Step | Hyp | Ref
| Expression |
1 | | fveq2 6756 |
. . . . . 6
⊢ (𝑋 = 𝑌 → (𝐷‘𝑋) = (𝐷‘𝑌)) |
2 | 1 | a1i 11 |
. . . . 5
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 = 𝑌 → (𝐷‘𝑋) = (𝐷‘𝑌))) |
3 | 2 | necon3d 2963 |
. . . 4
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ((𝐷‘𝑋) ≠ (𝐷‘𝑌) → 𝑋 ≠ 𝑌)) |
4 | 3 | imp 406 |
. . 3
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) ∧ (𝐷‘𝑋) ≠ (𝐷‘𝑌)) → 𝑋 ≠ 𝑌) |
5 | 4 | 3adant1 1128 |
. 2
⊢ ((𝐺 ∈ FriendGraph ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) ∧ (𝐷‘𝑋) ≠ (𝐷‘𝑌)) → 𝑋 ≠ 𝑌) |
6 | | frgrncvvdeq.v |
. . . . . . 7
⊢ 𝑉 = (Vtx‘𝐺) |
7 | | frgrncvvdeq.d |
. . . . . . 7
⊢ 𝐷 = (VtxDeg‘𝐺) |
8 | 6, 7 | frgrncvvdeq 28574 |
. . . . . 6
⊢ (𝐺 ∈ FriendGraph →
∀𝑥 ∈ 𝑉 ∀𝑦 ∈ (𝑉 ∖ {𝑥})(𝑦 ∉ (𝐺 NeighbVtx 𝑥) → (𝐷‘𝑥) = (𝐷‘𝑦))) |
9 | | oveq2 7263 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑋 → (𝐺 NeighbVtx 𝑥) = (𝐺 NeighbVtx 𝑋)) |
10 | | neleq2 3054 |
. . . . . . . . . . 11
⊢ ((𝐺 NeighbVtx 𝑥) = (𝐺 NeighbVtx 𝑋) → (𝑦 ∉ (𝐺 NeighbVtx 𝑥) ↔ 𝑦 ∉ (𝐺 NeighbVtx 𝑋))) |
11 | 9, 10 | syl 17 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑋 → (𝑦 ∉ (𝐺 NeighbVtx 𝑥) ↔ 𝑦 ∉ (𝐺 NeighbVtx 𝑋))) |
12 | | fveqeq2 6765 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑋 → ((𝐷‘𝑥) = (𝐷‘𝑦) ↔ (𝐷‘𝑋) = (𝐷‘𝑦))) |
13 | 11, 12 | imbi12d 344 |
. . . . . . . . 9
⊢ (𝑥 = 𝑋 → ((𝑦 ∉ (𝐺 NeighbVtx 𝑥) → (𝐷‘𝑥) = (𝐷‘𝑦)) ↔ (𝑦 ∉ (𝐺 NeighbVtx 𝑋) → (𝐷‘𝑋) = (𝐷‘𝑦)))) |
14 | | neleq1 3053 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑌 → (𝑦 ∉ (𝐺 NeighbVtx 𝑋) ↔ 𝑌 ∉ (𝐺 NeighbVtx 𝑋))) |
15 | | fveq2 6756 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑌 → (𝐷‘𝑦) = (𝐷‘𝑌)) |
16 | 15 | eqeq2d 2749 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑌 → ((𝐷‘𝑋) = (𝐷‘𝑦) ↔ (𝐷‘𝑋) = (𝐷‘𝑌))) |
17 | 14, 16 | imbi12d 344 |
. . . . . . . . 9
⊢ (𝑦 = 𝑌 → ((𝑦 ∉ (𝐺 NeighbVtx 𝑋) → (𝐷‘𝑋) = (𝐷‘𝑦)) ↔ (𝑌 ∉ (𝐺 NeighbVtx 𝑋) → (𝐷‘𝑋) = (𝐷‘𝑌)))) |
18 | | simpll 763 |
. . . . . . . . 9
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) ∧ 𝑋 ≠ 𝑌) → 𝑋 ∈ 𝑉) |
19 | | sneq 4568 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑋 → {𝑥} = {𝑋}) |
20 | 19 | difeq2d 4053 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑋 → (𝑉 ∖ {𝑥}) = (𝑉 ∖ {𝑋})) |
