MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eupth2lem3lem6 Structured version   Visualization version   GIF version

Theorem eupth2lem3lem6 28593
Description: Formerly part of proof of eupth2lem3 28596: If an edge (not a loop) is added to a trail, the degree of vertices not being end vertices of this edge remains odd if it was odd before (regarding the subgraphs induced by the involved trails). Remark: This seems to be not valid for hyperedges joining more vertices than (𝑃‘0) and (𝑃𝑁): if there is a third vertex in the edge, and this vertex is already contained in the trail, then the degree of this vertex could be affected by this edge! (Contributed by Mario Carneiro, 8-Apr-2015.) (Revised by AV, 25-Feb-2021.)
Hypotheses
Ref Expression
trlsegvdeg.v 𝑉 = (Vtx‘𝐺)
trlsegvdeg.i 𝐼 = (iEdg‘𝐺)
trlsegvdeg.f (𝜑 → Fun 𝐼)
trlsegvdeg.n (𝜑𝑁 ∈ (0..^(♯‘𝐹)))
trlsegvdeg.u (𝜑𝑈𝑉)
trlsegvdeg.w (𝜑𝐹(Trails‘𝐺)𝑃)
trlsegvdeg.vx (𝜑 → (Vtx‘𝑋) = 𝑉)
trlsegvdeg.vy (𝜑 → (Vtx‘𝑌) = 𝑉)
trlsegvdeg.vz (𝜑 → (Vtx‘𝑍) = 𝑉)
trlsegvdeg.ix (𝜑 → (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0..^𝑁))))
trlsegvdeg.iy (𝜑 → (iEdg‘𝑌) = {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩})
trlsegvdeg.iz (𝜑 → (iEdg‘𝑍) = (𝐼 ↾ (𝐹 “ (0...𝑁))))
eupth2lem3.o (𝜑 → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑥)} = if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)}))
eupth2lem3.e (𝜑 → (𝐼‘(𝐹𝑁)) = {(𝑃𝑁), (𝑃‘(𝑁 + 1))})
Assertion
Ref Expression
eupth2lem3lem6 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))})))
Distinct variable groups:   𝑥,𝑈   𝑥,𝑉   𝑥,𝑋
Allowed substitution hints:   𝜑(𝑥)   𝑃(𝑥)   𝐹(𝑥)   𝐺(𝑥)   𝐼(𝑥)   𝑁(𝑥)   𝑌(𝑥)   𝑍(𝑥)

Proof of Theorem eupth2lem3lem6
StepHypRef Expression
1 trlsegvdeg.iy . . . . . . . 8 (𝜑 → (iEdg‘𝑌) = {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩})
213ad2ant1 1132 . . . . . . 7 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → (iEdg‘𝑌) = {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩})
3 trlsegvdeg.vy . . . . . . . 8 (𝜑 → (Vtx‘𝑌) = 𝑉)
433ad2ant1 1132 . . . . . . 7 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → (Vtx‘𝑌) = 𝑉)
5 fvexd 6786 . . . . . . 7 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → (𝐹𝑁) ∈ V)
6 trlsegvdeg.u . . . . . . . 8 (𝜑𝑈𝑉)
763ad2ant1 1132 . . . . . . 7 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → 𝑈𝑉)
8 fvexd 6786 . . . . . . 7 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → (𝐼‘(𝐹𝑁)) ∈ V)
9 eupth2lem3.e . . . . . . . . 9 (𝜑 → (𝐼‘(𝐹𝑁)) = {(𝑃𝑁), (𝑃‘(𝑁 + 1))})
10 simpl 483 . . . . . . . . . . . . . 14 ((𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1))) → 𝑈 ≠ (𝑃𝑁))
1110adantl 482 . . . . . . . . . . . . 13 (((𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → 𝑈 ≠ (𝑃𝑁))
12 simpr 485 . . . . . . . . . . . . . 14 ((𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1))) → 𝑈 ≠ (𝑃‘(𝑁 + 1)))
