MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eupth2lem3lem6 Structured version   Visualization version   GIF version

Theorem eupth2lem3lem6 30252
Description: Formerly part of proof of eupth2lem3 30255: If an edge (not a loop) is added to a trail, the degree of vertices not being end vertices of this edge remains odd if it was odd before (regarding the subgraphs induced by the involved trails). Remark: This seems to be not valid for hyperedges joining more vertices than (𝑃‘0) and (𝑃𝑁): if there is a third vertex in the edge, and this vertex is already contained in the trail, then the degree of this vertex could be affected by this edge! (Contributed by Mario Carneiro, 8-Apr-2015.) (Revised by AV, 25-Feb-2021.)
Hypotheses
Ref Expression
trlsegvdeg.v 𝑉 = (Vtx‘𝐺)
trlsegvdeg.i 𝐼 = (iEdg‘𝐺)
trlsegvdeg.f (𝜑 → Fun 𝐼)
trlsegvdeg.n (𝜑𝑁 ∈ (0..^(♯‘𝐹)))
trlsegvdeg.u (𝜑𝑈𝑉)
trlsegvdeg.w (𝜑𝐹(Trails‘𝐺)𝑃)
trlsegvdeg.vx (𝜑 → (Vtx‘𝑋) = 𝑉)
trlsegvdeg.vy (𝜑 → (Vtx‘𝑌) = 𝑉)
trlsegvdeg.vz (𝜑 → (Vtx‘𝑍) = 𝑉)
trlsegvdeg.ix (𝜑 → (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0..^𝑁))))
trlsegvdeg.iy (𝜑 → (iEdg‘𝑌) = {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩})
trlsegvdeg.iz (𝜑 → (iEdg‘𝑍) = (𝐼 ↾ (𝐹 “ (0...𝑁))))
eupth2lem3.o (𝜑 → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑥)} = if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)}))
eupth2lem3.e (𝜑 → (𝐼‘(𝐹𝑁)) = {(𝑃𝑁), (𝑃‘(𝑁 + 1))})
Assertion
Ref Expression
eupth2lem3lem6 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))})))
Distinct variable groups:   𝑥,𝑈   𝑥,𝑉   𝑥,𝑋
Allowed substitution hints:   𝜑(𝑥)   𝑃(𝑥)   𝐹(𝑥)   𝐺(𝑥)   𝐼(𝑥)   𝑁(𝑥)   𝑌(𝑥)   𝑍(𝑥)

Proof of Theorem eupth2lem3lem6
StepHypRef Expression
1 trlsegvdeg.iy . . . . . . . 8 (𝜑 → (iEdg‘𝑌) = {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩})
213ad2ant1 1134 . . . . . . 7 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → (iEdg‘𝑌) = {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩})
3 trlsegvdeg.vy . . . . . . . 8 (𝜑 → (Vtx‘𝑌) = 𝑉)
433ad2ant1 1134 . . . . . . 7 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → (Vtx‘𝑌) = 𝑉)
5 fvexd 6921 . . . . . . 7 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → (𝐹𝑁) ∈ V)
6 trlsegvdeg.u . . . . . . . 8 (𝜑𝑈𝑉)
763ad2ant1 1134 . . . . . . 7 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → 𝑈𝑉)
8 fvexd 6921 . . . . . . 7 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → (𝐼‘(𝐹𝑁)) ∈ V)
9 eupth2lem3.e . . . . . . . . 9 (𝜑 → (𝐼‘(𝐹𝑁)) = {(𝑃𝑁), (𝑃‘(𝑁 + 1))})
10 simpl 482 . . . . . . . . . . . . . 14 ((𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1))) → 𝑈 ≠ (𝑃𝑁))
1110adantl 481 . . . . . . . . . . . . 13 (((𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → 𝑈 ≠ (𝑃𝑁))
12 simpr 484 . . . . . . . . . . . . . 14 ((𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1))) → 𝑈 ≠ (𝑃‘(𝑁 + 1)))
