIF version

Theorem frgrwopreglem4a 30239
Description: In a friendship graph any two vertices with different degrees are connected. Alternate version of frgrwopreglem4 30244 without a fixed degree and without using the sets 𝐴 and 𝐵. (Contributed by Alexander van der Vekens, 30-Dec-2017.) (Revised by AV, 4-Feb-2022.)
Hypotheses
Ref Expression
frgrncvvdeq.v 𝑉 = (Vtx‘𝐺)
frgrncvvdeq.d 𝐷 = (VtxDeg‘𝐺)
frgrwopreglem4a.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
frgrwopreglem4a ((𝐺 ∈ FriendGraph ∧ (𝑋𝑉𝑌𝑉) ∧ (𝐷𝑋) ≠ (𝐷𝑌)) → {𝑋, 𝑌} ∈ 𝐸)

Proof of Theorem frgrwopreglem4a
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6858 . . . . . 6 (𝑋 = 𝑌 → (𝐷𝑋) = (𝐷𝑌))
21a1i 11 . . . . 5 ((𝑋𝑉𝑌𝑉) → (𝑋 = 𝑌 → (𝐷𝑋) = (𝐷𝑌)))
32necon3d 2946 . . . 4 ((𝑋𝑉𝑌𝑉) → ((𝐷𝑋) ≠ (𝐷𝑌) → 𝑋𝑌))
43imp 406 . . 3 (((𝑋𝑉𝑌𝑉) ∧ (𝐷𝑋) ≠ (𝐷𝑌)) → 𝑋𝑌)
543adant1 1130 . 2 ((𝐺 ∈ FriendGraph ∧ (𝑋𝑉𝑌𝑉) ∧ (𝐷𝑋) ≠ (𝐷𝑌)) → 𝑋𝑌)
6 frgrncvvdeq.v . . . . . . 7 𝑉 = (Vtx‘𝐺)
7 frgrncvvdeq.d . . . . . . 7 𝐷 = (VtxDeg‘𝐺)
86, 7frgrncvvdeq 30238 . . . . . 6 (𝐺 ∈ FriendGraph → ∀𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})(𝑦 ∉ (𝐺 NeighbVtx 𝑥) → (𝐷𝑥) = (𝐷𝑦)))
9 oveq2 7395 . . . . . . . . . . 11 (𝑥 = 𝑋 → (𝐺 NeighbVtx 𝑥) = (𝐺 NeighbVtx 𝑋))
10 neleq2 3036 . . . . . . . . . . 11 ((𝐺 NeighbVtx 𝑥) = (𝐺 NeighbVtx 𝑋) → (𝑦 ∉ (𝐺 NeighbVtx 𝑥) ↔ 𝑦 ∉ (𝐺 NeighbVtx 𝑋)))
119, 10syl 17 . . . . . . . . . 10 (𝑥 = 𝑋 → (𝑦 ∉ (𝐺 NeighbVtx 𝑥) ↔ 𝑦 ∉ (𝐺 NeighbVtx 𝑋)))
12 fveqeq2 6867 . . . . . . . . . 10 (𝑥 = 𝑋 → ((𝐷𝑥) = (𝐷𝑦) ↔ (𝐷𝑋) = (𝐷𝑦)))
1311, 12imbi12d 344 . . . . . . . . 9 (𝑥 = 𝑋 → ((𝑦 ∉ (𝐺 NeighbVtx 𝑥) → (𝐷𝑥) = (𝐷𝑦)) ↔ (𝑦 ∉ (𝐺 NeighbVtx 𝑋) → (𝐷𝑋) = (𝐷𝑦))))
14 neleq1 3035 . . . . . . . . . 10 (𝑦 = 𝑌 → (𝑦 ∉ (𝐺 NeighbVtx 𝑋) ↔ 𝑌 ∉ (𝐺 NeighbVtx 𝑋)))
15 fveq2 6858 . . . . . . . . . . 11 (𝑦 = 𝑌 → (𝐷𝑦) = (𝐷𝑌))
1615eqeq2d 2740 . . . . . . . . . 10 (𝑦 = 𝑌 → ((𝐷𝑋) = (𝐷𝑦) ↔ (𝐷𝑋) = (𝐷𝑌)))
1714, 16imbi12d 344 . . . . . . . . 9 (𝑦 = 𝑌 → ((𝑦 ∉ (𝐺 NeighbVtx 𝑋) → (𝐷𝑋) = (𝐷𝑦)) ↔ (𝑌 ∉ (𝐺 NeighbVtx 𝑋) → (𝐷𝑋) = (𝐷𝑌))))
18 simpll 766 . . . . . . . . 9 (((𝑋𝑉𝑌𝑉) ∧ 𝑋𝑌) → 𝑋𝑉)
