Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > neqned | Structured version Visualization version GIF version |
Description: If it is not the case that two classes are equal, then they are unequal. Converse of neneqd 2949. One-way deduction form of df-ne 2945. (Contributed by David Moews, 28-Feb-2017.) Allow a shortening of necon3bi 2971. (Revised by Wolf Lammen, 22-Nov-2019.) |
Ref | Expression |
---|---|
neqned.1 | ⊢ (𝜑 → ¬ 𝐴 = 𝐵) |
Ref | Expression |
---|---|
neqned | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neqned.1 | . 2 ⊢ (𝜑 → ¬ 𝐴 = 𝐵) | |
2 | df-ne 2945 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
3 | 1, 2 | sylibr 233 | 1 ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
Copyright terms: Public domain | W3C validator |