1312adantl 481 . . . . . . . . . . . . 13 (((𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → 𝑈 ≠ (𝑃‘(𝑁 + 1)))
1411, 13nelprd 4657 . . . . . . . . . . . 12 (((𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → ¬ 𝑈 ∈ {(𝑃𝑁), (𝑃‘(𝑁 + 1))})
15 df-nel 3047 . . . . . . . . . . . 12 (𝑈 ∉ {(𝑃𝑁), (𝑃‘(𝑁 + 1))} ↔ ¬ 𝑈 ∈ {(𝑃𝑁), (𝑃‘(𝑁 + 1))})
1614, 15sylibr 234 . . . . . . . . . . 11 (((𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → 𝑈 ∉ {(𝑃𝑁), (𝑃‘(𝑁 + 1))})
17 neleq2 3053 . . . . . . . . . . 11 ((𝐼‘(𝐹𝑁)) = {(𝑃𝑁), (𝑃‘(𝑁 + 1))} → (𝑈 ∉ (𝐼‘(𝐹𝑁)) ↔ 𝑈 ∉ {(𝑃𝑁), (𝑃‘(𝑁 + 1))}))
1816, 17imbitrrid 246 . . . . . . . . . 10 ((𝐼‘(𝐹𝑁)) = {(𝑃𝑁), (𝑃‘(𝑁 + 1))} → (((𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → 𝑈 ∉ (𝐼‘(𝐹𝑁))))
1918expd 415 . . . . . . . . 9 ((𝐼‘(𝐹𝑁)) = {(𝑃𝑁), (𝑃‘(𝑁 + 1))} → ((𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) → ((𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1))) → 𝑈 ∉ (𝐼‘(𝐹𝑁)))))
209, 19syl 17 . . . . . . . 8 (𝜑 → ((𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) → ((𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1))) → 𝑈 ∉ (𝐼‘(𝐹𝑁)))))
21203imp 1111 . . . . . . 7 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → 𝑈 ∉ (𝐼‘(𝐹𝑁)))
222, 4, 5, 7, 8, 211hevtxdg0 29523 . . . . . 6 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → ((VtxDeg‘𝑌)‘𝑈) = 0)
2322oveq2d 7447 . . . . 5 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) = (((VtxDeg‘𝑋)‘𝑈) + 0))
24 trlsegvdeg.v . . . . . . . . 9 𝑉 = (Vtx‘𝐺)
25 trlsegvdeg.i . . . . . . . . 9 𝐼 = (iEdg‘𝐺)
26 trlsegvdeg.f . . . . . . . . 9 (𝜑 → Fun 𝐼)
27 trlsegvdeg.n . . . . . . . . 9 (𝜑𝑁 ∈ (0..^(♯‘𝐹)))
28 trlsegvdeg.w . . . . . . . . 9 (𝜑𝐹(Trails‘𝐺)𝑃)
29 trlsegvdeg.vx . . . . . . . . 9 (𝜑 → (Vtx‘𝑋) = 𝑉)
30 trlsegvdeg.vz . . . . . . . . 9 (𝜑 → (Vtx‘𝑍) = 𝑉)
31 trlsegvdeg.ix . . . . . . . . 9 (𝜑 → (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0..^𝑁))))
32 trlsegvdeg.iz . . . . . . . . 9 (𝜑 → (iEdg‘𝑍) = (𝐼 ↾ (𝐹 “ (0...𝑁))))
3324, 25, 26, 27, 6, 28, 29, 3, 30, 31, 1, 32eupth2lem3lem1 30247 . . . . . . . 8 (𝜑 → ((VtxDeg‘𝑋)‘𝑈) ∈ ℕ0)
3433nn0cnd 12589 . . . . . . 7 (𝜑 → ((VtxDeg‘𝑋)‘𝑈) ∈ ℂ)
3534addridd 11461 . . . . . 6 (𝜑 → (((VtxDeg‘𝑋)‘𝑈) + 0) = ((VtxDeg‘𝑋)‘𝑈))
36353ad2ant1 1134 . . . . 5 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → (((VtxDeg‘𝑋)‘𝑈) + 0) = ((VtxDeg‘𝑋)‘𝑈))
3723, 36eqtrd 2777 . . . 4 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) = ((VtxDeg‘𝑋)‘𝑈))
3837breq2d 5155 . . 3 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → (2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ 2 ∥ ((VtxDeg‘𝑋)‘𝑈)))
3938notbid 318 . 2 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑈)))
40 fveq2 6906 . . . . . . . 8 (𝑥 = 𝑈 → ((VtxDeg‘𝑋)‘𝑥) = ((VtxDeg‘𝑋)‘𝑈))
