Step | Hyp | Ref
| Expression |
1 | | df-ima 5593 |
. 2
⊢ (𝐸 “ 𝐹) = ran (𝐸 ↾ 𝐹) |
2 | | fveq2 6756 |
. . . . . . 7
⊢ (𝑖 = 𝑗 → (𝐸‘𝑖) = (𝐸‘𝑗)) |
3 | | neleq2 3054 |
. . . . . . 7
⊢ ((𝐸‘𝑖) = (𝐸‘𝑗) → (𝑁 ∉ (𝐸‘𝑖) ↔ 𝑁 ∉ (𝐸‘𝑗))) |
4 | 2, 3 | syl 17 |
. . . . . 6
⊢ (𝑖 = 𝑗 → (𝑁 ∉ (𝐸‘𝑖) ↔ 𝑁 ∉ (𝐸‘𝑗))) |
5 | | upgrres.f |
. . . . . 6
⊢ 𝐹 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ (𝐸‘𝑖)} |
6 | 4, 5 | elrab2 3620 |
. . . . 5
⊢ (𝑗 ∈ 𝐹 ↔ (𝑗 ∈ dom 𝐸 ∧ 𝑁 ∉ (𝐸‘𝑗))) |
7 | | upgrres.v |
. . . . . . . 8
⊢ 𝑉 = (Vtx‘𝐺) |
8 | | upgrres.e |
. . . . . . . 8
⊢ 𝐸 = (iEdg‘𝐺) |
9 | 7, 8 | upgrf 27359 |
. . . . . . 7
⊢ (𝐺 ∈ UPGraph → 𝐸:dom 𝐸⟶{𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣
(♯‘𝑝) ≤
2}) |
10 | | ffvelrn 6941 |
. . . . . . . . . 10
⊢ ((𝐸:dom 𝐸⟶{𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣
(♯‘𝑝) ≤ 2}
∧ 𝑗 ∈ dom 𝐸) → (𝐸‘𝑗) ∈ {𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣
(♯‘𝑝) ≤
2}) |
11 | | fveq2 6756 |
. . . . . . . . . . . . 13
⊢ (𝑝 = (𝐸‘𝑗) → (♯‘𝑝) = (♯‘(𝐸‘𝑗))) |
12 | 11 | breq1d 5080 |
. . . . . . . . . . . 12
⊢ (𝑝 = (𝐸‘𝑗) → ((♯‘𝑝) ≤ 2 ↔ (♯‘(𝐸‘𝑗)) ≤ 2)) |
13 | 12 | elrab 3617 |
. . . . . . . . . . 11
⊢ ((𝐸‘𝑗) ∈ {𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣
(♯‘𝑝) ≤ 2}
↔ ((𝐸‘𝑗) ∈ (𝒫 𝑉 ∖ {∅}) ∧
(♯‘(𝐸‘𝑗)) ≤ 2)) |
14 | | eldifsn 4717 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐸‘𝑗) ∈ (𝒫 𝑉 ∖ {∅}) ↔ ((𝐸‘𝑗) ∈ 𝒫 𝑉 ∧ (𝐸‘𝑗) ≠ ∅)) |
15 | | simpl 482 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐸‘𝑗) ∈ 𝒫 𝑉 ∧ 𝑁 ∉ (𝐸‘𝑗)) → (𝐸‘𝑗) ∈ 𝒫 𝑉) |
16 | | elpwi 4539 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐸‘𝑗) ∈ 𝒫 𝑉 → (𝐸‘𝑗) ⊆ 𝑉) |
17 | 16 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐸‘𝑗) ∈ 𝒫 𝑉 ∧ 𝑁 ∉ (𝐸‘𝑗)) → (𝐸‘𝑗) ⊆ 𝑉) |
18 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐸‘𝑗) ∈ 𝒫 𝑉 ∧ 𝑁 ∉ (𝐸‘𝑗)) → 𝑁 ∉ (𝐸‘𝑗)) |
19 | | elpwdifsn 4719 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐸‘𝑗) ∈ 𝒫 𝑉 ∧ (𝐸‘𝑗) ⊆ 𝑉 ∧ 𝑁 ∉ (𝐸‘𝑗)) → (𝐸‘𝑗) ∈ 𝒫 (𝑉 ∖ {𝑁})) |
20 | 15, 17, 18, 19 | syl3anc 1369 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐸‘𝑗) ∈ 𝒫 𝑉 ∧ 𝑁 ∉ (𝐸‘𝑗)) → (𝐸‘𝑗) ∈ 𝒫 (𝑉 ∖ {𝑁})) |
21 | 20 | ex 412 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐸‘𝑗) ∈ 𝒫 𝑉 → (𝑁 ∉ (𝐸‘𝑗) → (𝐸‘𝑗) ∈ 𝒫 (𝑉 ∖ {𝑁}))) |
22 | 21 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐸‘𝑗) ∈ 𝒫 𝑉 ∧ (𝐸‘𝑗) ≠ ∅) → (𝑁 ∉ (𝐸‘𝑗) → (𝐸‘𝑗) ∈ 𝒫 (𝑉 ∖ {𝑁}))) |