21 | 20 | adantl 481 |
. . . . . . . . 9
⊢ ((((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) ∧ 𝑋 ≠ 𝑌) ∧ 𝑥 = 𝑋) → (𝑉 ∖ {𝑥}) = (𝑉 ∖ {𝑋})) |
22 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → 𝑌 ∈ 𝑉) |
23 | | necom 2996 |
. . . . . . . . . . . 12
⊢ (𝑋 ≠ 𝑌 ↔ 𝑌 ≠ 𝑋) |
24 | 23 | biimpi 215 |
. . . . . . . . . . 11
⊢ (𝑋 ≠ 𝑌 → 𝑌 ≠ 𝑋) |
25 | 22, 24 | anim12i 612 |
. . . . . . . . . 10
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) ∧ 𝑋 ≠ 𝑌) → (𝑌 ∈ 𝑉 ∧ 𝑌 ≠ 𝑋)) |
26 | | eldifsn 4717 |
. . . . . . . . . 10
⊢ (𝑌 ∈ (𝑉 ∖ {𝑋}) ↔ (𝑌 ∈ 𝑉 ∧ 𝑌 ≠ 𝑋)) |
27 | 25, 26 | sylibr 233 |
. . . . . . . . 9
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) ∧ 𝑋 ≠ 𝑌) → 𝑌 ∈ (𝑉 ∖ {𝑋})) |
28 | 13, 17, 18, 21, 27 | rspc2vd 3879 |
. . . . . . . 8
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) ∧ 𝑋 ≠ 𝑌) → (∀𝑥 ∈ 𝑉 ∀𝑦 ∈ (𝑉 ∖ {𝑥})(𝑦 ∉ (𝐺 NeighbVtx 𝑥) → (𝐷‘𝑥) = (𝐷‘𝑦)) → (𝑌 ∉ (𝐺 NeighbVtx 𝑋) → (𝐷‘𝑋) = (𝐷‘𝑌)))) |
29 | | nnel 3057 |
. . . . . . . . . . 11
⊢ (¬
𝑌 ∉ (𝐺 NeighbVtx 𝑋) ↔ 𝑌 ∈ (𝐺 NeighbVtx 𝑋)) |
30 | | nbgrsym 27633 |
. . . . . . . . . . . . . . . 16
⊢ (𝑌 ∈ (𝐺 NeighbVtx 𝑋) ↔ 𝑋 ∈ (𝐺 NeighbVtx 𝑌)) |
31 | | frgrusgr 28526 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐺 ∈ FriendGraph → 𝐺 ∈
USGraph) |
32 | | frgrwopreglem4a.e |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝐸 = (Edg‘𝐺) |
33 | 32 | nbusgreledg 27623 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐺 ∈ USGraph → (𝑋 ∈ (𝐺 NeighbVtx 𝑌) ↔ {𝑋, 𝑌} ∈ 𝐸)) |
34 | 31, 33 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐺 ∈ FriendGraph →
(𝑋 ∈ (𝐺 NeighbVtx 𝑌) ↔ {𝑋, 𝑌} ∈ 𝐸)) |
35 | 34 | biimpd 228 |
. . . . . . . . . . . . . . . 16
⊢ (𝐺 ∈ FriendGraph →
(𝑋 ∈ (𝐺 NeighbVtx 𝑌) → {𝑋, 𝑌} ∈ 𝐸)) |
36 | 30, 35 | syl5bi 241 |
. . . . . . . . . . . . . . 15
⊢ (𝐺 ∈ FriendGraph →
(𝑌 ∈ (𝐺 NeighbVtx 𝑋) → {𝑋, 𝑌} ∈ 𝐸)) |
37 | 36 | imp 406 |
. . . . . . . . . . . . . 14
⊢ ((𝐺 ∈ FriendGraph ∧ 𝑌 ∈ (𝐺 NeighbVtx 𝑋)) → {𝑋, 𝑌} ∈ 𝐸) |
38 | 37 | a1d 25 |
. . . . . . . . . . . . 13
⊢ ((𝐺 ∈ FriendGraph ∧ 𝑌 ∈ (𝐺 NeighbVtx 𝑋)) → ((𝐷‘𝑋) ≠ (𝐷‘𝑌) → {𝑋, 𝑌} ∈ 𝐸)) |
39 | 38 | expcom 413 |
. . . . . . . . . . . 12
⊢ (𝑌 ∈ (𝐺 NeighbVtx 𝑋) → (𝐺 ∈ FriendGraph → ((𝐷‘𝑋) ≠ (𝐷‘𝑌) → {𝑋, 𝑌} ∈ 𝐸))) |
40 | 39 | a1d 25 |
. . . . . . . . . . 11
