MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eupth2lem3lem6 Structured version   Visualization version   GIF version

Theorem eupth2lem3lem6 27578
Description: Formerly part of proof of eupth2lem3 27581: If an edge (not a loop) is added to a trail, the degree of vertices not being end vertices of this edge remains odd if it was odd before (regarding the subgraphs induced by the involved trails). Remark: This seems to be not valid for hyperedges joining more vertices than (𝑃‘0) and (𝑃𝑁): if there is a third vertex in the edge, and this vertex is already contained in the trail, then the degree of this vertex could be affected by this edge! (Contributed by Mario Carneiro, 8-Apr-2015.) (Revised by AV, 25-Feb-2021.)
Hypotheses
Ref Expression
trlsegvdeg.v 𝑉 = (Vtx‘𝐺)
trlsegvdeg.i 𝐼 = (iEdg‘𝐺)
trlsegvdeg.f (𝜑 → Fun 𝐼)
trlsegvdeg.n (𝜑𝑁 ∈ (0..^(♯‘𝐹)))
trlsegvdeg.u (𝜑𝑈𝑉)
trlsegvdeg.w (𝜑𝐹(Trails‘𝐺)𝑃)
trlsegvdeg.vx (𝜑 → (Vtx‘𝑋) = 𝑉)
trlsegvdeg.vy (𝜑 → (Vtx‘𝑌) = 𝑉)
trlsegvdeg.vz (𝜑 → (Vtx‘𝑍) = 𝑉)
trlsegvdeg.ix (𝜑 → (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0..^𝑁))))
trlsegvdeg.iy (𝜑 → (iEdg‘𝑌) = {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩})
trlsegvdeg.iz (𝜑 → (iEdg‘𝑍) = (𝐼 ↾ (𝐹 “ (0...𝑁))))
eupth2lem3.o (𝜑 → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑥)} = if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)}))
eupth2lem3.e (𝜑 → (𝐼‘(𝐹𝑁)) = {(𝑃𝑁), (𝑃‘(𝑁 + 1))})
Assertion
Ref Expression
eupth2lem3lem6 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))})))
Distinct variable groups:   𝑥,𝑈   𝑥,𝑉   𝑥,𝑋
Allowed substitution hints:   𝜑(𝑥)   𝑃(𝑥)   𝐹(𝑥)   𝐺(𝑥)   𝐼(𝑥)   𝑁(𝑥)   𝑌(𝑥)   𝑍(𝑥)

Proof of Theorem eupth2lem3lem6
StepHypRef Expression
1 trlsegvdeg.iy . . . . . . . 8 (𝜑 → (iEdg‘𝑌) = {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩})
213ad2ant1 1164 . . . . . . 7 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → (iEdg‘𝑌) = {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩})
3 trlsegvdeg.vy . . . . . . . 8 (𝜑 → (Vtx‘𝑌) = 𝑉)
433ad2ant1 1164 . . . . . . 7 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → (Vtx‘𝑌) = 𝑉)
5 fvexd 6426 . . . . . . 7 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → (𝐹𝑁) ∈ V)
6 trlsegvdeg.u . . . . . . . 8 (𝜑𝑈𝑉)
763ad2ant1 1164 . . . . . . 7 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → 𝑈𝑉)
8 fvexd 6426 . . . . . . 7 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → (𝐼‘(𝐹𝑁)) ∈ V)
9 eupth2lem3.e . . . . . . . . 9 (𝜑 → (𝐼‘(𝐹𝑁)) = {(𝑃𝑁), (𝑃‘(𝑁 + 1))})
10 simpl 475 . . . . . . . . . . . . . 14 ((𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1))) → 𝑈 ≠ (𝑃𝑁))
1110adantl 474 . . . . . . . . . . . . 13 (((𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → 𝑈 ≠ (𝑃𝑁))
12 simpr 478 . . . . . . . . . . . . . 14 ((𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1))) → 𝑈 ≠ (𝑃‘(𝑁 + 1)))
