MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrwopreglem4a Structured version   Visualization version   GIF version

Theorem frgrwopreglem4a 30289
Description: In a friendship graph any two vertices with different degrees are connected. Alternate version of frgrwopreglem4 30294 without a fixed degree and without using the sets 𝐴 and 𝐵. (Contributed by Alexander van der Vekens, 30-Dec-2017.) (Revised by AV, 4-Feb-2022.)
Hypotheses
Ref Expression
frgrncvvdeq.v 𝑉 = (Vtx‘𝐺)
frgrncvvdeq.d 𝐷 = (VtxDeg‘𝐺)
frgrwopreglem4a.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
frgrwopreglem4a ((𝐺 ∈ FriendGraph ∧ (𝑋𝑉𝑌𝑉) ∧ (𝐷𝑋) ≠ (𝐷𝑌)) → {𝑋, 𝑌} ∈ 𝐸)

Proof of Theorem frgrwopreglem4a
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6840 . . . . . 6 (𝑋 = 𝑌 → (𝐷𝑋) = (𝐷𝑌))
21a1i 11 . . . . 5 ((𝑋𝑉𝑌𝑉) → (𝑋 = 𝑌 → (𝐷𝑋) = (𝐷𝑌)))
32necon3d 2946 . . . 4 ((𝑋𝑉𝑌𝑉) → ((𝐷𝑋) ≠ (𝐷𝑌) → 𝑋𝑌))
43imp 406 . . 3 (((𝑋𝑉𝑌𝑉) ∧ (𝐷𝑋) ≠ (𝐷𝑌)) → 𝑋𝑌)
543adant1 1130 . 2 ((𝐺 ∈ FriendGraph ∧ (𝑋𝑉𝑌𝑉) ∧ (𝐷𝑋) ≠ (𝐷𝑌)) → 𝑋𝑌)
6 frgrncvvdeq.v . . . . . . 7 𝑉 = (Vtx‘𝐺)
7 frgrncvvdeq.d . . . . . . 7 𝐷 = (VtxDeg‘𝐺)
86, 7frgrncvvdeq 30288 . . . . . 6 (𝐺 ∈ FriendGraph → ∀𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})(𝑦 ∉ (𝐺 NeighbVtx 𝑥) → (𝐷𝑥) = (𝐷𝑦)))
9 oveq2 7377 . . . . . . . . . . 11 (𝑥 = 𝑋 → (𝐺 NeighbVtx 𝑥) = (𝐺 NeighbVtx 𝑋))
10 neleq2 3036 . . . . . . . . . . 11 ((𝐺 NeighbVtx 𝑥) = (𝐺 NeighbVtx 𝑋) → (𝑦 ∉ (𝐺 NeighbVtx 𝑥) ↔ 𝑦 ∉ (𝐺 NeighbVtx 𝑋)))
119, 10syl 17 . . . . . . . . . 10 (𝑥 = 𝑋 → (𝑦 ∉ (𝐺 NeighbVtx 𝑥) ↔ 𝑦 ∉ (𝐺 NeighbVtx 𝑋)))
12 fveqeq2 6849 . . . . . . . . . 10 (𝑥 = 𝑋 → ((𝐷𝑥) = (𝐷𝑦) ↔ (𝐷𝑋) = (𝐷𝑦)))
1311, 12imbi12d 344 . . . . . . . . 9 (𝑥 = 𝑋 → ((𝑦 ∉ (𝐺 NeighbVtx 𝑥) → (𝐷𝑥) = (𝐷𝑦)) ↔ (𝑦 ∉ (𝐺 NeighbVtx 𝑋) → (𝐷𝑋) = (𝐷𝑦))))
14 neleq1 3035 . . . . . . . . . 10 (𝑦 = 𝑌 → (𝑦 ∉ (𝐺 NeighbVtx 𝑋) ↔ 𝑌 ∉ (𝐺 NeighbVtx 𝑋)))
15 fveq2 6840 . . . . . . . . . . 11 (𝑦 = 𝑌 → (𝐷𝑦) = (𝐷𝑌))
1615eqeq2d 2740 . . . . . . . . . 10 (𝑦 = 𝑌 → ((𝐷𝑋) = (𝐷𝑦) ↔ (𝐷𝑋) = (𝐷𝑌)))
1714, 16imbi12d 344 . . . . . . . . 9 (𝑦 = 𝑌 → ((𝑦 ∉ (𝐺 NeighbVtx 𝑋) → (𝐷𝑋) = (𝐷𝑦)) ↔ (𝑌 ∉ (𝐺 NeighbVtx 𝑋) → (𝐷𝑋) = (𝐷𝑌))))