19 sneq 4599 . . . . . . . . . . 11 (𝑥 = 𝑋 → {𝑥} = {𝑋})
2019difeq2d 4089 . . . . . . . . . 10 (𝑥 = 𝑋 → (𝑉 ∖ {𝑥}) = (𝑉 ∖ {𝑋}))
2120adantl 481 . . . . . . . . 9 ((((𝑋𝑉𝑌𝑉) ∧ 𝑋𝑌) ∧ 𝑥 = 𝑋) → (𝑉 ∖ {𝑥}) = (𝑉 ∖ {𝑋}))
22 simpr 484 . . . . . . . . . . 11 ((𝑋𝑉𝑌𝑉) → 𝑌𝑉)
23 necom 2978 . . . . . . . . . . . 12 (𝑋𝑌𝑌𝑋)
2423biimpi 216 . . . . . . . . . . 11 (𝑋𝑌𝑌𝑋)
2522, 24anim12i 613 . . . . . . . . . 10 (((𝑋𝑉𝑌𝑉) ∧ 𝑋𝑌) → (𝑌𝑉𝑌𝑋))
26 eldifsn 4750 . . . . . . . . . 10 (𝑌 ∈ (𝑉 ∖ {𝑋}) ↔ (𝑌𝑉𝑌𝑋))
2725, 26sylibr 234 . . . . . . . . 9 (((𝑋𝑉𝑌𝑉) ∧ 𝑋𝑌) → 𝑌 ∈ (𝑉 ∖ {𝑋}))
2813, 17, 18, 21, 27rspc2vd 3910 . . . . . . . 8 (((𝑋𝑉𝑌𝑉) ∧ 𝑋𝑌) → (∀𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})(𝑦 ∉ (𝐺 NeighbVtx 𝑥) → (𝐷𝑥) = (𝐷𝑦)) → (𝑌 ∉ (𝐺 NeighbVtx 𝑋) → (𝐷𝑋) = (𝐷𝑌))))
29 nnel 3039 . . . . . . . . . . 11 𝑌 ∉ (𝐺 NeighbVtx 𝑋) ↔ 𝑌 ∈ (𝐺 NeighbVtx 𝑋))
30 nbgrsym 29290 . . . . . . . . . . . . . . . 16 (𝑌 ∈ (𝐺 NeighbVtx 𝑋) ↔ 𝑋 ∈ (𝐺 NeighbVtx 𝑌))
31 frgrusgr 30190 . . . . . . . . . . . . . . . . . 18 (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph)
32 frgrwopreglem4a.e . . . . . . . . . . . . . . . . . . 19 𝐸 = (Edg‘𝐺)
3332nbusgreledg 29280 . . . . . . . . . . . . . . . . . 18 (𝐺 ∈ USGraph → (𝑋 ∈ (𝐺 NeighbVtx 𝑌) ↔ {𝑋, 𝑌} ∈ 𝐸))
3431, 33syl 17 . . . . . . . . . . . . . . . . 17 (𝐺 ∈ FriendGraph → (𝑋 ∈ (𝐺 NeighbVtx 𝑌) ↔ {𝑋, 𝑌} ∈ 𝐸))
3534biimpd 229 . . . . . . . . . . . . . . . 16 (𝐺 ∈ FriendGraph → (𝑋 ∈ (𝐺 NeighbVtx 𝑌) → {𝑋, 𝑌} ∈ 𝐸))
3630, 35biimtrid 242 . . . . . . . . . . . . . . 15 (𝐺 ∈ FriendGraph → (𝑌 ∈ (𝐺 NeighbVtx 𝑋) → {𝑋, 𝑌} ∈ 𝐸))
3736imp 406 . . . . . . . . . . . . . 14 ((𝐺 ∈ FriendGraph ∧ 𝑌 ∈ (𝐺 NeighbVtx 𝑋)) → {𝑋, 𝑌} ∈ 𝐸)
3837a1d 25 . . . . . . . . . . . . 13 ((𝐺 ∈ FriendGraph ∧ 𝑌 ∈ (𝐺 NeighbVtx 𝑋)) → ((𝐷𝑋) ≠ (𝐷𝑌) → {𝑋, 𝑌} ∈ 𝐸))
3938expcom 413 . . . . . . . . . . . 12 (𝑌 ∈ (𝐺 NeighbVtx 𝑋) → (𝐺 ∈ FriendGraph → ((𝐷𝑋) ≠ (𝐷𝑌) → {𝑋, 𝑌} ∈ 𝐸)))
4039a1d 25 . . . . . . . . . . 11 (𝑌 ∈ (𝐺 NeighbVtx 𝑋) → (((𝑋𝑉𝑌𝑉) ∧ 𝑋𝑌) → (𝐺 ∈ FriendGraph → ((𝐷𝑋) ≠ (𝐷𝑌) → {𝑋, 𝑌} ∈ 𝐸))))