1312adantl 474 . . . . . . . . . . . . 13 (((𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → 𝑈 ≠ (𝑃‘(𝑁 + 1)))
1411, 13nelprd 4395 . . . . . . . . . . . 12 (((𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → ¬ 𝑈 ∈ {(𝑃𝑁), (𝑃‘(𝑁 + 1))})
15 df-nel 3075 . . . . . . . . . . . 12 (𝑈 ∉ {(𝑃𝑁), (𝑃‘(𝑁 + 1))} ↔ ¬ 𝑈 ∈ {(𝑃𝑁), (𝑃‘(𝑁 + 1))})
1614, 15sylibr 226 . . . . . . . . . . 11 (((𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → 𝑈 ∉ {(𝑃𝑁), (𝑃‘(𝑁 + 1))})
17 neleq2 3080 . . . . . . . . . . 11 ((𝐼‘(𝐹𝑁)) = {(𝑃𝑁), (𝑃‘(𝑁 + 1))} → (𝑈 ∉ (𝐼‘(𝐹𝑁)) ↔ 𝑈 ∉ {(𝑃𝑁), (𝑃‘(𝑁 + 1))}))
1816, 17syl5ibr 238 . . . . . . . . . 10 ((𝐼‘(𝐹𝑁)) = {(𝑃𝑁), (𝑃‘(𝑁 + 1))} → (((𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → 𝑈 ∉ (𝐼‘(𝐹𝑁))))
1918expd 405 . . . . . . . . 9 ((𝐼‘(𝐹𝑁)) = {(𝑃𝑁), (𝑃‘(𝑁 + 1))} → ((𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) → ((𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1))) → 𝑈 ∉ (𝐼‘(𝐹𝑁)))))
209, 19syl 17 . . . . . . . 8 (𝜑 → ((𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) → ((𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1))) → 𝑈 ∉ (𝐼‘(𝐹𝑁)))))
21203imp 1138 . . . . . . 7 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → 𝑈 ∉ (𝐼‘(𝐹𝑁)))
222, 4, 5, 7, 8, 211hevtxdg0 26755 . . . . . 6 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → ((VtxDeg‘𝑌)‘𝑈) = 0)
2322oveq2d 6894 . . . . 5 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) = (((VtxDeg‘𝑋)‘𝑈) + 0))
24 trlsegvdeg.v . . . . . . . . 9 𝑉 = (Vtx‘𝐺)
25 trlsegvdeg.i . . . . . . . . 9 𝐼 = (iEdg‘𝐺)
26 trlsegvdeg.f . . . . . . . . 9 (𝜑 → Fun 𝐼)
27 trlsegvdeg.n . . . . . . . . 9 (𝜑𝑁 ∈ (0..^(♯‘𝐹)))
28 trlsegvdeg.w . . . . . . . . 9 (𝜑𝐹(Trails‘𝐺)𝑃)
29 trlsegvdeg.vx . . . . . . . . 9 (𝜑 → (Vtx‘𝑋) = 𝑉)
30 trlsegvdeg.vz . . . . . . . . 9 (𝜑 → (Vtx‘𝑍) = 𝑉)
31 trlsegvdeg.ix . . . . . . . . 9 (𝜑 → (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0..^𝑁))))
32 trlsegvdeg.iz . . . . . . . . 9 (𝜑 → (iEdg‘𝑍) = (𝐼 ↾ (𝐹 “ (0...𝑁))))
3324, 25, 26, 27, 6, 28, 29, 3, 30, 31, 1, 32eupth2lem3lem1 27573 . . . . . . . 8 (𝜑 → ((VtxDeg‘𝑋)‘𝑈) ∈ ℕ0)
3433nn0cnd 11642 . . . . . . 7 (𝜑 → ((VtxDeg‘𝑋)‘𝑈) ∈ ℂ)
3534addid1d 10526 . . . . . 6 (𝜑 → (((VtxDeg‘𝑋)‘𝑈) + 0) = ((VtxDeg‘𝑋)‘𝑈))
36353ad2ant1 1164 . . . . 5 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → (((VtxDeg‘𝑋)‘𝑈) + 0) = ((VtxDeg‘𝑋)‘𝑈))
3723, 36eqtrd 2833 . . . 4 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) = ((VtxDeg‘𝑋)‘𝑈))
3837breq2d 4855 . . 3 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → (2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ 2 ∥ ((VtxDeg‘𝑋)‘𝑈)))
3938notbid 310 . 2 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑈)))
40 fveq2 6411 . . . . . . . 8 (𝑥 = 𝑈 → ((VtxDeg‘𝑋)‘𝑥) = ((VtxDeg‘𝑋)‘𝑈))
4140breq2d 4855 . . . . . . 7 (𝑥 = 𝑈 → (2 ∥ ((VtxDeg‘𝑋)‘𝑥) ↔ 2 ∥ ((VtxDeg‘𝑋)‘𝑈)))
4241notbid 310 . . . . . 6 (𝑥 = 𝑈 → (¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑥) ↔ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑈)))
