MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgrreslem Structured version   Visualization version   GIF version

Theorem upgrreslem 29231
Description: Lemma for upgrres 29233. (Contributed by AV, 27-Nov-2020.) (Revised by AV, 19-Dec-2021.)
Hypotheses
Ref Expression
upgrres.v 𝑉 = (Vtx‘𝐺)
upgrres.e 𝐸 = (iEdg‘𝐺)
upgrres.f 𝐹 = {𝑖 ∈ dom 𝐸𝑁 ∉ (𝐸𝑖)}
Assertion
Ref Expression
upgrreslem ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → ran (𝐸𝐹) ⊆ {𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2})
Distinct variable groups:   𝑖,𝐸   𝐸,𝑝   𝐺,𝑝   𝑖,𝑁   𝑁,𝑝   𝑉,𝑝
Allowed substitution hints:   𝐹(𝑖,𝑝)   𝐺(𝑖)   𝑉(𝑖)

Proof of Theorem upgrreslem
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 df-ima 5651 . 2 (𝐸𝐹) = ran (𝐸𝐹)
2 fveq2 6858 . . . . . . 7 (𝑖 = 𝑗 → (𝐸𝑖) = (𝐸𝑗))
3 neleq2 3036 . . . . . . 7 ((𝐸𝑖) = (𝐸𝑗) → (𝑁 ∉ (𝐸𝑖) ↔ 𝑁 ∉ (𝐸𝑗)))
42, 3syl 17 . . . . . 6 (𝑖 = 𝑗 → (𝑁 ∉ (𝐸𝑖) ↔ 𝑁 ∉ (𝐸𝑗)))
5 upgrres.f . . . . . 6 𝐹 = {𝑖 ∈ dom 𝐸𝑁 ∉ (𝐸𝑖)}
64, 5elrab2 3662 . . . . 5 (𝑗𝐹 ↔ (𝑗 ∈ dom 𝐸𝑁 ∉ (𝐸𝑗)))
7 upgrres.v . . . . . . . 8 𝑉 = (Vtx‘𝐺)
8 upgrres.e . . . . . . . 8 𝐸 = (iEdg‘𝐺)
97, 8upgrf 29013 . . . . . . 7 (𝐺 ∈ UPGraph → 𝐸:dom 𝐸⟶{𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑝) ≤ 2})
10 ffvelcdm 7053 . . . . . . . . . 10 ((𝐸:dom 𝐸⟶{𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑝) ≤ 2} ∧ 𝑗 ∈ dom 𝐸) → (𝐸𝑗) ∈ {𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑝) ≤ 2})
11 fveq2 6858 . . . . . . . . . . . . 13 (𝑝 = (𝐸𝑗) → (♯‘𝑝) = (♯‘(𝐸𝑗)))
1211breq1d 5117 . . . . . . . . . . . 12 (𝑝 = (𝐸𝑗) → ((♯‘𝑝) ≤ 2 ↔ (♯‘(𝐸𝑗)) ≤ 2))
1312elrab 3659 . . . . . . . . . . 11 ((𝐸𝑗) ∈ {𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑝) ≤ 2} ↔ ((𝐸𝑗) ∈ (𝒫 𝑉 ∖ {∅}) ∧ (♯‘(𝐸𝑗)) ≤ 2))
14 eldifsn 4750 . . . . . . . . . . . . . . . . . 18 ((𝐸𝑗) ∈ (𝒫 𝑉 ∖ {∅}) ↔ ((𝐸𝑗) ∈ 𝒫 𝑉 ∧ (𝐸𝑗) ≠ ∅))
15 simpl 482 . . . . . . . . . . . . . . . . . . . . 21 (((𝐸𝑗) ∈ 𝒫 𝑉𝑁 ∉ (𝐸𝑗)) → (𝐸𝑗) ∈ 𝒫 𝑉)
16 elpwi 4570 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐸𝑗) ∈ 𝒫 𝑉 → (𝐸𝑗) ⊆ 𝑉)
1716adantr 480 . . . . . . . . . . . . . . . . . . . . 21 (((𝐸𝑗) ∈ 𝒫 𝑉𝑁 ∉ (𝐸𝑗)) → (𝐸𝑗) ⊆ 𝑉)
18 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 (((𝐸𝑗) ∈ 𝒫 𝑉𝑁 ∉ (𝐸𝑗)) → 𝑁 ∉ (𝐸𝑗))
19 elpwdifsn 4753 . . . . . . . . . . . . . . . . . . . . 21 (((𝐸𝑗) ∈ 𝒫 𝑉 ∧ (𝐸𝑗) ⊆ 𝑉𝑁 ∉ (𝐸𝑗)) → (𝐸𝑗) ∈ 𝒫 (𝑉 ∖ {𝑁}))
2015, 17, 18, 19syl3anc 1373 . . . . . . . . . . . . . . . . . . . 20 (((𝐸𝑗) ∈ 𝒫 𝑉𝑁 ∉ (𝐸𝑗)) → (𝐸𝑗) ∈ 𝒫 (𝑉 ∖ {𝑁}))
