| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nelpr1 | Structured version Visualization version GIF version | ||
| Description: If a class is not an element of an unordered pair, it is not the first listed element. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| Ref | Expression |
|---|---|
| nelpr1.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| nelpr1.n | ⊢ (𝜑 → ¬ 𝐴 ∈ {𝐵, 𝐶}) |
| Ref | Expression |
|---|---|
| nelpr1 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nelpr1.n | . . 3 ⊢ (𝜑 → ¬ 𝐴 ∈ {𝐵, 𝐶}) | |
| 2 | animorrl 982 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) | |
| 3 | nelpr1.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 4 | elprg 4615 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶))) | |
| 5 | 3, 4 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶))) |
| 6 | 5 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶))) |
| 7 | 2, 6 | mpbird 257 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝐴 ∈ {𝐵, 𝐶}) |
| 8 | 1, 7 | mtand 815 | . 2 ⊢ (𝜑 → ¬ 𝐴 = 𝐵) |
| 9 | 8 | neqned 2933 | 1 ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 {cpr 4594 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-v 3452 df-un 3922 df-sn 4593 df-pr 4595 |
| This theorem is referenced by: cyc3genpmlem 33115 ovnsubadd2lem 46650 |
| Copyright terms: Public domain | W3C validator |