Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovnsubadd2lem Structured version   Visualization version   GIF version

Theorem ovnsubadd2lem 43725
Description: (voln*‘𝑋) is subadditive. Proposition 115D (a)(iv) of [Fremlin1] p. 31 . The special case of the union of 2 sets. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
ovnsubadd2lem.x (𝜑𝑋 ∈ Fin)
ovnsubadd2lem.a (𝜑𝐴 ⊆ (ℝ ↑m 𝑋))
ovnsubadd2lem.b (𝜑𝐵 ⊆ (ℝ ↑m 𝑋))
ovnsubadd2lem.c 𝐶 = (𝑛 ∈ ℕ ↦ if(𝑛 = 1, 𝐴, if(𝑛 = 2, 𝐵, ∅)))
Assertion
Ref Expression
ovnsubadd2lem (𝜑 → ((voln*‘𝑋)‘(𝐴𝐵)) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 ((voln*‘𝑋)‘𝐵)))
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛   𝐶,𝑛   𝑛,𝑋   𝜑,𝑛

Proof of Theorem ovnsubadd2lem
StepHypRef Expression
1 ovnsubadd2lem.x . . 3 (𝜑𝑋 ∈ Fin)
2 iftrue 4420 . . . . . . . 8 (𝑛 = 1 → if(𝑛 = 1, 𝐴, if(𝑛 = 2, 𝐵, ∅)) = 𝐴)
32adantl 485 . . . . . . 7 ((𝜑𝑛 = 1) → if(𝑛 = 1, 𝐴, if(𝑛 = 2, 𝐵, ∅)) = 𝐴)
4 ovexd 7205 . . . . . . . . . 10 (𝜑 → (ℝ ↑m 𝑋) ∈ V)
5 ovnsubadd2lem.a . . . . . . . . . 10 (𝜑𝐴 ⊆ (ℝ ↑m 𝑋))
64, 5ssexd 5192 . . . . . . . . 9 (𝜑𝐴 ∈ V)
76, 5elpwd 4496 . . . . . . . 8 (𝜑𝐴 ∈ 𝒫 (ℝ ↑m 𝑋))
87adantr 484 . . . . . . 7 ((𝜑𝑛 = 1) → 𝐴 ∈ 𝒫 (ℝ ↑m 𝑋))
93, 8eqeltrd 2833 . . . . . 6 ((𝜑𝑛 = 1) → if(𝑛 = 1, 𝐴, if(𝑛 = 2, 𝐵, ∅)) ∈ 𝒫 (ℝ ↑m 𝑋))
109adantlr 715 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ 𝑛 = 1) → if(𝑛 = 1, 𝐴, if(𝑛 = 2, 𝐵, ∅)) ∈ 𝒫 (ℝ ↑m 𝑋))
11 simpl 486 . . . . . . . . . . 11 ((¬ 𝑛 = 1 ∧ 𝑛 = 2) → ¬ 𝑛 = 1)
1211iffalsed 4425 . . . . . . . . . 10 ((¬ 𝑛 = 1 ∧ 𝑛 = 2) → if(𝑛 = 1, 𝐴, if(𝑛 = 2, 𝐵, ∅)) = if(𝑛 = 2, 𝐵, ∅))
13 simpr 488 . . . . . . . . . . 11 ((¬ 𝑛 = 1 ∧ 𝑛 = 2) → 𝑛 = 2)
1413iftrued 4422 . . . . . . . . . 10 ((¬ 𝑛 = 1 ∧ 𝑛 = 2) → if(𝑛 = 2, 𝐵, ∅) = 𝐵)
1512, 14eqtrd 2773 . . . . . . . . 9 ((¬ 𝑛 = 1 ∧ 𝑛 = 2) → if(𝑛 = 1, 𝐴, if(𝑛 = 2, 𝐵, ∅)) = 𝐵)
1615adantll 714 . . . . . . . 8 (((𝜑 ∧ ¬ 𝑛 = 1) ∧ 𝑛 = 2) → if(𝑛 = 1, 𝐴, if(𝑛 = 2, 𝐵, ∅)) = 𝐵)
