MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgrreslem Structured version   Visualization version   GIF version

Theorem upgrreslem 28550
Description: Lemma for upgrres 28552. (Contributed by AV, 27-Nov-2020.) (Revised by AV, 19-Dec-2021.)
Hypotheses
Ref Expression
upgrres.v 𝑉 = (Vtx‘𝐺)
upgrres.e 𝐸 = (iEdg‘𝐺)
upgrres.f 𝐹 = {𝑖 ∈ dom 𝐸𝑁 ∉ (𝐸𝑖)}
Assertion
Ref Expression
upgrreslem ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → ran (𝐸𝐹) ⊆ {𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2})
Distinct variable groups:   𝑖,𝐸   𝐸,𝑝   𝐺,𝑝   𝑖,𝑁   𝑁,𝑝   𝑉,𝑝
Allowed substitution hints:   𝐹(𝑖,𝑝)   𝐺(𝑖)   𝑉(𝑖)

Proof of Theorem upgrreslem
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 df-ima 5688 . 2 (𝐸𝐹) = ran (𝐸𝐹)
2 fveq2 6888 . . . . . . 7 (𝑖 = 𝑗 → (𝐸𝑖) = (𝐸𝑗))
3 neleq2 3053 . . . . . . 7 ((𝐸𝑖) = (𝐸𝑗) → (𝑁 ∉ (𝐸𝑖) ↔ 𝑁 ∉ (𝐸𝑗)))
42, 3syl 17 . . . . . 6 (𝑖 = 𝑗 → (𝑁 ∉ (𝐸𝑖) ↔ 𝑁 ∉ (𝐸𝑗)))
5 upgrres.f . . . . . 6 𝐹 = {𝑖 ∈ dom 𝐸𝑁 ∉ (𝐸𝑖)}
64, 5elrab2 3685 . . . . 5 (𝑗𝐹 ↔ (𝑗 ∈ dom 𝐸𝑁 ∉ (𝐸𝑗)))
7 upgrres.v . . . . . . . 8 𝑉 = (Vtx‘𝐺)
8 upgrres.e . . . . . . . 8 𝐸 = (iEdg‘𝐺)
97, 8upgrf 28335 . . . . . . 7 (𝐺 ∈ UPGraph → 𝐸:dom 𝐸⟶{𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑝) ≤ 2})
10 ffvelcdm 7080 . . . . . . . . . 10 ((𝐸:dom 𝐸⟶{𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑝) ≤ 2} ∧ 𝑗 ∈ dom 𝐸) → (𝐸𝑗) ∈ {𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑝) ≤ 2})
11 fveq2 6888 . . . . . . . . . . . . 13 (𝑝 = (𝐸𝑗) → (♯‘𝑝) = (♯‘(𝐸𝑗)))
1211breq1d 5157 . . . . . . . . . . . 12 (𝑝 = (𝐸𝑗) → ((♯‘𝑝) ≤ 2 ↔ (♯‘(𝐸𝑗)) ≤ 2))
1312elrab 3682 . . . . . . . . . . 11 ((𝐸𝑗) ∈ {𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑝) ≤ 2} ↔ ((𝐸𝑗) ∈ (𝒫 𝑉 ∖ {∅}) ∧ (♯‘(𝐸𝑗)) ≤ 2))
14 eldifsn 4789 . . . . . . . . . . . . . . . . . 18 ((𝐸𝑗) ∈ (𝒫 𝑉 ∖ {∅}) ↔ ((𝐸𝑗) ∈ 𝒫 𝑉 ∧ (𝐸𝑗) ≠ ∅))
15 simpl 483 . . . . . . . . . . . . . . . . . . . . 21 (((𝐸𝑗) ∈ 𝒫 𝑉𝑁 ∉ (𝐸𝑗)) → (𝐸𝑗) ∈ 𝒫 𝑉)
16 elpwi 4608 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐸𝑗) ∈ 𝒫 𝑉 → (𝐸𝑗) ⊆ 𝑉)
1716adantr 481 . . . . . . . . . . . . . . . . . . . . 21 (((𝐸𝑗) ∈ 𝒫 𝑉𝑁 ∉ (𝐸𝑗)) → (𝐸𝑗) ⊆ 𝑉)
18 simpr 485 . . . . . . . . . . . . . . . . . . . . 21 (((𝐸𝑗) ∈ 𝒫 𝑉𝑁 ∉ (𝐸𝑗)) → 𝑁 ∉ (𝐸𝑗))
19 elpwdifsn 4791 . . . . . . . . . . . . . . . . . . . . 21 (((𝐸𝑗) ∈ 𝒫 𝑉 ∧ (𝐸𝑗) ⊆ 𝑉𝑁 ∉ (𝐸𝑗)) → (𝐸𝑗) ∈ 𝒫 (𝑉 ∖ {𝑁}))
2015, 17, 18, 19syl3anc 1371 . . . . . . . . . . . . . . . . . . . 20 (((𝐸𝑗) ∈ 𝒫 𝑉𝑁 ∉ (𝐸𝑗)) → (𝐸𝑗) ∈ 𝒫 (𝑉 ∖ {𝑁}))