1312adantl 482 . . . . . . . . . . . . 13 (((𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → 𝑈 ≠ (𝑃‘(𝑁 + 1)))
1411, 13nelprd 4598 . . . . . . . . . . . 12 (((𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → ¬ 𝑈 ∈ {(𝑃𝑁), (𝑃‘(𝑁 + 1))})
15 df-nel 3052 . . . . . . . . . . . 12 (𝑈 ∉ {(𝑃𝑁), (𝑃‘(𝑁 + 1))} ↔ ¬ 𝑈 ∈ {(𝑃𝑁), (𝑃‘(𝑁 + 1))})
1614, 15sylibr 233 . . . . . . . . . . 11 (((𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → 𝑈 ∉ {(𝑃𝑁), (𝑃‘(𝑁 + 1))})
17 neleq2 3057 . . . . . . . . . . 11 ((𝐼‘(𝐹𝑁)) = {(𝑃𝑁), (𝑃‘(𝑁 + 1))} → (𝑈 ∉ (𝐼‘(𝐹𝑁)) ↔ 𝑈 ∉ {(𝑃𝑁), (𝑃‘(𝑁 + 1))}))
1816, 17syl5ibr 245 . . . . . . . . . 10 ((𝐼‘(𝐹𝑁)) = {(𝑃𝑁), (𝑃‘(𝑁 + 1))} → (((𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → 𝑈 ∉ (𝐼‘(𝐹𝑁))))
1918expd 416 . . . . . . . . 9 ((𝐼‘(𝐹𝑁)) = {(𝑃𝑁), (𝑃‘(𝑁 + 1))} → ((𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) → ((𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1))) → 𝑈 ∉ (𝐼‘(𝐹𝑁)))))
209, 19syl 17 . . . . . . . 8 (𝜑 → ((𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) → ((𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1))) → 𝑈 ∉ (𝐼‘(𝐹𝑁)))))
21203imp 1110 . . . . . . 7 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → 𝑈 ∉ (𝐼‘(𝐹𝑁)))
222, 4, 5, 7, 8, 211hevtxdg0 27870 . . . . . 6 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → ((VtxDeg‘𝑌)‘𝑈) = 0)
2322oveq2d 7287 . . . . 5 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) = (((VtxDeg‘𝑋)‘𝑈) + 0))
24 trlsegvdeg.v . . . . . . . . 9 𝑉 = (Vtx‘𝐺)
25 trlsegvdeg.i . . . . . . . . 9 𝐼 = (iEdg‘𝐺)
26 trlsegvdeg.f . . . . . . . . 9 (𝜑 → Fun 𝐼)
27 trlsegvdeg.n . . . . . . . . 9 (𝜑𝑁 ∈ (0..^(♯‘𝐹)))
28 trlsegvdeg.w . . . . . . . . 9 (𝜑𝐹(Trails‘𝐺)𝑃)
29 trlsegvdeg.vx . . . . . . . . 9 (𝜑 → (Vtx‘𝑋) = 𝑉)
30 trlsegvdeg.vz . . . . . . . . 9 (𝜑 → (Vtx‘𝑍) = 𝑉)
31 trlsegvdeg.ix . . . . . . . . 9 (𝜑 → (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0..^𝑁))))
32 trlsegvdeg.iz . . . . . . . . 9 (𝜑 → (iEdg‘𝑍) = (𝐼 ↾ (𝐹 “ (0...𝑁))))
3324, 25, 26, 27, 6, 28, 29, 3, 30, 31, 1, 32eupth2lem3lem1 28588 . . . . . . . 8 (𝜑 → ((VtxDeg‘𝑋)‘𝑈) ∈ ℕ0)
3433nn0cnd 12295 . . . . . . 7 (𝜑 → ((VtxDeg‘𝑋)‘𝑈) ∈ ℂ)
3534addid1d 11175 . . . . . 6 (𝜑 → (((VtxDeg‘𝑋)‘𝑈) + 0) = ((VtxDeg‘𝑋)‘𝑈))
36353ad2ant1 1132 . . . . 5 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → (((VtxDeg‘𝑋)‘𝑈) + 0) = ((VtxDeg‘𝑋)‘𝑈))
3723, 36eqtrd 2780 . . . 4 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) = ((VtxDeg‘𝑋)‘𝑈))
3837breq2d 5091 . . 3 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → (2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ 2 ∥ ((VtxDeg‘𝑋)‘𝑈)))
3938notbid 318 . 2 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑈)))
40 fveq2 6771 . . . . . . . 8 (𝑥 = 𝑈 → ((VtxDeg‘𝑋)‘𝑥) = ((VtxDeg‘𝑋)‘𝑈))
4140breq2d 5091 . . . . . . 7 (𝑥 = 𝑈 → (2 ∥ ((VtxDeg‘𝑋)‘𝑥) ↔ 2 ∥ ((VtxDeg‘𝑋)‘𝑈)))