17 ovnsubadd2lem.b . . . . . . . . . . 11 (𝜑𝐵 ⊆ (ℝ ↑m 𝑋))
184, 17ssexd 5192 . . . . . . . . . 10 (𝜑𝐵 ∈ V)
1918, 17elpwd 4496 . . . . . . . . 9 (𝜑𝐵 ∈ 𝒫 (ℝ ↑m 𝑋))
2019ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ ¬ 𝑛 = 1) ∧ 𝑛 = 2) → 𝐵 ∈ 𝒫 (ℝ ↑m 𝑋))
2116, 20eqeltrd 2833 . . . . . . 7 (((𝜑 ∧ ¬ 𝑛 = 1) ∧ 𝑛 = 2) → if(𝑛 = 1, 𝐴, if(𝑛 = 2, 𝐵, ∅)) ∈ 𝒫 (ℝ ↑m 𝑋))
2221adantllr 719 . . . . . 6 ((((𝜑𝑛 ∈ ℕ) ∧ ¬ 𝑛 = 1) ∧ 𝑛 = 2) → if(𝑛 = 1, 𝐴, if(𝑛 = 2, 𝐵, ∅)) ∈ 𝒫 (ℝ ↑m 𝑋))
23 simpl 486 . . . . . . . . . 10 ((¬ 𝑛 = 1 ∧ ¬ 𝑛 = 2) → ¬ 𝑛 = 1)
2423iffalsed 4425 . . . . . . . . 9 ((¬ 𝑛 = 1 ∧ ¬ 𝑛 = 2) → if(𝑛 = 1, 𝐴, if(𝑛 = 2, 𝐵, ∅)) = if(𝑛 = 2, 𝐵, ∅))
25 simpr 488 . . . . . . . . . 10 ((¬ 𝑛 = 1 ∧ ¬ 𝑛 = 2) → ¬ 𝑛 = 2)
2625iffalsed 4425 . . . . . . . . 9 ((¬ 𝑛 = 1 ∧ ¬ 𝑛 = 2) → if(𝑛 = 2, 𝐵, ∅) = ∅)
2724, 26eqtrd 2773 . . . . . . . 8 ((¬ 𝑛 = 1 ∧ ¬ 𝑛 = 2) → if(𝑛 = 1, 𝐴, if(𝑛 = 2, 𝐵, ∅)) = ∅)
28 0elpw 5222 . . . . . . . . 9 ∅ ∈ 𝒫 (ℝ ↑m 𝑋)
2928a1i 11 . . . . . . . 8 ((¬ 𝑛 = 1 ∧ ¬ 𝑛 = 2) → ∅ ∈ 𝒫 (ℝ ↑m 𝑋))
3027, 29eqeltrd 2833 . . . . . . 7 ((¬ 𝑛 = 1 ∧ ¬ 𝑛 = 2) → if(𝑛 = 1, 𝐴, if(𝑛 = 2, 𝐵, ∅)) ∈ 𝒫 (ℝ ↑m 𝑋))
3130adantll 714 . . . . . 6 ((((𝜑𝑛 ∈ ℕ) ∧ ¬ 𝑛 = 1) ∧ ¬ 𝑛 = 2) → if(𝑛 = 1, 𝐴, if(𝑛 = 2, 𝐵, ∅)) ∈ 𝒫 (ℝ ↑m 𝑋))
3222, 31pm2.61dan 813 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ ¬ 𝑛 = 1) → if(𝑛 = 1, 𝐴, if(𝑛 = 2, 𝐵, ∅)) ∈ 𝒫 (ℝ ↑m 𝑋))
3310, 32pm2.61dan 813 . . . 4 ((𝜑𝑛 ∈ ℕ) → if(𝑛 = 1, 𝐴, if(𝑛 = 2, 𝐵, ∅)) ∈ 𝒫 (ℝ ↑m 𝑋))
34 ovnsubadd2lem.c . . . 4 𝐶 = (𝑛 ∈ ℕ ↦ if(𝑛 = 1, 𝐴, if(𝑛 = 2, 𝐵, ∅)))
3533, 34fmptd 6888 . . 3 (𝜑𝐶:ℕ⟶𝒫 (ℝ ↑m 𝑋))
361, 35ovnsubadd 43652 . 2 (𝜑 → ((voln*‘𝑋)‘ 𝑛 ∈ ℕ (𝐶𝑛)) ≤ (Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐶𝑛)))))
37 eldifi 4017 . . . . . . . . . . 11 (𝑛 ∈ (ℕ ∖ {1, 2}) → 𝑛 ∈ ℕ)
3837adantl 485 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℕ ∖ {1, 2})) → 𝑛 ∈ ℕ)
39 eldifn 4018 . . . . . . . . . . . . . 14 (𝑛 ∈ (ℕ ∖ {1, 2}) → ¬ 𝑛 ∈ {1, 2})
