MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrwopreglem4a Structured version   Visualization version   GIF version

Theorem frgrwopreglem4a 28194
Description: In a friendship graph any two vertices with different degrees are connected. Alternate version of frgrwopreglem4 28199 without a fixed degree and without using the sets 𝐴 and 𝐵. (Contributed by Alexander van der Vekens, 30-Dec-2017.) (Revised by AV, 4-Feb-2022.)
Hypotheses
Ref Expression
frgrncvvdeq.v 𝑉 = (Vtx‘𝐺)
frgrncvvdeq.d 𝐷 = (VtxDeg‘𝐺)
frgrwopreglem4a.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
frgrwopreglem4a ((𝐺 ∈ FriendGraph ∧ (𝑋𝑉𝑌𝑉) ∧ (𝐷𝑋) ≠ (𝐷𝑌)) → {𝑋, 𝑌} ∈ 𝐸)

Proof of Theorem frgrwopreglem4a
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6658 . . . . . 6 (𝑋 = 𝑌 → (𝐷𝑋) = (𝐷𝑌))
21a1i 11 . . . . 5 ((𝑋𝑉𝑌𝑉) → (𝑋 = 𝑌 → (𝐷𝑋) = (𝐷𝑌)))
32necon3d 2972 . . . 4 ((𝑋𝑉𝑌𝑉) → ((𝐷𝑋) ≠ (𝐷𝑌) → 𝑋𝑌))
43imp 410 . . 3 (((𝑋𝑉𝑌𝑉) ∧ (𝐷𝑋) ≠ (𝐷𝑌)) → 𝑋𝑌)
543adant1 1127 . 2 ((𝐺 ∈ FriendGraph ∧ (𝑋𝑉𝑌𝑉) ∧ (𝐷𝑋) ≠ (𝐷𝑌)) → 𝑋𝑌)
6 frgrncvvdeq.v . . . . . . 7 𝑉 = (Vtx‘𝐺)
7 frgrncvvdeq.d . . . . . . 7 𝐷 = (VtxDeg‘𝐺)
86, 7frgrncvvdeq 28193 . . . . . 6 (𝐺 ∈ FriendGraph → ∀𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})(𝑦 ∉ (𝐺 NeighbVtx 𝑥) → (𝐷𝑥) = (𝐷𝑦)))
9 oveq2 7158 . . . . . . . . . . 11 (𝑥 = 𝑋 → (𝐺 NeighbVtx 𝑥) = (𝐺 NeighbVtx 𝑋))
10 neleq2 3061 . . . . . . . . . . 11 ((𝐺 NeighbVtx 𝑥) = (𝐺 NeighbVtx 𝑋) → (𝑦 ∉ (𝐺 NeighbVtx 𝑥) ↔ 𝑦 ∉ (𝐺 NeighbVtx 𝑋)))
119, 10syl 17 . . . . . . . . . 10 (𝑥 = 𝑋 → (𝑦 ∉ (𝐺 NeighbVtx 𝑥) ↔ 𝑦 ∉ (𝐺 NeighbVtx 𝑋)))
12 fveqeq2 6667 . . . . . . . . . 10 (𝑥 = 𝑋 → ((𝐷𝑥) = (𝐷𝑦) ↔ (𝐷𝑋) = (𝐷𝑦)))
1311, 12imbi12d 348 . . . . . . . . 9 (𝑥 = 𝑋 → ((𝑦 ∉ (𝐺 NeighbVtx 𝑥) → (𝐷𝑥) = (𝐷𝑦)) ↔ (𝑦 ∉ (𝐺 NeighbVtx 𝑋) → (𝐷𝑋) = (𝐷𝑦))))
14 neleq1 3060 . . . . . . . . . 10 (𝑦 = 𝑌 → (𝑦 ∉ (𝐺 NeighbVtx 𝑋) ↔ 𝑌 ∉ (𝐺 NeighbVtx 𝑋)))
15 fveq2 6658 . . . . . . . . . . 11 (𝑦 = 𝑌 → (𝐷𝑦) = (𝐷𝑌))
1615eqeq2d 2769 . . . . . . . . . 10 (𝑦 = 𝑌 → ((𝐷𝑋) = (𝐷𝑦) ↔ (𝐷𝑋) = (𝐷𝑌)))
1714, 16imbi12d 348 . . . . . . . . 9 (𝑦 = 𝑌 → ((𝑦 ∉ (𝐺 NeighbVtx 𝑋) → (𝐷𝑋) = (𝐷𝑦)) ↔ (𝑌 ∉ (𝐺 NeighbVtx 𝑋) → (𝐷𝑋) = (𝐷𝑌))))
18 simpll 766 . . . . . . . . 9 (((𝑋𝑉𝑌𝑉) ∧ 𝑋𝑌) → 𝑋𝑉)
19 sneq 4532 . . . . . . . . . . 11 (𝑥 = 𝑋 → {𝑥} = {𝑋})