2120ex 413 . . . . . . . . . . . . . . . . . . 19 ((𝐸𝑗) ∈ 𝒫 𝑉 → (𝑁 ∉ (𝐸𝑗) → (𝐸𝑗) ∈ 𝒫 (𝑉 ∖ {𝑁})))
2221adantr 481 . . . . . . . . . . . . . . . . . 18 (((𝐸𝑗) ∈ 𝒫 𝑉 ∧ (𝐸𝑗) ≠ ∅) → (𝑁 ∉ (𝐸𝑗) → (𝐸𝑗) ∈ 𝒫 (𝑉 ∖ {𝑁})))
2314, 22sylbi 216 . . . . . . . . . . . . . . . . 17 ((𝐸𝑗) ∈ (𝒫 𝑉 ∖ {∅}) → (𝑁 ∉ (𝐸𝑗) → (𝐸𝑗) ∈ 𝒫 (𝑉 ∖ {𝑁})))
2423adantr 481 . . . . . . . . . . . . . . . 16 (((𝐸𝑗) ∈ (𝒫 𝑉 ∖ {∅}) ∧ (♯‘(𝐸𝑗)) ≤ 2) → (𝑁 ∉ (𝐸𝑗) → (𝐸𝑗) ∈ 𝒫 (𝑉 ∖ {𝑁})))
2524imp 407 . . . . . . . . . . . . . . 15 ((((𝐸𝑗) ∈ (𝒫 𝑉 ∖ {∅}) ∧ (♯‘(𝐸𝑗)) ≤ 2) ∧ 𝑁 ∉ (𝐸𝑗)) → (𝐸𝑗) ∈ 𝒫 (𝑉 ∖ {𝑁}))
26 eldifsni 4792 . . . . . . . . . . . . . . . . 17 ((𝐸𝑗) ∈ (𝒫 𝑉 ∖ {∅}) → (𝐸𝑗) ≠ ∅)
2726adantr 481 . . . . . . . . . . . . . . . 16 (((𝐸𝑗) ∈ (𝒫 𝑉 ∖ {∅}) ∧ (♯‘(𝐸𝑗)) ≤ 2) → (𝐸𝑗) ≠ ∅)
2827adantr 481 . . . . . . . . . . . . . . 15 ((((𝐸𝑗) ∈ (𝒫 𝑉 ∖ {∅}) ∧ (♯‘(𝐸𝑗)) ≤ 2) ∧ 𝑁 ∉ (𝐸𝑗)) → (𝐸𝑗) ≠ ∅)
29 eldifsn 4789 . . . . . . . . . . . . . . 15 ((𝐸𝑗) ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ↔ ((𝐸𝑗) ∈ 𝒫 (𝑉 ∖ {𝑁}) ∧ (𝐸𝑗) ≠ ∅))
3025, 28, 29sylanbrc 583 . . . . . . . . . . . . . 14 ((((𝐸𝑗) ∈ (𝒫 𝑉 ∖ {∅}) ∧ (♯‘(𝐸𝑗)) ≤ 2) ∧ 𝑁 ∉ (𝐸𝑗)) → (𝐸𝑗) ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}))
31 simpr 485 . . . . . . . . . . . . . . 15 (((𝐸𝑗) ∈ (𝒫 𝑉 ∖ {∅}) ∧ (♯‘(𝐸𝑗)) ≤ 2) → (♯‘(𝐸𝑗)) ≤ 2)
3231adantr 481 . . . . . . . . . . . . . 14 ((((𝐸𝑗) ∈ (𝒫 𝑉 ∖ {∅}) ∧ (♯‘(𝐸𝑗)) ≤ 2) ∧ 𝑁 ∉ (𝐸𝑗)) → (♯‘(𝐸𝑗)) ≤ 2)
3312, 30, 32elrabd 3684 . . . . . . . . . . . . 13 ((((𝐸𝑗) ∈ (𝒫 𝑉 ∖ {∅}) ∧ (♯‘(𝐸𝑗)) ≤ 2) ∧ 𝑁 ∉ (𝐸𝑗)) → (𝐸𝑗) ∈ {𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2})
3433ex 413 . . . . . . . . . . . 12 (((𝐸𝑗) ∈ (𝒫 𝑉 ∖ {∅}) ∧ (♯‘(𝐸𝑗)) ≤ 2) → (𝑁 ∉ (𝐸𝑗) → (𝐸𝑗) ∈ {𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2}))
3534a1d 25 . . . . . . . . . . 11 (((𝐸𝑗) ∈ (𝒫 𝑉 ∖ {∅}) ∧ (♯‘(𝐸𝑗)) ≤ 2) → (𝑁𝑉 → (𝑁 ∉ (𝐸𝑗) → (𝐸𝑗) ∈ {𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2})))
3613, 35sylbi 216 . . . . . . . . . 10 ((𝐸𝑗) ∈ {𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑝) ≤ 2} → (𝑁𝑉 → (𝑁 ∉ (𝐸𝑗) → (𝐸𝑗) ∈ {𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2})))
3710, 36syl 17 . . . . . . . . 9 ((𝐸:dom 𝐸⟶{𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑝) ≤ 2} ∧ 𝑗 ∈ dom 𝐸) → (𝑁𝑉 → (𝑁 ∉ (𝐸𝑗) → (𝐸𝑗) ∈ {𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2})))
3837ex 413 . . . . . . . 8 (𝐸:dom 𝐸⟶{𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑝) ≤ 2} → (𝑗 ∈ dom 𝐸 → (𝑁𝑉 → (𝑁 ∉ (𝐸𝑗) → (𝐸𝑗) ∈ {𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2}))))