40 vex 3402 . . . . . . . . . . . . . . . . 17 𝑛 ∈ V
4140a1i 11 . . . . . . . . . . . . . . . 16 𝑛 ∈ {1, 2} → 𝑛 ∈ V)
42 id 22 . . . . . . . . . . . . . . . 16 𝑛 ∈ {1, 2} → ¬ 𝑛 ∈ {1, 2})
4341, 42nelpr1 4544 . . . . . . . . . . . . . . 15 𝑛 ∈ {1, 2} → 𝑛 ≠ 1)
4443neneqd 2939 . . . . . . . . . . . . . 14 𝑛 ∈ {1, 2} → ¬ 𝑛 = 1)
4539, 44syl 17 . . . . . . . . . . . . 13 (𝑛 ∈ (ℕ ∖ {1, 2}) → ¬ 𝑛 = 1)
4641, 42nelpr2 4543 . . . . . . . . . . . . . . 15 𝑛 ∈ {1, 2} → 𝑛 ≠ 2)
4746neneqd 2939 . . . . . . . . . . . . . 14 𝑛 ∈ {1, 2} → ¬ 𝑛 = 2)
4839, 47syl 17 . . . . . . . . . . . . 13 (𝑛 ∈ (ℕ ∖ {1, 2}) → ¬ 𝑛 = 2)
4945, 48, 27syl2anc 587 . . . . . . . . . . . 12 (𝑛 ∈ (ℕ ∖ {1, 2}) → if(𝑛 = 1, 𝐴, if(𝑛 = 2, 𝐵, ∅)) = ∅)
50 0ex 5175 . . . . . . . . . . . . 13 ∅ ∈ V
5150a1i 11 . . . . . . . . . . . 12 (𝑛 ∈ (ℕ ∖ {1, 2}) → ∅ ∈ V)
5249, 51eqeltrd 2833 . . . . . . . . . . 11 (𝑛 ∈ (ℕ ∖ {1, 2}) → if(𝑛 = 1, 𝐴, if(𝑛 = 2, 𝐵, ∅)) ∈ V)
5352adantl 485 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℕ ∖ {1, 2})) → if(𝑛 = 1, 𝐴, if(𝑛 = 2, 𝐵, ∅)) ∈ V)
5434fvmpt2 6786 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ if(𝑛 = 1, 𝐴, if(𝑛 = 2, 𝐵, ∅)) ∈ V) → (𝐶𝑛) = if(𝑛 = 1, 𝐴, if(𝑛 = 2, 𝐵, ∅)))
5538, 53, 54syl2anc 587 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℕ ∖ {1, 2})) → (𝐶𝑛) = if(𝑛 = 1, 𝐴, if(𝑛 = 2, 𝐵, ∅)))
5649adantl 485 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℕ ∖ {1, 2})) → if(𝑛 = 1, 𝐴, if(𝑛 = 2, 𝐵, ∅)) = ∅)
5755, 56eqtrd 2773 . . . . . . . 8 ((𝜑𝑛 ∈ (ℕ ∖ {1, 2})) → (𝐶𝑛) = ∅)
5857ralrimiva 3096 . . . . . . 7 (𝜑 → ∀𝑛 ∈ (ℕ ∖ {1, 2})(𝐶𝑛) = ∅)
59 nfcv 2899 . . . . . . . 8 𝑛(ℕ ∖ {1, 2})
6059iunxdif3 4980 . . . . . . 7 (∀𝑛 ∈ (ℕ ∖ {1, 2})(𝐶𝑛) = ∅ → 𝑛 ∈ (ℕ ∖ (ℕ ∖ {1, 2}))(𝐶𝑛) = 𝑛 ∈ ℕ (𝐶𝑛))
6158, 60syl 17 . . . . . 6 (𝜑 𝑛 ∈ (ℕ ∖ (ℕ ∖ {1, 2}))(𝐶𝑛) = 𝑛 ∈ ℕ (𝐶𝑛))
6261eqcomd 2744 . . . . 5 (𝜑 𝑛 ∈ ℕ (𝐶𝑛) = 𝑛 ∈ (ℕ ∖ (ℕ ∖ {1, 2}))(𝐶𝑛))