18 simpll 766 . . . . . . . . 9 (((𝑋𝑉𝑌𝑉) ∧ 𝑋𝑌) → 𝑋𝑉)
19 sneq 4595 . . . . . . . . . . 11 (𝑥 = 𝑋 → {𝑥} = {𝑋})
2019difeq2d 4085 . . . . . . . . . 10 (𝑥 = 𝑋 → (𝑉 ∖ {𝑥}) = (𝑉 ∖ {𝑋}))
2120adantl 481 . . . . . . . . 9 ((((𝑋𝑉𝑌𝑉) ∧ 𝑋𝑌) ∧ 𝑥 = 𝑋) → (𝑉 ∖ {𝑥}) = (𝑉 ∖ {𝑋}))
22 simpr 484 . . . . . . . . . . 11 ((𝑋𝑉𝑌𝑉) → 𝑌𝑉)
23 necom 2978 . . . . . . . . . . . 12 (𝑋𝑌𝑌𝑋)
2423biimpi 216 . . . . . . . . . . 11 (𝑋𝑌𝑌𝑋)
2522, 24anim12i 613 . . . . . . . . . 10 (((𝑋𝑉𝑌𝑉) ∧ 𝑋𝑌) → (𝑌𝑉𝑌𝑋))
26 eldifsn 4746 . . . . . . . . . 10 (𝑌 ∈ (𝑉 ∖ {𝑋}) ↔ (𝑌𝑉𝑌𝑋))
2725, 26sylibr 234 . . . . . . . . 9 (((𝑋𝑉𝑌𝑉) ∧ 𝑋𝑌) → 𝑌 ∈ (𝑉 ∖ {𝑋}))
2813, 17, 18, 21, 27rspc2vd 3907 . . . . . . . 8 (((𝑋𝑉𝑌𝑉) ∧ 𝑋𝑌) → (∀𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})(𝑦 ∉ (𝐺 NeighbVtx 𝑥) → (𝐷𝑥) = (𝐷𝑦)) → (𝑌 ∉ (𝐺 NeighbVtx 𝑋) → (𝐷𝑋) = (𝐷𝑌))))
29 nnel 3039 . . . . . . . . . . 11 𝑌 ∉ (𝐺 NeighbVtx 𝑋) ↔ 𝑌 ∈ (𝐺 NeighbVtx 𝑋))
30 nbgrsym 29343 . . . . . . . . . . . . . . . 16 (𝑌 ∈ (𝐺 NeighbVtx 𝑋) ↔ 𝑋 ∈ (𝐺 NeighbVtx 𝑌))
31 frgrusgr 30240 . . . . . . . . . . . . . . . . . 18 (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph)
32 frgrwopreglem4a.e . . . . . . . . . . . . . . . . . . 19 𝐸 = (Edg‘𝐺)
3332nbusgreledg 29333 . . . . . . . . . . . . . . . . . 18 (𝐺 ∈ USGraph → (𝑋 ∈ (𝐺 NeighbVtx 𝑌) ↔ {𝑋, 𝑌} ∈ 𝐸))
3431, 33syl 17 . . . . . . . . . . . . . . . . 17 (𝐺 ∈ FriendGraph → (𝑋 ∈ (𝐺 NeighbVtx 𝑌) ↔ {𝑋, 𝑌} ∈ 𝐸))
3534biimpd 229 . . . . . . . . . . . . . . . 16 (𝐺 ∈ FriendGraph → (𝑋 ∈ (𝐺 NeighbVtx 𝑌) → {𝑋, 𝑌} ∈ 𝐸))
3630, 35biimtrid 242 . . . . . . . . . . . . . . 15 (𝐺 ∈ FriendGraph → (𝑌 ∈ (𝐺 NeighbVtx 𝑋) → {𝑋, 𝑌} ∈ 𝐸))
3736imp 406 . . . . . . . . . . . . . 14 ((𝐺 ∈ FriendGraph ∧ 𝑌 ∈ (𝐺 NeighbVtx 𝑋)) → {𝑋, 𝑌} ∈ 𝐸)
3837a1d 25 . . . . . . . . . . . . 13 ((𝐺 ∈ FriendGraph ∧ 𝑌 ∈ (𝐺 NeighbVtx 𝑋)) → ((𝐷𝑋) ≠ (𝐷𝑌) → {𝑋, 𝑌} ∈ 𝐸))
3938expcom 413 . . . . . . . . . . . 12 (𝑌 ∈ (𝐺 NeighbVtx 𝑋) → (𝐺 ∈ FriendGraph → ((𝐷𝑋) ≠ (𝐷𝑌) → {𝑋, 𝑌} ∈ 𝐸)))
4039a1d 25 . . . . . . . . . . 11 (𝑌 ∈ (𝐺 NeighbVtx 𝑋) → (((𝑋𝑉𝑌𝑉) ∧ 𝑋𝑌) → (𝐺 ∈ FriendGraph → ((𝐷𝑋) ≠ (𝐷𝑌) → {𝑋, 𝑌} ∈ 𝐸))))