2019difeq2d 4028 . . . . . . . . . 10 (𝑥 = 𝑋 → (𝑉 ∖ {𝑥}) = (𝑉 ∖ {𝑋}))
2120adantl 485 . . . . . . . . 9 ((((𝑋𝑉𝑌𝑉) ∧ 𝑋𝑌) ∧ 𝑥 = 𝑋) → (𝑉 ∖ {𝑥}) = (𝑉 ∖ {𝑋}))
22 simpr 488 . . . . . . . . . . 11 ((𝑋𝑉𝑌𝑉) → 𝑌𝑉)
23 necom 3004 . . . . . . . . . . . 12 (𝑋𝑌𝑌𝑋)
2423biimpi 219 . . . . . . . . . . 11 (𝑋𝑌𝑌𝑋)
2522, 24anim12i 615 . . . . . . . . . 10 (((𝑋𝑉𝑌𝑉) ∧ 𝑋𝑌) → (𝑌𝑉𝑌𝑋))
26 eldifsn 4677 . . . . . . . . . 10 (𝑌 ∈ (𝑉 ∖ {𝑋}) ↔ (𝑌𝑉𝑌𝑋))
2725, 26sylibr 237 . . . . . . . . 9 (((𝑋𝑉𝑌𝑉) ∧ 𝑋𝑌) → 𝑌 ∈ (𝑉 ∖ {𝑋}))
2813, 17, 18, 21, 27rspc2vd 3854 . . . . . . . 8 (((𝑋𝑉𝑌𝑉) ∧ 𝑋𝑌) → (∀𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})(𝑦 ∉ (𝐺 NeighbVtx 𝑥) → (𝐷𝑥) = (𝐷𝑦)) → (𝑌 ∉ (𝐺 NeighbVtx 𝑋) → (𝐷𝑋) = (𝐷𝑌))))
29 nnel 3064 . . . . . . . . . . 11 𝑌 ∉ (𝐺 NeighbVtx 𝑋) ↔ 𝑌 ∈ (𝐺 NeighbVtx 𝑋))
30 nbgrsym 27252 . . . . . . . . . . . . . . . 16 (𝑌 ∈ (𝐺 NeighbVtx 𝑋) ↔ 𝑋 ∈ (𝐺 NeighbVtx 𝑌))
31 frgrusgr 28145 . . . . . . . . . . . . . . . . . 18 (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph)
32 frgrwopreglem4a.e . . . . . . . . . . . . . . . . . . 19 𝐸 = (Edg‘𝐺)
3332nbusgreledg 27242 . . . . . . . . . . . . . . . . . 18 (𝐺 ∈ USGraph → (𝑋 ∈ (𝐺 NeighbVtx 𝑌) ↔ {𝑋, 𝑌} ∈ 𝐸))
3431, 33syl 17 . . . . . . . . . . . . . . . . 17 (𝐺 ∈ FriendGraph → (𝑋 ∈ (𝐺 NeighbVtx 𝑌) ↔ {𝑋, 𝑌} ∈ 𝐸))
3534biimpd 232 . . . . . . . . . . . . . . . 16 (𝐺 ∈ FriendGraph → (𝑋 ∈ (𝐺 NeighbVtx 𝑌) → {𝑋, 𝑌} ∈ 𝐸))
3630, 35syl5bi 245 . . . . . . . . . . . . . . 15 (𝐺 ∈ FriendGraph → (𝑌 ∈ (𝐺 NeighbVtx 𝑋) → {𝑋, 𝑌} ∈ 𝐸))
3736imp 410 . . . . . . . . . . . . . 14 ((𝐺 ∈ FriendGraph ∧ 𝑌 ∈ (𝐺 NeighbVtx 𝑋)) → {𝑋, 𝑌} ∈ 𝐸)
3837a1d 25 . . . . . . . . . . . . 13 ((𝐺 ∈ FriendGraph ∧ 𝑌 ∈ (𝐺 NeighbVtx 𝑋)) → ((𝐷𝑋) ≠ (𝐷𝑌) → {𝑋, 𝑌} ∈ 𝐸))
3938expcom 417 . . . . . . . . . . . 12 (𝑌 ∈ (𝐺 NeighbVtx 𝑋) → (𝐺 ∈ FriendGraph → ((𝐷𝑋) ≠ (𝐷𝑌) → {𝑋, 𝑌} ∈ 𝐸)))
4039a1d 25 . . . . . . . . . . 11 (𝑌 ∈ (𝐺 NeighbVtx 𝑋) → (((𝑋𝑉𝑌𝑉) ∧ 𝑋𝑌) → (𝐺 ∈ FriendGraph → ((𝐷𝑋) ≠ (𝐷𝑌) → {𝑋, 𝑌} ∈ 𝐸))))
4129, 40sylbi 220 . . . . . . . . . 10 𝑌 ∉ (𝐺 NeighbVtx 𝑋) → (((𝑋𝑉𝑌𝑉) ∧ 𝑋𝑌) → (𝐺 ∈ FriendGraph → ((𝐷𝑋) ≠ (𝐷𝑌) → {𝑋, 𝑌} ∈ 𝐸))))
42 eqneqall 2962 . . . . . . . . . . 11 ((𝐷𝑋) = (𝐷𝑌) → ((𝐷𝑋) ≠ (𝐷𝑌) → {𝑋, 𝑌} ∈ 𝐸))
43422a1d 26 . . . . . . . . . 10 ((𝐷𝑋) = (𝐷𝑌) → (((𝑋𝑉𝑌𝑉) ∧ 𝑋𝑌) → (𝐺 ∈ FriendGraph → ((𝐷𝑋) ≠ (𝐷𝑌) → {𝑋, 𝑌} ∈ 𝐸))))