4241notbid 318 . . . . . 6 (𝑥 = 𝑈 → (¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑥) ↔ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑈)))
4342elrab3 3627 . . . . 5 (𝑈𝑉 → (𝑈 ∈ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑥)} ↔ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑈)))
446, 43syl 17 . . . 4 (𝜑 → (𝑈 ∈ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑥)} ↔ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑈)))
45 eupth2lem3.o . . . . 5 (𝜑 → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑥)} = if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)}))
4645eleq2d 2826 . . . 4 (𝜑 → (𝑈 ∈ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑥)} ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)})))
4744, 46bitr3d 280 . . 3 (𝜑 → (¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑈) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)})))
48473ad2ant1 1132 . 2 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → (¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑈) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)})))
49103ad2ant3 1134 . . . . . . 7 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → 𝑈 ≠ (𝑃𝑁))
50123ad2ant3 1134 . . . . . . 7 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → 𝑈 ≠ (𝑃‘(𝑁 + 1)))
5149, 502thd 264 . . . . . 6 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → (𝑈 ≠ (𝑃𝑁) ↔ 𝑈 ≠ (𝑃‘(𝑁 + 1))))
52 neeq1 3008 . . . . . . 7 (𝑈 = (𝑃‘0) → (𝑈 ≠ (𝑃𝑁) ↔ (𝑃‘0) ≠ (𝑃𝑁)))
53 neeq1 3008 . . . . . . 7 (𝑈 = (𝑃‘0) → (𝑈 ≠ (𝑃‘(𝑁 + 1)) ↔ (𝑃‘0) ≠ (𝑃‘(𝑁 + 1))))
5452, 53bibi12d 346 . . . . . 6 (𝑈 = (𝑃‘0) → ((𝑈 ≠ (𝑃𝑁) ↔ 𝑈 ≠ (𝑃‘(𝑁 + 1))) ↔ ((𝑃‘0) ≠ (𝑃𝑁) ↔ (𝑃‘0) ≠ (𝑃‘(𝑁 + 1)))))
5551, 54syl5ibcom 244 . . . . 5 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → (𝑈 = (𝑃‘0) → ((𝑃‘0) ≠ (𝑃𝑁) ↔ (𝑃‘0) ≠ (𝑃‘(𝑁 + 1)))))
5655pm5.32rd 578 . . . 4 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → (((𝑃‘0) ≠ (𝑃𝑁) ∧ 𝑈 = (𝑃‘0)) ↔ ((𝑃‘0) ≠ (𝑃‘(𝑁 + 1)) ∧ 𝑈 = (𝑃‘0))))
5749neneqd 2950 . . . . . . 7 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → ¬ 𝑈 = (𝑃𝑁))
58 biorf 934 . . . . . . 7 𝑈 = (𝑃𝑁) → (𝑈 = (𝑃‘0) ↔ (𝑈 = (𝑃𝑁) ∨ 𝑈 = (𝑃‘0))))
5957, 58syl 17 . . . . . 6 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → (𝑈 = (𝑃‘0) ↔ (𝑈 = (𝑃𝑁) ∨ 𝑈 = (𝑃‘0))))
60 orcom 867 . . . . . 6 ((𝑈 = (𝑃𝑁) ∨ 𝑈 = (𝑃‘0)) ↔ (𝑈 = (𝑃‘0) ∨ 𝑈 = (𝑃𝑁)))
6159, 60bitrdi 287 . . . . 5 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → (𝑈 = (𝑃‘0) ↔ (𝑈 = (𝑃‘0) ∨ 𝑈 = (𝑃𝑁))))
6261anbi2d 629 . . . 4 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → (((𝑃‘0) ≠ (𝑃𝑁) ∧ 𝑈 = (𝑃‘0)) ↔ ((𝑃‘0) ≠ (𝑃𝑁) ∧ (𝑈 = (𝑃‘0) ∨ 𝑈 = (𝑃𝑁)))))
6350neneqd 2950 . . . . . . 7 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → ¬ 𝑈 = (𝑃‘(𝑁 + 1)))
64 biorf 934 . . . . . . 7 𝑈 = (𝑃‘(𝑁 + 1)) → (𝑈 = (𝑃‘0) ↔ (𝑈 = (𝑃‘(𝑁 + 1)) ∨ 𝑈 = (𝑃‘0))))