63 1nn 11727 . . . . . . . . . 10 1 ∈ ℕ
64 2nn 11789 . . . . . . . . . 10 2 ∈ ℕ
6563, 64pm3.2i 474 . . . . . . . . 9 (1 ∈ ℕ ∧ 2 ∈ ℕ)
66 prssi 4709 . . . . . . . . 9 ((1 ∈ ℕ ∧ 2 ∈ ℕ) → {1, 2} ⊆ ℕ)
6765, 66ax-mp 5 . . . . . . . 8 {1, 2} ⊆ ℕ
68 dfss4 4149 . . . . . . . 8 ({1, 2} ⊆ ℕ ↔ (ℕ ∖ (ℕ ∖ {1, 2})) = {1, 2})
6967, 68mpbi 233 . . . . . . 7 (ℕ ∖ (ℕ ∖ {1, 2})) = {1, 2}
70 iuneq1 4897 . . . . . . 7 ((ℕ ∖ (ℕ ∖ {1, 2})) = {1, 2} → 𝑛 ∈ (ℕ ∖ (ℕ ∖ {1, 2}))(𝐶𝑛) = 𝑛 ∈ {1, 2} (𝐶𝑛))
7169, 70ax-mp 5 . . . . . 6 𝑛 ∈ (ℕ ∖ (ℕ ∖ {1, 2}))(𝐶𝑛) = 𝑛 ∈ {1, 2} (𝐶𝑛)
7271a1i 11 . . . . 5 (𝜑 𝑛 ∈ (ℕ ∖ (ℕ ∖ {1, 2}))(𝐶𝑛) = 𝑛 ∈ {1, 2} (𝐶𝑛))
73 fveq2 6674 . . . . . . . . 9 (𝑛 = 1 → (𝐶𝑛) = (𝐶‘1))
74 fveq2 6674 . . . . . . . . 9 (𝑛 = 2 → (𝐶𝑛) = (𝐶‘2))
7573, 74iunxprg 4981 . . . . . . . 8 ((1 ∈ ℕ ∧ 2 ∈ ℕ) → 𝑛 ∈ {1, 2} (𝐶𝑛) = ((𝐶‘1) ∪ (𝐶‘2)))
7663, 64, 75mp2an 692 . . . . . . 7 𝑛 ∈ {1, 2} (𝐶𝑛) = ((𝐶‘1) ∪ (𝐶‘2))
7776a1i 11 . . . . . 6 (𝜑 𝑛 ∈ {1, 2} (𝐶𝑛) = ((𝐶‘1) ∪ (𝐶‘2)))
7863a1i 11 . . . . . . . 8 (𝜑 → 1 ∈ ℕ)
7934, 2, 78, 6fvmptd3 6798 . . . . . . 7 (𝜑 → (𝐶‘1) = 𝐴)
80 id 22 . . . . . . . . . . . 12 (𝑛 = 2 → 𝑛 = 2)
81 1ne2 11924 . . . . . . . . . . . . . 14 1 ≠ 2
8281necomi 2988 . . . . . . . . . . . . 13 2 ≠ 1
8382a1i 11 . . . . . . . . . . . 12 (𝑛 = 2 → 2 ≠ 1)
8480, 83eqnetrd 3001 . . . . . . . . . . 11 (𝑛 = 2 → 𝑛 ≠ 1)
8584neneqd 2939 . . . . . . . . . 10 (𝑛 = 2 → ¬ 𝑛 = 1)
8685iffalsed 4425 . . . . . . . . 9 (𝑛 = 2 → if(𝑛 = 1, 𝐴, if(𝑛 = 2, 𝐵, ∅)) = if(𝑛 = 2, 𝐵, ∅))
87 iftrue 4420 . . . . . . . . 9 (𝑛 = 2 → if(𝑛 = 2, 𝐵, ∅) = 𝐵)
8886, 87eqtrd 2773 . . . . . . . 8 (𝑛 = 2 → if(𝑛 = 1, 𝐴, if(𝑛 = 2, 𝐵, ∅)) = 𝐵)
8964a1i 11 . . . . . . . 8 (𝜑 → 2 ∈ ℕ)
9034, 88, 89, 18fvmptd3 6798 . . . . . . 7 (𝜑 → (𝐶‘2) = 𝐵)
9179, 90uneq12d 4054 . . . . . 6 (𝜑 → ((𝐶‘1) ∪ (𝐶‘2)) = (𝐴𝐵))
92 eqidd 2739 . . . . . 6 (𝜑 → (𝐴𝐵) = (𝐴𝐵))
9377, 91, 923eqtrd 2777 . . . . 5 (𝜑 𝑛 ∈ {1, 2} (𝐶𝑛) = (𝐴𝐵))