4140breq2d 5155 . . . . . . 7 (𝑥 = 𝑈 → (2 ∥ ((VtxDeg‘𝑋)‘𝑥) ↔ 2 ∥ ((VtxDeg‘𝑋)‘𝑈)))
4241notbid 318 . . . . . 6 (𝑥 = 𝑈 → (¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑥) ↔ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑈)))
4342elrab3 3693 . . . . 5 (𝑈𝑉 → (𝑈 ∈ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑥)} ↔ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑈)))
446, 43syl 17 . . . 4 (𝜑 → (𝑈 ∈ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑥)} ↔ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑈)))
45 eupth2lem3.o . . . . 5 (𝜑 → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑥)} = if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)}))
4645eleq2d 2827 . . . 4 (𝜑 → (𝑈 ∈ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑥)} ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)})))
4744, 46bitr3d 281 . . 3 (𝜑 → (¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑈) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)})))
48473ad2ant1 1134 . 2 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → (¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑈) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)})))
49103ad2ant3 1136 . . . . . . 7 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → 𝑈 ≠ (𝑃𝑁))
50123ad2ant3 1136 . . . . . . 7 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → 𝑈 ≠ (𝑃‘(𝑁 + 1)))
5149, 502thd 265 . . . . . 6 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → (𝑈 ≠ (𝑃𝑁) ↔ 𝑈 ≠ (𝑃‘(𝑁 + 1))))
52 neeq1 3003 . . . . . . 7 (𝑈 = (𝑃‘0) → (𝑈 ≠ (𝑃𝑁) ↔ (𝑃‘0) ≠ (𝑃𝑁)))
53 neeq1 3003 . . . . . . 7 (𝑈 = (𝑃‘0) → (𝑈 ≠ (𝑃‘(𝑁 + 1)) ↔ (𝑃‘0) ≠ (𝑃‘(𝑁 + 1))))
5452, 53bibi12d 345 . . . . . 6 (𝑈 = (𝑃‘0) → ((𝑈 ≠ (𝑃𝑁) ↔ 𝑈 ≠ (𝑃‘(𝑁 + 1))) ↔ ((𝑃‘0) ≠ (𝑃𝑁) ↔ (𝑃‘0) ≠ (𝑃‘(𝑁 + 1)))))
5551, 54syl5ibcom 245 . . . . 5 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → (𝑈 = (𝑃‘0) → ((𝑃‘0) ≠ (𝑃𝑁) ↔ (𝑃‘0) ≠ (𝑃‘(𝑁 + 1)))))
5655pm5.32rd 578 . . . 4 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → (((𝑃‘0) ≠ (𝑃𝑁) ∧ 𝑈 = (𝑃‘0)) ↔ ((𝑃‘0) ≠ (𝑃‘(𝑁 + 1)) ∧ 𝑈 = (𝑃‘0))))
5749neneqd 2945 . . . . . . 7 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → ¬ 𝑈 = (𝑃𝑁))
58 biorf 937 . . . . . . 7 𝑈 = (𝑃𝑁) → (𝑈 = (𝑃‘0) ↔ (𝑈 = (𝑃𝑁) ∨ 𝑈 = (𝑃‘0))))
5957, 58syl 17 . . . . . 6 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → (𝑈 = (𝑃‘0) ↔ (𝑈 = (𝑃𝑁) ∨ 𝑈 = (𝑃‘0))))
60 orcom 871 . . . . . 6 ((𝑈 = (𝑃𝑁) ∨ 𝑈 = (𝑃‘0)) ↔ (𝑈 = (𝑃‘0) ∨ 𝑈 = (𝑃𝑁)))
6159, 60bitrdi 287 . . . . 5 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → (𝑈 = (𝑃‘0) ↔ (𝑈 = (𝑃‘0) ∨ 𝑈 = (𝑃𝑁))))
6261anbi2d 630 . . . 4 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → (((𝑃‘0) ≠ (𝑃𝑁) ∧ 𝑈 = (𝑃‘0)) ↔ ((𝑃‘0) ≠ (𝑃𝑁) ∧ (𝑈 = (𝑃‘0) ∨ 𝑈 = (𝑃𝑁)))))
6350neneqd 2945 . . . . . . 7 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → ¬ 𝑈 = (𝑃‘(𝑁 + 1)))