2120ex 412 . . . . . . . . . . . . . . . . . . 19 ((𝐸𝑗) ∈ 𝒫 𝑉 → (𝑁 ∉ (𝐸𝑗) → (𝐸𝑗) ∈ 𝒫 (𝑉 ∖ {𝑁})))
2221adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝐸𝑗) ∈ 𝒫 𝑉 ∧ (𝐸𝑗) ≠ ∅) → (𝑁 ∉ (𝐸𝑗) → (𝐸𝑗) ∈ 𝒫 (𝑉 ∖ {𝑁})))
2314, 22sylbi 217 . . . . . . . . . . . . . . . . 17 ((𝐸𝑗) ∈ (𝒫 𝑉 ∖ {∅}) → (𝑁 ∉ (𝐸𝑗) → (𝐸𝑗) ∈ 𝒫 (𝑉 ∖ {𝑁})))
2423adantr 480 . . . . . . . . . . . . . . . 16 (((𝐸𝑗) ∈ (𝒫 𝑉 ∖ {∅}) ∧ (♯‘(𝐸𝑗)) ≤ 2) → (𝑁 ∉ (𝐸𝑗) → (𝐸𝑗) ∈ 𝒫 (𝑉 ∖ {𝑁})))
2524imp 406 . . . . . . . . . . . . . . 15 ((((𝐸𝑗) ∈ (𝒫 𝑉 ∖ {∅}) ∧ (♯‘(𝐸𝑗)) ≤ 2) ∧ 𝑁 ∉ (𝐸𝑗)) → (𝐸𝑗) ∈ 𝒫 (𝑉 ∖ {𝑁}))
26 eldifsni 4754 . . . . . . . . . . . . . . . . 17 ((𝐸𝑗) ∈ (𝒫 𝑉 ∖ {∅}) → (𝐸𝑗) ≠ ∅)
2726adantr 480 . . . . . . . . . . . . . . . 16 (((𝐸𝑗) ∈ (𝒫 𝑉 ∖ {∅}) ∧ (♯‘(𝐸𝑗)) ≤ 2) → (𝐸𝑗) ≠ ∅)
2827adantr 480 . . . . . . . . . . . . . . 15 ((((𝐸𝑗) ∈ (𝒫 𝑉 ∖ {∅}) ∧ (♯‘(𝐸𝑗)) ≤ 2) ∧ 𝑁 ∉ (𝐸𝑗)) → (𝐸𝑗) ≠ ∅)
29 eldifsn 4750 . . . . . . . . . . . . . . 15 ((𝐸𝑗) ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ↔ ((𝐸𝑗) ∈ 𝒫 (𝑉 ∖ {𝑁}) ∧ (𝐸𝑗) ≠ ∅))
3025, 28, 29sylanbrc 583 . . . . . . . . . . . . . 14 ((((𝐸𝑗) ∈ (𝒫 𝑉 ∖ {∅}) ∧ (♯‘(𝐸𝑗)) ≤ 2) ∧ 𝑁 ∉ (𝐸𝑗)) → (𝐸𝑗) ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}))
31 simpr 484 . . . . . . . . . . . . . . 15 (((𝐸𝑗) ∈ (𝒫 𝑉 ∖ {∅}) ∧ (♯‘(𝐸𝑗)) ≤ 2) → (♯‘(𝐸𝑗)) ≤ 2)
3231adantr 480 . . . . . . . . . . . . . 14 ((((𝐸𝑗) ∈ (𝒫 𝑉 ∖ {∅}) ∧ (♯‘(𝐸𝑗)) ≤ 2) ∧ 𝑁 ∉ (𝐸𝑗)) → (♯‘(𝐸𝑗)) ≤ 2)
3312, 30, 32elrabd 3661 . . . . . . . . . . . . 13 ((((𝐸𝑗) ∈ (𝒫 𝑉 ∖ {∅}) ∧ (♯‘(𝐸𝑗)) ≤ 2) ∧ 𝑁 ∉ (𝐸𝑗)) → (𝐸𝑗) ∈ {𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2})
3433ex 412 . . . . . . . . . . . 12 (((𝐸𝑗) ∈ (𝒫 𝑉 ∖ {∅}) ∧ (♯‘(𝐸𝑗)) ≤ 2) → (𝑁 ∉ (𝐸𝑗) → (𝐸𝑗) ∈ {𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2}))
3534a1d 25 . . . . . . . . . . 11 (((𝐸𝑗) ∈ (𝒫 𝑉 ∖ {∅}) ∧ (♯‘(𝐸𝑗)) ≤ 2) → (𝑁𝑉 → (𝑁 ∉ (𝐸𝑗) → (𝐸𝑗) ∈ {𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2})))
3613, 35sylbi 217 . . . . . . . . . 10 ((𝐸𝑗) ∈ {𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑝) ≤ 2} → (𝑁𝑉 → (𝑁 ∉ (𝐸𝑗) → (𝐸𝑗) ∈ {𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2})))
3710, 36syl 17 . . . . . . . . 9 ((𝐸:dom 𝐸⟶{𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑝) ≤ 2} ∧ 𝑗 ∈ dom 𝐸) → (𝑁𝑉 → (𝑁 ∉ (𝐸𝑗) → (𝐸𝑗) ∈ {𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2})))
