MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nelpr1 Structured version   Visualization version   GIF version

Theorem nelpr1 4655
Description: If a class is not an element of an unordered pair, it is not the first listed element. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
nelpr1.a (𝜑𝐴𝑉)
nelpr1.n (𝜑 → ¬ 𝐴 ∈ {𝐵, 𝐶})
Assertion
Ref Expression
nelpr1 (𝜑𝐴𝐵)

Proof of Theorem nelpr1
StepHypRef Expression
1 nelpr1.n . . 3 (𝜑 → ¬ 𝐴 ∈ {𝐵, 𝐶})
2 animorrl 979 . . . 4 ((𝜑𝐴 = 𝐵) → (𝐴 = 𝐵𝐴 = 𝐶))
3 nelpr1.a . . . . . 6 (𝜑𝐴𝑉)
4 elprg 4648 . . . . . 6 (𝐴𝑉 → (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵𝐴 = 𝐶)))
53, 4syl 17 . . . . 5 (𝜑 → (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵𝐴 = 𝐶)))
65adantr 481 . . . 4 ((𝜑𝐴 = 𝐵) → (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵𝐴 = 𝐶)))
72, 6mpbird 256 . . 3 ((𝜑𝐴 = 𝐵) → 𝐴 ∈ {𝐵, 𝐶})
81, 7mtand 814 . 2 (𝜑 → ¬ 𝐴 = 𝐵)
98neqned 2947 1 (𝜑𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845   = wceq 1541  wcel 2106  wne 2940  {cpr 4629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-tru 1544  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-v 3476  df-un 3952  df-sn 4628  df-pr 4630
This theorem is referenced by:  cyc3genpmlem  32297  ovnsubadd2lem  45347
  Copyright terms: Public domain W3C validator