6563, 64syl 17 . . . . . 6 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → (𝑈 = (𝑃‘0) ↔ (𝑈 = (𝑃‘(𝑁 + 1)) ∨ 𝑈 = (𝑃‘0))))
66 orcom 867 . . . . . 6 ((𝑈 = (𝑃‘(𝑁 + 1)) ∨ 𝑈 = (𝑃‘0)) ↔ (𝑈 = (𝑃‘0) ∨ 𝑈 = (𝑃‘(𝑁 + 1))))
6765, 66bitrdi 287 . . . . 5 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → (𝑈 = (𝑃‘0) ↔ (𝑈 = (𝑃‘0) ∨ 𝑈 = (𝑃‘(𝑁 + 1)))))
6867anbi2d 629 . . . 4 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → (((𝑃‘0) ≠ (𝑃‘(𝑁 + 1)) ∧ 𝑈 = (𝑃‘0)) ↔ ((𝑃‘0) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 = (𝑃‘0) ∨ 𝑈 = (𝑃‘(𝑁 + 1))))))
6956, 62, 683bitr3d 309 . . 3 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → (((𝑃‘0) ≠ (𝑃𝑁) ∧ (𝑈 = (𝑃‘0) ∨ 𝑈 = (𝑃𝑁))) ↔ ((𝑃‘0) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 = (𝑃‘0) ∨ 𝑈 = (𝑃‘(𝑁 + 1))))))
70 eupth2lem1 28578 . . . 4 (𝑈𝑉 → (𝑈 ∈ if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)}) ↔ ((𝑃‘0) ≠ (𝑃𝑁) ∧ (𝑈 = (𝑃‘0) ∨ 𝑈 = (𝑃𝑁)))))
717, 70syl 17 . . 3 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → (𝑈 ∈ if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)}) ↔ ((𝑃‘0) ≠ (𝑃𝑁) ∧ (𝑈 = (𝑃‘0) ∨ 𝑈 = (𝑃𝑁)))))
72 eupth2lem1 28578 . . . 4 (𝑈𝑉 → (𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))}) ↔ ((𝑃‘0) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 = (𝑃‘0) ∨ 𝑈 = (𝑃‘(𝑁 + 1))))))
737, 72syl 17 . . 3 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → (𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))}) ↔ ((𝑃‘0) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 = (𝑃‘0) ∨ 𝑈 = (𝑃‘(𝑁 + 1))))))
7469, 71, 733bitr4d 311 . 2 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → (𝑈 ∈ if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)}) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))})))
7539, 48, 743bitrd 305 1 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1542  wcel 2110  wne 2945  wnel 3051  {crab 3070  Vcvv 3431  c0 4262  ifcif 4465  {csn 4567  {cpr 4569  cop 4573   class class class wbr 5079  cres 5592  cima 5593  Fun wfun 6426  cfv 6432  (class class class)co 7271  0cc0 10872  1c1 10873   + caddc 10875  2c2 12028  ...cfz 13238  ..^cfzo 13381  chash 14042  cdvds 15961  Vtxcvtx 27364  iEdgciedg 27365  VtxDegcvtxdg 27830  Trailsctrls 28055
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-ifp 1061  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-om 7707  df-1st 7824  df-2nd 7825  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-1o 8288  df-er 8481  df-map 8600  df-en 8717  df-dom 8718  df-sdom 8719  df-fin 8720  df-card 9698  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-xnn0 12306  df-z 12320  df-uz 12582  df-xadd 12848  df-fz 13239  df-fzo 13382  df-hash 14043  df-word 14216  df-vtxdg 27831  df-wlks 27964  df-trls 28057
This theorem is referenced by:  eupth2lem3lem7  28594
  Copyright terms: Public domain W3C validator