3837ex 412 . . . . . . . 8 (𝐸:dom 𝐸⟶{𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑝) ≤ 2} → (𝑗 ∈ dom 𝐸 → (𝑁𝑉 → (𝑁 ∉ (𝐸𝑗) → (𝐸𝑗) ∈ {𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2}))))
3938com23 86 . . . . . . 7 (𝐸:dom 𝐸⟶{𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑝) ≤ 2} → (𝑁𝑉 → (𝑗 ∈ dom 𝐸 → (𝑁 ∉ (𝐸𝑗) → (𝐸𝑗) ∈ {𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2}))))
409, 39syl 17 . . . . . 6 (𝐺 ∈ UPGraph → (𝑁𝑉 → (𝑗 ∈ dom 𝐸 → (𝑁 ∉ (𝐸𝑗) → (𝐸𝑗) ∈ {𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2}))))
4140imp4b 421 . . . . 5 ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → ((𝑗 ∈ dom 𝐸𝑁 ∉ (𝐸𝑗)) → (𝐸𝑗) ∈ {𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2}))
426, 41biimtrid 242 . . . 4 ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → (𝑗𝐹 → (𝐸𝑗) ∈ {𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2}))
4342ralrimiv 3124 . . 3 ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → ∀𝑗𝐹 (𝐸𝑗) ∈ {𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2})
44 upgruhgr 29029 . . . . . 6 (𝐺 ∈ UPGraph → 𝐺 ∈ UHGraph)
458uhgrfun 28993 . . . . . 6 (𝐺 ∈ UHGraph → Fun 𝐸)
4644, 45syl 17 . . . . 5 (𝐺 ∈ UPGraph → Fun 𝐸)
4746adantr 480 . . . 4 ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → Fun 𝐸)
485ssrab3 4045 . . . 4 𝐹 ⊆ dom 𝐸
49 funimass4 6925 . . . 4 ((Fun 𝐸𝐹 ⊆ dom 𝐸) → ((𝐸𝐹) ⊆ {𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2} ↔ ∀𝑗𝐹 (𝐸𝑗) ∈ {𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2}))
5047, 48, 49sylancl 586 . . 3 ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → ((𝐸𝐹) ⊆ {𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2} ↔ ∀𝑗𝐹 (𝐸𝑗) ∈ {𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2}))
5143, 50mpbird 257 . 2 ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → (𝐸𝐹) ⊆ {𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2})
521, 51eqsstrrid 3986 1 ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → ran (𝐸𝐹) ⊆ {𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wnel 3029  wral 3044  {crab 3405  cdif 3911  wss 3914  c0 4296  𝒫 cpw 4563  {csn 4589   class class class wbr 5107  dom cdm 5638  ran crn 5639  cres 5640  cima 5641  Fun wfun 6505  wf 6507  cfv 6511  cle 11209  2c2 12241  chash 14295  Vtxcvtx 28923  iEdgciedg 28924  UHGraphcuhgr 28983  UPGraphcupgr 29007
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-uhgr 28985  df-upgr 29009
This theorem is referenced by:  upgrres  29233
  Copyright terms: Public domain W3C validator