23 | 14, 22 | sylbi 216 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐸‘𝑗) ∈ (𝒫 𝑉 ∖ {∅}) → (𝑁 ∉ (𝐸‘𝑗) → (𝐸‘𝑗) ∈ 𝒫 (𝑉 ∖ {𝑁}))) |
24 | 23 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐸‘𝑗) ∈ (𝒫 𝑉 ∖ {∅}) ∧
(♯‘(𝐸‘𝑗)) ≤ 2) → (𝑁 ∉ (𝐸‘𝑗) → (𝐸‘𝑗) ∈ 𝒫 (𝑉 ∖ {𝑁}))) |
25 | 24 | imp 406 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐸‘𝑗) ∈ (𝒫 𝑉 ∖ {∅}) ∧
(♯‘(𝐸‘𝑗)) ≤ 2) ∧ 𝑁 ∉ (𝐸‘𝑗)) → (𝐸‘𝑗) ∈ 𝒫 (𝑉 ∖ {𝑁})) |
26 | | eldifsni 4720 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐸‘𝑗) ∈ (𝒫 𝑉 ∖ {∅}) → (𝐸‘𝑗) ≠ ∅) |
27 | 26 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐸‘𝑗) ∈ (𝒫 𝑉 ∖ {∅}) ∧
(♯‘(𝐸‘𝑗)) ≤ 2) → (𝐸‘𝑗) ≠ ∅) |
28 | 27 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐸‘𝑗) ∈ (𝒫 𝑉 ∖ {∅}) ∧
(♯‘(𝐸‘𝑗)) ≤ 2) ∧ 𝑁 ∉ (𝐸‘𝑗)) → (𝐸‘𝑗) ≠ ∅) |
29 | | eldifsn 4717 |
. . . . . . . . . . . . . . 15
⊢ ((𝐸‘𝑗) ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ↔ ((𝐸‘𝑗) ∈ 𝒫 (𝑉 ∖ {𝑁}) ∧ (𝐸‘𝑗) ≠ ∅)) |
30 | 25, 28, 29 | sylanbrc 582 |
. . . . . . . . . . . . . 14
⊢ ((((𝐸‘𝑗) ∈ (𝒫 𝑉 ∖ {∅}) ∧
(♯‘(𝐸‘𝑗)) ≤ 2) ∧ 𝑁 ∉ (𝐸‘𝑗)) → (𝐸‘𝑗) ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅})) |
31 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢ (((𝐸‘𝑗) ∈ (𝒫 𝑉 ∖ {∅}) ∧
(♯‘(𝐸‘𝑗)) ≤ 2) → (♯‘(𝐸‘𝑗)) ≤ 2) |
32 | 31 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((((𝐸‘𝑗) ∈ (𝒫 𝑉 ∖ {∅}) ∧
(♯‘(𝐸‘𝑗)) ≤ 2) ∧ 𝑁 ∉ (𝐸‘𝑗)) → (♯‘(𝐸‘𝑗)) ≤ 2) |
33 | 12, 30, 32 | elrabd 3619 |
. . . . . . . . . . . . 13
⊢ ((((𝐸‘𝑗) ∈ (𝒫 𝑉 ∖ {∅}) ∧
(♯‘(𝐸‘𝑗)) ≤ 2) ∧ 𝑁 ∉ (𝐸‘𝑗)) → (𝐸‘𝑗) ∈ {𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣
(♯‘𝑝) ≤
2}) |
34 | 33 | ex 412 |
. . . . . . . . . . . 12
⊢ (((𝐸‘𝑗) ∈ (𝒫 𝑉 ∖ {∅}) ∧
(♯‘(𝐸‘𝑗)) ≤ 2) → (𝑁 ∉ (𝐸‘𝑗) → (𝐸‘𝑗) ∈ {𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣
(♯‘𝑝) ≤
2})) |
35 | 34 | a1d 25 |
. . . . . . . . . . 11
⊢ (((𝐸‘𝑗) ∈ (𝒫 𝑉 ∖ {∅}) ∧
(♯‘(𝐸‘𝑗)) ≤ 2) → (𝑁 ∈ 𝑉 → (𝑁 ∉ (𝐸‘𝑗) → (𝐸‘𝑗) ∈ {𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣
(♯‘𝑝) ≤
2}))) |
36 | 13, 35 | sylbi 216 |
. . . . . . . . . 10
⊢ ((𝐸‘𝑗) ∈ {𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣
(♯‘𝑝) ≤ 2}
→ (𝑁 ∈ 𝑉 → (𝑁 ∉ (𝐸‘𝑗) → (𝐸‘𝑗) ∈ {𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣
(♯‘𝑝) ≤
2}))) |
37 | 10, 36 | syl 17 |
. . . . . . . . 9
⊢ ((𝐸:dom 𝐸⟶{𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣
(♯‘𝑝) ≤ 2}
∧ 𝑗 ∈ dom 𝐸) → (𝑁 ∈ 𝑉 → (𝑁 ∉ (𝐸‘𝑗) → (𝐸‘𝑗) ∈ {𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣
(♯‘𝑝) ≤
2}))) |
38 | 37 | ex 412 |