9462, 72, 933eqtrd 2777 . . . 4 (𝜑 𝑛 ∈ ℕ (𝐶𝑛) = (𝐴𝐵))
9594fveq2d 6678 . . 3 (𝜑 → ((voln*‘𝑋)‘ 𝑛 ∈ ℕ (𝐶𝑛)) = ((voln*‘𝑋)‘(𝐴𝐵)))
96 nfv 1921 . . . . . 6 𝑛𝜑
97 nnex 11722 . . . . . . 7 ℕ ∈ V
9897a1i 11 . . . . . 6 (𝜑 → ℕ ∈ V)
9967a1i 11 . . . . . 6 (𝜑 → {1, 2} ⊆ ℕ)
1001adantr 484 . . . . . . 7 ((𝜑𝑛 ∈ {1, 2}) → 𝑋 ∈ Fin)
101 simpl 486 . . . . . . . 8 ((𝜑𝑛 ∈ {1, 2}) → 𝜑)
10299sselda 3877 . . . . . . . 8 ((𝜑𝑛 ∈ {1, 2}) → 𝑛 ∈ ℕ)
10335ffvelrnda 6861 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝐶𝑛) ∈ 𝒫 (ℝ ↑m 𝑋))
104 elpwi 4497 . . . . . . . . 9 ((𝐶𝑛) ∈ 𝒫 (ℝ ↑m 𝑋) → (𝐶𝑛) ⊆ (ℝ ↑m 𝑋))
105103, 104syl 17 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝐶𝑛) ⊆ (ℝ ↑m 𝑋))
106101, 102, 105syl2anc 587 . . . . . . 7 ((𝜑𝑛 ∈ {1, 2}) → (𝐶𝑛) ⊆ (ℝ ↑m 𝑋))
107100, 106ovncl 43647 . . . . . 6 ((𝜑𝑛 ∈ {1, 2}) → ((voln*‘𝑋)‘(𝐶𝑛)) ∈ (0[,]+∞))
10857fveq2d 6678 . . . . . . 7 ((𝜑𝑛 ∈ (ℕ ∖ {1, 2})) → ((voln*‘𝑋)‘(𝐶𝑛)) = ((voln*‘𝑋)‘∅))
1091adantr 484 . . . . . . . 8 ((𝜑𝑛 ∈ (ℕ ∖ {1, 2})) → 𝑋 ∈ Fin)
110109ovn0 43646 . . . . . . 7 ((𝜑𝑛 ∈ (ℕ ∖ {1, 2})) → ((voln*‘𝑋)‘∅) = 0)
111108, 110eqtrd 2773 . . . . . 6 ((𝜑𝑛 ∈ (ℕ ∖ {1, 2})) → ((voln*‘𝑋)‘(𝐶𝑛)) = 0)
11296, 98, 99, 107, 111sge0ss 43492 . . . . 5 (𝜑 → (Σ^‘(𝑛 ∈ {1, 2} ↦ ((voln*‘𝑋)‘(𝐶𝑛)))) = (Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐶𝑛)))))
113112eqcomd 2744 . . . 4 (𝜑 → (Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐶𝑛)))) = (Σ^‘(𝑛 ∈ {1, 2} ↦ ((voln*‘𝑋)‘(𝐶𝑛)))))
11479, 5eqsstrd 3915 . . . . . 6 (𝜑 → (𝐶‘1) ⊆ (ℝ ↑m 𝑋))
1151, 114ovncl 43647 . . . . 5 (𝜑 → ((voln*‘𝑋)‘(𝐶‘1)) ∈ (0[,]+∞))
11690, 17eqsstrd 3915 . . . . . 6 (𝜑 → (𝐶‘2) ⊆ (ℝ ↑m 𝑋))
1171, 116ovncl 43647 . . . . 5 (𝜑 → ((voln*‘𝑋)‘(𝐶‘2)) ∈ (0[,]+∞))
118 2fveq3 6679 . . . . 5 (𝑛 = 1 → ((voln*‘𝑋)‘(𝐶𝑛)) = ((voln*‘𝑋)‘(𝐶‘1)))
119 2fveq3 6679 . . . . 5 (𝑛 = 2 → ((voln*‘𝑋)‘(𝐶𝑛)) = ((voln*‘𝑋)‘(𝐶‘2)))
12081a1i 11 . . . . 5 (𝜑 → 1 ≠ 2)