4342elrab3 3558 . . . . 5 (𝑈𝑉 → (𝑈 ∈ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑥)} ↔ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑈)))
446, 43syl 17 . . . 4 (𝜑 → (𝑈 ∈ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑥)} ↔ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑈)))
45 eupth2lem3.o . . . . 5 (𝜑 → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑥)} = if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)}))
4645eleq2d 2864 . . . 4 (𝜑 → (𝑈 ∈ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑥)} ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)})))
4744, 46bitr3d 273 . . 3 (𝜑 → (¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑈) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)})))
48473ad2ant1 1164 . 2 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → (¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑈) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)})))
49103ad2ant3 1166 . . . . . . 7 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → 𝑈 ≠ (𝑃𝑁))
50123ad2ant3 1166 . . . . . . 7 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → 𝑈 ≠ (𝑃‘(𝑁 + 1)))
5149, 502thd 257 . . . . . 6 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → (𝑈 ≠ (𝑃𝑁) ↔ 𝑈 ≠ (𝑃‘(𝑁 + 1))))
52 neeq1 3033 . . . . . . 7 (𝑈 = (𝑃‘0) → (𝑈 ≠ (𝑃𝑁) ↔ (𝑃‘0) ≠ (𝑃𝑁)))
53 neeq1 3033 . . . . . . 7 (𝑈 = (𝑃‘0) → (𝑈 ≠ (𝑃‘(𝑁 + 1)) ↔ (𝑃‘0) ≠ (𝑃‘(𝑁 + 1))))
5452, 53bibi12d 337 . . . . . 6 (𝑈 = (𝑃‘0) → ((𝑈 ≠ (𝑃𝑁) ↔ 𝑈 ≠ (𝑃‘(𝑁 + 1))) ↔ ((𝑃‘0) ≠ (𝑃𝑁) ↔ (𝑃‘0) ≠ (𝑃‘(𝑁 + 1)))))
5551, 54syl5ibcom 237 . . . . 5 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → (𝑈 = (𝑃‘0) → ((𝑃‘0) ≠ (𝑃𝑁) ↔ (𝑃‘0) ≠ (𝑃‘(𝑁 + 1)))))
5655pm5.32rd 574 . . . 4 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → (((𝑃‘0) ≠ (𝑃𝑁) ∧ 𝑈 = (𝑃‘0)) ↔ ((𝑃‘0) ≠ (𝑃‘(𝑁 + 1)) ∧ 𝑈 = (𝑃‘0))))
5749neneqd 2976 . . . . . . 7 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → ¬ 𝑈 = (𝑃𝑁))
58 biorf 961 . . . . . . 7 𝑈 = (𝑃𝑁) → (𝑈 = (𝑃‘0) ↔ (𝑈 = (𝑃𝑁) ∨ 𝑈 = (𝑃‘0))))
5957, 58syl 17 . . . . . 6 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → (𝑈 = (𝑃‘0) ↔ (𝑈 = (𝑃𝑁) ∨ 𝑈 = (𝑃‘0))))
60 orcom 897 . . . . . 6 ((𝑈 = (𝑃𝑁) ∨ 𝑈 = (𝑃‘0)) ↔ (𝑈 = (𝑃‘0) ∨ 𝑈 = (𝑃𝑁)))
6159, 60syl6bb 279 . . . . 5 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → (𝑈 = (𝑃‘0) ↔ (𝑈 = (𝑃‘0) ∨ 𝑈 = (𝑃𝑁))))
6261anbi2d 623 . . . 4 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → (((𝑃‘0) ≠ (𝑃𝑁) ∧ 𝑈 = (𝑃‘0)) ↔ ((𝑃‘0) ≠ (𝑃𝑁) ∧ (𝑈 = (𝑃‘0) ∨ 𝑈 = (𝑃𝑁)))))
6350neneqd 2976 . . . . . . 7 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → ¬ 𝑈 = (𝑃‘(𝑁 + 1)))
64 biorf 961 . . . . . . 7 𝑈 = (𝑃‘(𝑁 + 1)) → (𝑈 = (𝑃‘0) ↔ (𝑈 = (𝑃‘(𝑁 + 1)) ∨ 𝑈 = (𝑃‘0))))
6563, 64syl 17 . . . . . 6 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → (𝑈 = (𝑃‘0) ↔ (𝑈 = (𝑃‘(𝑁 + 1)) ∨ 𝑈 = (𝑃‘0))))
66 orcom 897 . . . . . 6 ((𝑈 = (𝑃‘(𝑁 + 1)) ∨ 𝑈 = (𝑃‘0)) ↔ (𝑈 = (𝑃‘0) ∨ 𝑈 = (𝑃‘(𝑁 + 1))))