64 biorf 937 . . . . . . 7 𝑈 = (𝑃‘(𝑁 + 1)) → (𝑈 = (𝑃‘0) ↔ (𝑈 = (𝑃‘(𝑁 + 1)) ∨ 𝑈 = (𝑃‘0))))
6563, 64syl 17 . . . . . 6 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → (𝑈 = (𝑃‘0) ↔ (𝑈 = (𝑃‘(𝑁 + 1)) ∨ 𝑈 = (𝑃‘0))))
66 orcom 871 . . . . . 6 ((𝑈 = (𝑃‘(𝑁 + 1)) ∨ 𝑈 = (𝑃‘0)) ↔ (𝑈 = (𝑃‘0) ∨ 𝑈 = (𝑃‘(𝑁 + 1))))
6765, 66bitrdi 287 . . . . 5 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → (𝑈 = (𝑃‘0) ↔ (𝑈 = (𝑃‘0) ∨ 𝑈 = (𝑃‘(𝑁 + 1)))))
6867anbi2d 630 . . . 4 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → (((𝑃‘0) ≠ (𝑃‘(𝑁 + 1)) ∧ 𝑈 = (𝑃‘0)) ↔ ((𝑃‘0) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 = (𝑃‘0) ∨ 𝑈 = (𝑃‘(𝑁 + 1))))))
6956, 62, 683bitr3d 309 . . 3 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → (((𝑃‘0) ≠ (𝑃𝑁) ∧ (𝑈 = (𝑃‘0) ∨ 𝑈 = (𝑃𝑁))) ↔ ((𝑃‘0) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 = (𝑃‘0) ∨ 𝑈 = (𝑃‘(𝑁 + 1))))))
70 eupth2lem1 30237 . . . 4 (𝑈𝑉 → (𝑈 ∈ if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)}) ↔ ((𝑃‘0) ≠ (𝑃𝑁) ∧ (𝑈 = (𝑃‘0) ∨ 𝑈 = (𝑃𝑁)))))
717, 70syl 17 . . 3 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → (𝑈 ∈ if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)}) ↔ ((𝑃‘0) ≠ (𝑃𝑁) ∧ (𝑈 = (𝑃‘0) ∨ 𝑈 = (𝑃𝑁)))))
72 eupth2lem1 30237 . . . 4 (𝑈𝑉 → (𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))}) ↔ ((𝑃‘0) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 = (𝑃‘0) ∨ 𝑈 = (𝑃‘(𝑁 + 1))))))
737, 72syl 17 . . 3 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → (𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))}) ↔ ((𝑃‘0) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 = (𝑃‘0) ∨ 𝑈 = (𝑃‘(𝑁 + 1))))))
7469, 71, 733bitr4d 311 . 2 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → (𝑈 ∈ if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)}) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))})))
7539, 48, 743bitrd 305 1 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 ≠ (𝑃𝑁) ∧ 𝑈 ≠ (𝑃‘(𝑁 + 1)))) → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 848  w3a 1087   = wceq 1540  wcel 2108  wne 2940  wnel 3046  {crab 3436  Vcvv 3480  c0 4333  ifcif 4525  {csn 4626  {cpr 4628  cop 4632   class class class wbr 5143  cres 5687  cima 5688  Fun wfun 6555  cfv 6561  (class class class)co 7431  0cc0 11155  1c1 11156   + caddc 11158  2c2 12321  ...cfz 13547  ..^cfzo 13694  chash 14369  cdvds 16290  Vtxcvtx 29013  iEdgciedg 29014  VtxDegcvtxdg 29483  Trailsctrls 29708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-ifp 1064  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-n0 12527  df-xnn0 12600  df-z 12614  df-uz 12879  df-xadd 13155  df-fz 13548  df-fzo 13695  df-hash 14370  df-word 14553  df-vtxdg 29484  df-wlks 29617  df-trls 29710
This theorem is referenced by:  eupth2lem3lem7  30253
  Copyright terms: Public domain W3C validator