4129, 40sylbi 217 . . . . . . . . . 10 𝑌 ∉ (𝐺 NeighbVtx 𝑋) → (((𝑋𝑉𝑌𝑉) ∧ 𝑋𝑌) → (𝐺 ∈ FriendGraph → ((𝐷𝑋) ≠ (𝐷𝑌) → {𝑋, 𝑌} ∈ 𝐸))))
42 eqneqall 2936 . . . . . . . . . . 11 ((𝐷𝑋) = (𝐷𝑌) → ((𝐷𝑋) ≠ (𝐷𝑌) → {𝑋, 𝑌} ∈ 𝐸))
43422a1d 26 . . . . . . . . . 10 ((𝐷𝑋) = (𝐷𝑌) → (((𝑋𝑉𝑌𝑉) ∧ 𝑋𝑌) → (𝐺 ∈ FriendGraph → ((𝐷𝑋) ≠ (𝐷𝑌) → {𝑋, 𝑌} ∈ 𝐸))))
4441, 43ja 186 . . . . . . . . 9 ((𝑌 ∉ (𝐺 NeighbVtx 𝑋) → (𝐷𝑋) = (𝐷𝑌)) → (((𝑋𝑉𝑌𝑉) ∧ 𝑋𝑌) → (𝐺 ∈ FriendGraph → ((𝐷𝑋) ≠ (𝐷𝑌) → {𝑋, 𝑌} ∈ 𝐸))))
4544com12 32 . . . . . . . 8 (((𝑋𝑉𝑌𝑉) ∧ 𝑋𝑌) → ((𝑌 ∉ (𝐺 NeighbVtx 𝑋) → (𝐷𝑋) = (𝐷𝑌)) → (𝐺 ∈ FriendGraph → ((𝐷𝑋) ≠ (𝐷𝑌) → {𝑋, 𝑌} ∈ 𝐸))))
4628, 45syld 47 . . . . . . 7 (((𝑋𝑉𝑌𝑉) ∧ 𝑋𝑌) → (∀𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})(𝑦 ∉ (𝐺 NeighbVtx 𝑥) → (𝐷𝑥) = (𝐷𝑦)) → (𝐺 ∈ FriendGraph → ((𝐷𝑋) ≠ (𝐷𝑌) → {𝑋, 𝑌} ∈ 𝐸))))
4746com3l 89 . . . . . 6 (∀𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})(𝑦 ∉ (𝐺 NeighbVtx 𝑥) → (𝐷𝑥) = (𝐷𝑦)) → (𝐺 ∈ FriendGraph → (((𝑋𝑉𝑌𝑉) ∧ 𝑋𝑌) → ((𝐷𝑋) ≠ (𝐷𝑌) → {𝑋, 𝑌} ∈ 𝐸))))
488, 47mpcom 38 . . . . 5 (𝐺 ∈ FriendGraph → (((𝑋𝑉𝑌𝑉) ∧ 𝑋𝑌) → ((𝐷𝑋) ≠ (𝐷𝑌) → {𝑋, 𝑌} ∈ 𝐸)))
4948expd 415 . . . 4 (𝐺 ∈ FriendGraph → ((𝑋𝑉𝑌𝑉) → (𝑋𝑌 → ((𝐷𝑋) ≠ (𝐷𝑌) → {𝑋, 𝑌} ∈ 𝐸))))
5049com34 91 . . 3 (𝐺 ∈ FriendGraph → ((𝑋𝑉𝑌𝑉) → ((𝐷𝑋) ≠ (𝐷𝑌) → (𝑋𝑌 → {𝑋, 𝑌} ∈ 𝐸))))
51503imp 1110 . 2 ((𝐺 ∈ FriendGraph ∧ (𝑋𝑉𝑌𝑉) ∧ (𝐷𝑋) ≠ (𝐷𝑌)) → (𝑋𝑌 → {𝑋, 𝑌} ∈ 𝐸))
525, 51mpd 15 1 ((𝐺 ∈ FriendGraph ∧ (𝑋𝑉𝑌𝑉) ∧ (𝐷𝑋) ≠ (𝐷𝑌)) → {𝑋, 𝑌} ∈ 𝐸)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wnel 3029  wral 3044  cdif 3911  {csn 4589  {cpr 4591  cfv 6511  (class class class)co 7387  Vtxcvtx 28923  Edgcedg 28974  USGraphcusgr 29076   NeighbVtx cnbgr 29259  VtxDegcvtxdg 29393   FriendGraph cfrgr 30187
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-n0 12443  df-xnn0 12516  df-z 12530  df-uz 12794  df-xadd 13073  df-fz 13469  df-hash 14296  df-edg 28975  df-uhgr 28985  df-ushgr 28986  df-upgr 29009  df-umgr 29010  df-uspgr 29077  df-usgr 29078  df-nbgr 29260  df-vtxdg 29394  df-frgr 30188
This theorem is referenced by:  frgrwopreglem5a  30240  frgrwopreglem4  30244
  Copyright terms: Public domain W3C validator