6765, 66syl6bb 279 . . . . 5 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → (𝑈 = (𝑃‘0) ↔ (𝑈 = (𝑃‘0) ∨ 𝑈 = (𝑃‘(𝑁 + 1)))))
6867anbi2d 623 . . . 4 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → (((𝑃‘0) ≠ (𝑃‘(𝑁 + 1)) ∧ 𝑈 = (𝑃‘0)) ↔ ((𝑃‘0) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 = (𝑃‘0) ∨ 𝑈 = (𝑃‘(𝑁 + 1))))))
6956, 62, 683bitr3d 301 . . 3 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → (((𝑃‘0) ≠ (𝑃𝑁) ∧ (𝑈 = (𝑃‘0) ∨ 𝑈 = (𝑃𝑁))) ↔ ((𝑃‘0) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 = (𝑃‘0) ∨ 𝑈 = (𝑃‘(𝑁 + 1))))))
70 eupth2lem1 27563 . . . 4 (𝑈𝑉 → (𝑈 ∈ if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)}) ↔ ((𝑃‘0) ≠ (𝑃𝑁) ∧ (𝑈 = (𝑃‘0) ∨ 𝑈 = (𝑃𝑁)))))
717, 70syl 17 . . 3 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → (𝑈 ∈ if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)}) ↔ ((𝑃‘0) ≠ (𝑃𝑁) ∧ (𝑈 = (𝑃‘0) ∨ 𝑈 = (𝑃𝑁)))))
72 eupth2lem1 27563 . . . 4 (𝑈𝑉 → (𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))}) ↔ ((𝑃‘0) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 = (𝑃‘0) ∨ 𝑈 = (𝑃‘(𝑁 + 1))))))
737, 72syl 17 . . 3 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → (𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))}) ↔ ((𝑃‘0) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 = (𝑃‘0) ∨ 𝑈 = (𝑃‘(𝑁 + 1))))))
7469, 71, 733bitr4d 303 . 2 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → (𝑈 ∈ if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)}) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))})))
7539, 48, 743bitrd 297 1 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 385  wo 874  w3a 1108   = wceq 1653  wcel 2157  wne 2971  wnel 3074  {crab 3093  Vcvv 3385  c0 4115  ifcif 4277  {csn 4368  {cpr 4370  cop 4374   class class class wbr 4843  cres 5314  cima 5315  Fun wfun 6095  cfv 6101  (class class class)co 6878  0cc0 10224  1c1 10225   + caddc 10227  2c2 11368  ...cfz 12580  ..^cfzo 12720  chash 13370  cdvds 15319  Vtxcvtx 26231  iEdgciedg 26232  VtxDegcvtxdg 26715  Trailsctrls 26943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-ifp 1087  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-int 4668  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-pred 5898  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-riota 6839  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-om 7300  df-1st 7401  df-2nd 7402  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-1o 7799  df-er 7982  df-map 8097  df-pm 8098  df-en 8196  df-dom 8197  df-sdom 8198  df-fin 8199  df-card 9051  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-le 10369  df-sub 10558  df-neg 10559  df-nn 11313  df-n0 11581  df-xnn0 11653  df-z 11667  df-uz 11931  df-xadd 12194  df-fz 12581  df-fzo 12721  df-hash 13371  df-word 13535  df-vtxdg 26716  df-wlks 26849  df-trls 26945
This theorem is referenced by:  eupth2lem3lem7  27579
  Copyright terms: Public domain W3C validator