4441, 43ja 189 . . . . . . . . 9 ((𝑌 ∉ (𝐺 NeighbVtx 𝑋) → (𝐷𝑋) = (𝐷𝑌)) → (((𝑋𝑉𝑌𝑉) ∧ 𝑋𝑌) → (𝐺 ∈ FriendGraph → ((𝐷𝑋) ≠ (𝐷𝑌) → {𝑋, 𝑌} ∈ 𝐸))))
4544com12 32 . . . . . . . 8 (((𝑋𝑉𝑌𝑉) ∧ 𝑋𝑌) → ((𝑌 ∉ (𝐺 NeighbVtx 𝑋) → (𝐷𝑋) = (𝐷𝑌)) → (𝐺 ∈ FriendGraph → ((𝐷𝑋) ≠ (𝐷𝑌) → {𝑋, 𝑌} ∈ 𝐸))))
4628, 45syld 47 . . . . . . 7 (((𝑋𝑉𝑌𝑉) ∧ 𝑋𝑌) → (∀𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})(𝑦 ∉ (𝐺 NeighbVtx 𝑥) → (𝐷𝑥) = (𝐷𝑦)) → (𝐺 ∈ FriendGraph → ((𝐷𝑋) ≠ (𝐷𝑌) → {𝑋, 𝑌} ∈ 𝐸))))
4746com3l 89 . . . . . 6 (∀𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})(𝑦 ∉ (𝐺 NeighbVtx 𝑥) → (𝐷𝑥) = (𝐷𝑦)) → (𝐺 ∈ FriendGraph → (((𝑋𝑉𝑌𝑉) ∧ 𝑋𝑌) → ((𝐷𝑋) ≠ (𝐷𝑌) → {𝑋, 𝑌} ∈ 𝐸))))
488, 47mpcom 38 . . . . 5 (𝐺 ∈ FriendGraph → (((𝑋𝑉𝑌𝑉) ∧ 𝑋𝑌) → ((𝐷𝑋) ≠ (𝐷𝑌) → {𝑋, 𝑌} ∈ 𝐸)))
4948expd 419 . . . 4 (𝐺 ∈ FriendGraph → ((𝑋𝑉𝑌𝑉) → (𝑋𝑌 → ((𝐷𝑋) ≠ (𝐷𝑌) → {𝑋, 𝑌} ∈ 𝐸))))
5049com34 91 . . 3 (𝐺 ∈ FriendGraph → ((𝑋𝑉𝑌𝑉) → ((𝐷𝑋) ≠ (𝐷𝑌) → (𝑋𝑌 → {𝑋, 𝑌} ∈ 𝐸))))
51503imp 1108 . 2 ((𝐺 ∈ FriendGraph ∧ (𝑋𝑉𝑌𝑉) ∧ (𝐷𝑋) ≠ (𝐷𝑌)) → (𝑋𝑌 → {𝑋, 𝑌} ∈ 𝐸))
525, 51mpd 15 1 ((𝐺 ∈ FriendGraph ∧ (𝑋𝑉𝑌𝑉) ∧ (𝐷𝑋) ≠ (𝐷𝑌)) → {𝑋, 𝑌} ∈ 𝐸)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2951  wnel 3055  wral 3070  cdif 3855  {csn 4522  {cpr 4524  cfv 6335  (class class class)co 7150  Vtxcvtx 26888  Edgcedg 26939  USGraphcusgr 27041   NeighbVtx cnbgr 27221  VtxDegcvtxdg 27354   FriendGraph cfrgr 28142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-cnex 10631  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-int 4839  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7580  df-1st 7693  df-2nd 7694  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-1o 8112  df-2o 8113  df-oadd 8116  df-er 8299  df-en 8528  df-dom 8529  df-sdom 8530  df-fin 8531  df-dju 9363  df-card 9401  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-nn 11675  df-2 11737  df-n0 11935  df-xnn0 12007  df-z 12021  df-uz 12283  df-xadd 12549  df-fz 12940  df-hash 13741  df-edg 26940  df-uhgr 26950  df-ushgr 26951  df-upgr 26974  df-umgr 26975  df-uspgr 27042  df-usgr 27043  df-nbgr 27222  df-vtxdg 27355  df-frgr 28143
This theorem is referenced by:  frgrwopreglem5a  28195  frgrwopreglem4  28199
  Copyright terms: Public domain W3C validator