12178, 89, 115, 117, 118, 119, 120sge0pr 43474 . . . 4 (𝜑 → (Σ^‘(𝑛 ∈ {1, 2} ↦ ((voln*‘𝑋)‘(𝐶𝑛)))) = (((voln*‘𝑋)‘(𝐶‘1)) +𝑒 ((voln*‘𝑋)‘(𝐶‘2))))
12279fveq2d 6678 . . . . 5 (𝜑 → ((voln*‘𝑋)‘(𝐶‘1)) = ((voln*‘𝑋)‘𝐴))
12390fveq2d 6678 . . . . 5 (𝜑 → ((voln*‘𝑋)‘(𝐶‘2)) = ((voln*‘𝑋)‘𝐵))
124122, 123oveq12d 7188 . . . 4 (𝜑 → (((voln*‘𝑋)‘(𝐶‘1)) +𝑒 ((voln*‘𝑋)‘(𝐶‘2))) = (((voln*‘𝑋)‘𝐴) +𝑒 ((voln*‘𝑋)‘𝐵)))
125113, 121, 1243eqtrd 2777 . . 3 (𝜑 → (Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐶𝑛)))) = (((voln*‘𝑋)‘𝐴) +𝑒 ((voln*‘𝑋)‘𝐵)))
12695, 125breq12d 5043 . 2 (𝜑 → (((voln*‘𝑋)‘ 𝑛 ∈ ℕ (𝐶𝑛)) ≤ (Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐶𝑛)))) ↔ ((voln*‘𝑋)‘(𝐴𝐵)) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 ((voln*‘𝑋)‘𝐵))))
12736, 126mpbid 235 1 (𝜑 → ((voln*‘𝑋)‘(𝐴𝐵)) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 ((voln*‘𝑋)‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1542  wcel 2114  wne 2934  wral 3053  Vcvv 3398  cdif 3840  cun 3841  wss 3843  c0 4211  ifcif 4414  𝒫 cpw 4488  {cpr 4518   ciun 4881   class class class wbr 5030  cmpt 5110  cfv 6339  (class class class)co 7170  m cmap 8437  Fincfn 8555  cr 10614  0cc0 10615  1c1 10616  cle 10754  cn 11716  2c2 11771   +𝑒 cxad 12588  Σ^csumge0 43442  voln*covoln 43616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479  ax-inf2 9177  ax-cc 9935  ax-ac2 9963  ax-cnex 10671  ax-resscn 10672  ax-1cn 10673  ax-icn 10674  ax-addcl 10675  ax-addrcl 10676  ax-mulcl 10677  ax-mulrcl 10678  ax-mulcom 10679  ax-addass 10680  ax-mulass 10681  ax-distr 10682  ax-i2m1 10683  ax-1ne0 10684  ax-1rid 10685  ax-rnegex 10686  ax-rrecex 10687  ax-cnre 10688  ax-pre-lttri 10689  ax-pre-lttrn 10690  ax-pre-ltadd 10691  ax-pre-mulgt0 10692  ax-pre-sup 10693  ax-addf 10694  ax-mulf 10695