4129, 40sylbi 217 . . . . . . . . . 10 𝑌 ∉ (𝐺 NeighbVtx 𝑋) → (((𝑋𝑉𝑌𝑉) ∧ 𝑋𝑌) → (𝐺 ∈ FriendGraph → ((𝐷𝑋) ≠ (𝐷𝑌) → {𝑋, 𝑌} ∈ 𝐸))))
42 eqneqall 2936 . . . . . . . . . . 11 ((𝐷𝑋) = (𝐷𝑌) → ((𝐷𝑋) ≠ (𝐷𝑌) → {𝑋, 𝑌} ∈ 𝐸))
43422a1d 26 . . . . . . . . . 10 ((𝐷𝑋) = (𝐷𝑌) → (((𝑋𝑉𝑌𝑉) ∧ 𝑋𝑌) → (𝐺 ∈ FriendGraph → ((𝐷𝑋) ≠ (𝐷𝑌) → {𝑋, 𝑌} ∈ 𝐸))))
4441, 43ja 186 . . . . . . . . 9 ((𝑌 ∉ (𝐺 NeighbVtx 𝑋) → (𝐷𝑋) = (𝐷𝑌)) → (((𝑋𝑉𝑌𝑉) ∧ 𝑋𝑌) → (𝐺 ∈ FriendGraph → ((𝐷𝑋) ≠ (𝐷𝑌) → {𝑋, 𝑌} ∈ 𝐸))))
4544com12 32 . . . . . . . 8 (((𝑋𝑉𝑌𝑉) ∧ 𝑋𝑌) → ((𝑌 ∉ (𝐺 NeighbVtx 𝑋) → (𝐷𝑋) = (𝐷𝑌)) → (𝐺 ∈ FriendGraph → ((𝐷𝑋) ≠ (𝐷𝑌) → {𝑋, 𝑌} ∈ 𝐸))))
4628, 45syld 47 . . . . . . 7 (((𝑋𝑉𝑌𝑉) ∧ 𝑋𝑌) → (∀𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})(𝑦 ∉ (𝐺 NeighbVtx 𝑥) → (𝐷𝑥) = (𝐷𝑦)) → (𝐺 ∈ FriendGraph → ((𝐷𝑋) ≠ (𝐷𝑌) → {𝑋, 𝑌} ∈ 𝐸))))
4746com3l 89 . . . . . 6 (∀𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})(𝑦 ∉ (𝐺 NeighbVtx 𝑥) → (𝐷𝑥) = (𝐷𝑦)) → (𝐺 ∈ FriendGraph → (((𝑋𝑉𝑌𝑉) ∧ 𝑋𝑌) → ((𝐷𝑋) ≠ (𝐷𝑌) → {𝑋, 𝑌} ∈ 𝐸))))
488, 47mpcom 38 . . . . 5 (𝐺 ∈ FriendGraph → (((𝑋𝑉𝑌𝑉) ∧ 𝑋𝑌) → ((𝐷𝑋) ≠ (𝐷𝑌) → {𝑋, 𝑌} ∈ 𝐸)))
4948expd 415 . . . 4 (𝐺 ∈ FriendGraph → ((𝑋𝑉𝑌𝑉) → (𝑋𝑌 → ((𝐷𝑋) ≠ (𝐷𝑌) → {𝑋, 𝑌} ∈ 𝐸))))
5049com34 91 . . 3 (𝐺 ∈ FriendGraph → ((𝑋𝑉𝑌𝑉) → ((𝐷𝑋) ≠ (𝐷𝑌) → (𝑋𝑌 → {𝑋, 𝑌} ∈ 𝐸))))
51503imp 1110 . 2 ((𝐺 ∈ FriendGraph ∧ (𝑋𝑉𝑌𝑉) ∧ (𝐷𝑋) ≠ (𝐷𝑌)) → (𝑋𝑌 → {𝑋, 𝑌} ∈ 𝐸))
525, 51mpd 15 1 ((𝐺 ∈ FriendGraph ∧ (𝑋𝑉𝑌𝑉) ∧ (𝐷𝑋) ≠ (𝐷𝑌)) → {𝑋, 𝑌} ∈ 𝐸)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wnel 3029  wral 3044  cdif 3908  {csn 4585  {cpr 4587  cfv 6499  (class class class)co 7369  Vtxcvtx 28976  Edgcedg 29027  USGraphcusgr 29129   NeighbVtx cnbgr 29312  VtxDegcvtxdg 29446   FriendGraph cfrgr 30237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-dju 9830  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-n0 12419  df-xnn0 12492  df-z 12506  df-uz 12770  df-xadd 13049  df-fz 13445  df-hash 14272  df-edg 29028  df-uhgr 29038  df-ushgr 29039  df-upgr 29062  df-umgr 29063  df-uspgr 29130  df-usgr 29131  df-nbgr 29313  df-vtxdg 29447  df-frgr 30238
This theorem is referenced by:  frgrwopreglem5a  30290  frgrwopreglem4  30294
  Copyright terms: Public domain W3C validator