3938com23 86 . . . . . . 7 (𝐸:dom 𝐸⟶{𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑝) ≤ 2} → (𝑁𝑉 → (𝑗 ∈ dom 𝐸 → (𝑁 ∉ (𝐸𝑗) → (𝐸𝑗) ∈ {𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2}))))
409, 39syl 17 . . . . . 6 (𝐺 ∈ UPGraph → (𝑁𝑉 → (𝑗 ∈ dom 𝐸 → (𝑁 ∉ (𝐸𝑗) → (𝐸𝑗) ∈ {𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2}))))
4140imp4b 422 . . . . 5 ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → ((𝑗 ∈ dom 𝐸𝑁 ∉ (𝐸𝑗)) → (𝐸𝑗) ∈ {𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2}))
426, 41biimtrid 241 . . . 4 ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → (𝑗𝐹 → (𝐸𝑗) ∈ {𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2}))
4342ralrimiv 3145 . . 3 ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → ∀𝑗𝐹 (𝐸𝑗) ∈ {𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2})
44 upgruhgr 28351 . . . . . 6 (𝐺 ∈ UPGraph → 𝐺 ∈ UHGraph)
458uhgrfun 28315 . . . . . 6 (𝐺 ∈ UHGraph → Fun 𝐸)
4644, 45syl 17 . . . . 5 (𝐺 ∈ UPGraph → Fun 𝐸)
4746adantr 481 . . . 4 ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → Fun 𝐸)
485ssrab3 4079 . . . 4 𝐹 ⊆ dom 𝐸
49 funimass4 6953 . . . 4 ((Fun 𝐸𝐹 ⊆ dom 𝐸) → ((𝐸𝐹) ⊆ {𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2} ↔ ∀𝑗𝐹 (𝐸𝑗) ∈ {𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2}))
5047, 48, 49sylancl 586 . . 3 ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → ((𝐸𝐹) ⊆ {𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2} ↔ ∀𝑗𝐹 (𝐸𝑗) ∈ {𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2}))
5143, 50mpbird 256 . 2 ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → (𝐸𝐹) ⊆ {𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2})
521, 51eqsstrrid 4030 1 ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → ran (𝐸𝐹) ⊆ {𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wne 2940  wnel 3046  wral 3061  {crab 3432  cdif 3944  wss 3947  c0 4321  𝒫 cpw 4601  {csn 4627   class class class wbr 5147  dom cdm 5675  ran crn 5676  cres 5677  cima 5678  Fun wfun 6534  wf 6536  cfv 6540  cle 11245  2c2 12263  chash 14286  Vtxcvtx 28245  iEdgciedg 28246  UHGraphcuhgr 28305  UPGraphcupgr 28329
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-fv 6548  df-uhgr 28307  df-upgr 28331
This theorem is referenced by:  upgrres  28552
  Copyright terms: Public domain W3C validator