. . . . . . . 8
⊢ (𝐸:dom 𝐸⟶{𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣
(♯‘𝑝) ≤ 2}
→ (𝑗 ∈ dom 𝐸 → (𝑁 ∈ 𝑉 → (𝑁 ∉ (𝐸‘𝑗) → (𝐸‘𝑗) ∈ {𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣
(♯‘𝑝) ≤
2})))) |
39 | 38 | com23 86 |
. . . . . . 7
⊢ (𝐸:dom 𝐸⟶{𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣
(♯‘𝑝) ≤ 2}
→ (𝑁 ∈ 𝑉 → (𝑗 ∈ dom 𝐸 → (𝑁 ∉ (𝐸‘𝑗) → (𝐸‘𝑗) ∈ {𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣
(♯‘𝑝) ≤
2})))) |
40 | 9, 39 | syl 17 |
. . . . . 6
⊢ (𝐺 ∈ UPGraph → (𝑁 ∈ 𝑉 → (𝑗 ∈ dom 𝐸 → (𝑁 ∉ (𝐸‘𝑗) → (𝐸‘𝑗) ∈ {𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣
(♯‘𝑝) ≤
2})))) |
41 | 40 | imp4b 421 |
. . . . 5
⊢ ((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) → ((𝑗 ∈ dom 𝐸 ∧ 𝑁 ∉ (𝐸‘𝑗)) → (𝐸‘𝑗) ∈ {𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣
(♯‘𝑝) ≤
2})) |
42 | 6, 41 | syl5bi 241 |
. . . 4
⊢ ((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) → (𝑗 ∈ 𝐹 → (𝐸‘𝑗) ∈ {𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣
(♯‘𝑝) ≤
2})) |
43 | 42 | ralrimiv 3106 |
. . 3
⊢ ((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) → ∀𝑗 ∈ 𝐹 (𝐸‘𝑗) ∈ {𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣
(♯‘𝑝) ≤
2}) |
44 | | upgruhgr 27375 |
. . . . . 6
⊢ (𝐺 ∈ UPGraph → 𝐺 ∈
UHGraph) |
45 | 8 | uhgrfun 27339 |
. . . . . 6
⊢ (𝐺 ∈ UHGraph → Fun 𝐸) |
46 | 44, 45 | syl 17 |
. . . . 5
⊢ (𝐺 ∈ UPGraph → Fun 𝐸) |
47 | 46 | adantr 480 |
. . . 4
⊢ ((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) → Fun 𝐸) |
48 | 5 | ssrab3 4011 |
. . . 4
⊢ 𝐹 ⊆ dom 𝐸 |
49 | | funimass4 6816 |
. . . 4
⊢ ((Fun
𝐸 ∧ 𝐹 ⊆ dom 𝐸) → ((𝐸 “ 𝐹) ⊆ {𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣
(♯‘𝑝) ≤ 2}
↔ ∀𝑗 ∈
𝐹 (𝐸‘𝑗) ∈ {𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣
(♯‘𝑝) ≤
2})) |
50 | 47, 48, 49 | sylancl 585 |
. . 3
⊢ ((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) → ((𝐸 “ 𝐹) ⊆ {𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣
(♯‘𝑝) ≤ 2}
↔ ∀𝑗 ∈
𝐹 (𝐸‘𝑗) ∈ {𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣
(♯‘𝑝) ≤
2})) |
51 | 43, 50 | mpbird 256 |
. 2
⊢ ((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) → (𝐸 “ 𝐹) ⊆ {𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣
(♯‘𝑝) ≤
2}) |
52 | 1, 51 | eqsstrrid 3966 |
1
⊢ ((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) → ran (𝐸 ↾ 𝐹) ⊆ {𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣
(♯‘𝑝) ≤
2}) |