⊢ (𝑌 ∈ (𝐺 NeighbVtx 𝑋) → (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) ∧ 𝑋 ≠ 𝑌) → (𝐺 ∈ FriendGraph → ((𝐷‘𝑋) ≠ (𝐷‘𝑌) → {𝑋, 𝑌} ∈ 𝐸)))) |
41 | 29, 40 | sylbi 216 |
. . . . . . . . . 10
⊢ (¬
𝑌 ∉ (𝐺 NeighbVtx 𝑋) → (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) ∧ 𝑋 ≠ 𝑌) → (𝐺 ∈ FriendGraph → ((𝐷‘𝑋) ≠ (𝐷‘𝑌) → {𝑋, 𝑌} ∈ 𝐸)))) |
42 | | eqneqall 2953 |
. . . . . . . . . . 11
⊢ ((𝐷‘𝑋) = (𝐷‘𝑌) → ((𝐷‘𝑋) ≠ (𝐷‘𝑌) → {𝑋, 𝑌} ∈ 𝐸)) |
43 | 42 | 2a1d 26 |
. . . . . . . . . 10
⊢ ((𝐷‘𝑋) = (𝐷‘𝑌) → (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) ∧ 𝑋 ≠ 𝑌) → (𝐺 ∈ FriendGraph → ((𝐷‘𝑋) ≠ (𝐷‘𝑌) → {𝑋, 𝑌} ∈ 𝐸)))) |
44 | 41, 43 | ja 186 |
. . . . . . . . 9
⊢ ((𝑌 ∉ (𝐺 NeighbVtx 𝑋) → (𝐷‘𝑋) = (𝐷‘𝑌)) → (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) ∧ 𝑋 ≠ 𝑌) → (𝐺 ∈ FriendGraph → ((𝐷‘𝑋) ≠ (𝐷‘𝑌) → {𝑋, 𝑌} ∈ 𝐸)))) |
45 | 44 | com12 32 |
. . . . . . . 8
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) ∧ 𝑋 ≠ 𝑌) → ((𝑌 ∉ (𝐺 NeighbVtx 𝑋) → (𝐷‘𝑋) = (𝐷‘𝑌)) → (𝐺 ∈ FriendGraph → ((𝐷‘𝑋) ≠ (𝐷‘𝑌) → {𝑋, 𝑌} ∈ 𝐸)))) |
46 | 28, 45 | syld 47 |
. . . . . . 7
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) ∧ 𝑋 ≠ 𝑌) → (∀𝑥 ∈ 𝑉 ∀𝑦 ∈ (𝑉 ∖ {𝑥})(𝑦 ∉ (𝐺 NeighbVtx 𝑥) → (𝐷‘𝑥) = (𝐷‘𝑦)) → (𝐺 ∈ FriendGraph → ((𝐷‘𝑋) ≠ (𝐷‘𝑌) → {𝑋, 𝑌} ∈ 𝐸)))) |
47 | 46 | com3l 89 |
. . . . . 6
⊢
(∀𝑥 ∈
𝑉 ∀𝑦 ∈ (𝑉 ∖ {𝑥})(𝑦 ∉ (𝐺 NeighbVtx 𝑥) → (𝐷‘𝑥) = (𝐷‘𝑦)) → (𝐺 ∈ FriendGraph → (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) ∧ 𝑋 ≠ 𝑌) → ((𝐷‘𝑋) ≠ (𝐷‘𝑌) → {𝑋, 𝑌} ∈ 𝐸)))) |
48 | 8, 47 | mpcom 38 |
. . . . 5
⊢ (𝐺 ∈ FriendGraph →
(((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) ∧ 𝑋 ≠ 𝑌) → ((𝐷‘𝑋) ≠ (𝐷‘𝑌) → {𝑋, 𝑌} ∈ 𝐸))) |
49 | 48 | expd 415 |
. . . 4
⊢ (𝐺 ∈ FriendGraph →
((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 ≠ 𝑌 → ((𝐷‘𝑋) ≠ (𝐷‘𝑌) → {𝑋, 𝑌} ∈ 𝐸)))) |
50 | 49 | com34 91 |
. . 3
⊢ (𝐺 ∈ FriendGraph →
((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ((𝐷‘𝑋) ≠ (𝐷‘𝑌) → (𝑋 ≠ 𝑌 → {𝑋, 𝑌} ∈ 𝐸)))) |
51 | 50 | 3imp 1109 |
. 2
⊢ ((𝐺 ∈ FriendGraph ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) ∧ (𝐷‘𝑋) ≠ (𝐷‘𝑌)) → (𝑋 ≠ 𝑌 → {𝑋, 𝑌} ∈ 𝐸)) |
52 | 5, 51 | mpd 15 |
1
⊢ ((𝐺 ∈ FriendGraph ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) ∧ (𝐷‘𝑋) ≠ (𝐷‘𝑌)) → {𝑋, 𝑌} ∈ 𝐸) |