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-int 4837  df-iun 4883  df-disj 4996  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-se 5484  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-isom 6348  df-riota 7127  df-ov 7173  df-oprab 7174  df-mpo 7175  df-of 7425  df-om 7600  df-1st 7714  df-2nd 7715  df-tpos 7921  df-wrecs 7976  df-recs 8037  df-rdg 8075  df-1o 8131  df-2o 8132  df-er 8320  df-map 8439  df-pm 8440  df-ixp 8508  df-en 8556  df-dom 8557  df-sdom 8558  df-fin 8559  df-fi 8948  df-sup 8979  df-inf 8980  df-oi 9047  df-dju 9403  df-card 9441  df-acn 9444  df-ac 9616  df-pnf 10755  df-mnf 10756  df-xr 10757  df-ltxr 10758  df-le 10759  df-sub 10950  df-neg 10951  df-div 11376  df-nn 11717  df-2 11779  df-3 11780  df-4 11781  df-5 11782  df-6 11783  df-7 11784  df-8 11785  df-9 11786  df-n0 11977  df-z 12063  df-dec 12180  df-uz 12325  df-q 12431  df-rp 12473  df-xneg 12590  df-xadd 12591  df-xmul 12592  df-ioo 12825  df-ico 12827  df-icc 12828  df-fz 12982  df-fzo 13125  df-fl 13253  df-seq 13461  df-exp 13522  df-hash 13783  df-cj 14548  df-re 14549  df-im 14550  df-sqrt 14684  df-abs 14685  df-clim 14935  df-rlim 14936  df-sum 15136  df-prod 15352  df-struct 16588  df-ndx 16589  df-slot 16590  df-base 16592  df-sets 16593  df-ress 16594  df-plusg 16681  df-mulr 16682  df-starv 16683  df-tset 16687  df-ple 16688  df-ds 16690  df-unif 16691  df-rest 16799  df-0g 16818  df-topgen 16820  df-mgm 17968  df-sgrp 18017  df-mnd 18028  df-grp 18222  df-minusg 18223  df-subg 18394  df-cmn 19026  df-abl 19027  df-mgp 19359  df-ur 19371  df-ring 19418  df-cring 19419  df-oppr 19495  df-dvdsr 19513  df-unit 19514  df-invr 19544  df-dvr 19555  df-drng 19623  df-psmet 20209  df-xmet 20210  df-met 20211  df-bl 20212  df-mopn 20213  df-cnfld 20218  df-top 21645  df-topon 21662  df-bases 21697  df-cmp 22138  df-ovol 24216  df-vol 24217  df-sumge0 43443  df-ovoln 43617
This theorem is referenced by:  ovnsubadd2  43726
  Copyright terms: Public domain W3C validator