Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovnsubadd2lem Structured version   Visualization version   GIF version

Theorem ovnsubadd2lem 46691
Description: (voln*‘𝑋) is subadditive. Proposition 115D (a)(iv) of [Fremlin1] p. 31 . The special case of the union of 2 sets. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
ovnsubadd2lem.x (𝜑𝑋 ∈ Fin)
ovnsubadd2lem.a (𝜑𝐴 ⊆ (ℝ ↑m 𝑋))
ovnsubadd2lem.b (𝜑𝐵 ⊆ (ℝ ↑m 𝑋))
ovnsubadd2lem.c 𝐶 = (𝑛 ∈ ℕ ↦ if(𝑛 = 1, 𝐴, if(𝑛 = 2, 𝐵, ∅)))
Assertion
Ref Expression
ovnsubadd2lem (𝜑 → ((voln*‘𝑋)‘(𝐴𝐵)) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 ((voln*‘𝑋)‘𝐵)))
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛   𝐶,𝑛   𝑛,𝑋   𝜑,𝑛

Proof of Theorem ovnsubadd2lem
StepHypRef Expression
1 ovnsubadd2lem.x . . 3 (𝜑𝑋 ∈ Fin)
2 iftrue 4478 . . . . . . . 8 (𝑛 = 1 → if(𝑛 = 1, 𝐴, if(𝑛 = 2, 𝐵, ∅)) = 𝐴)
32adantl 481 . . . . . . 7 ((𝜑𝑛 = 1) → if(𝑛 = 1, 𝐴, if(𝑛 = 2, 𝐵, ∅)) = 𝐴)
4 ovexd 7381 . . . . . . . . . 10 (𝜑 → (ℝ ↑m 𝑋) ∈ V)
5 ovnsubadd2lem.a . . . . . . . . . 10 (𝜑𝐴 ⊆ (ℝ ↑m 𝑋))
64, 5ssexd 5260 . . . . . . . . 9 (𝜑𝐴 ∈ V)
76, 5elpwd 4553 . . . . . . . 8 (𝜑𝐴 ∈ 𝒫 (ℝ ↑m 𝑋))
87adantr 480 . . . . . . 7 ((𝜑𝑛 = 1) → 𝐴 ∈ 𝒫 (ℝ ↑m 𝑋))
93, 8eqeltrd 2831 . . . . . 6 ((𝜑𝑛 = 1) → if(𝑛 = 1, 𝐴, if(𝑛 = 2, 𝐵, ∅)) ∈ 𝒫 (ℝ ↑m 𝑋))
109adantlr 715 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ 𝑛 = 1) → if(𝑛 = 1, 𝐴, if(𝑛 = 2, 𝐵, ∅)) ∈ 𝒫 (ℝ ↑m 𝑋))
11 simpl 482 . . . . . . . . . . 11 ((¬ 𝑛 = 1 ∧ 𝑛 = 2) → ¬ 𝑛 = 1)
1211iffalsed 4483 . . . . . . . . . 10 ((¬ 𝑛 = 1 ∧ 𝑛 = 2) → if(𝑛 = 1, 𝐴, if(𝑛 = 2, 𝐵, ∅)) = if(𝑛 = 2, 𝐵, ∅))
13 simpr 484 . . . . . . . . . . 11 ((¬ 𝑛 = 1 ∧ 𝑛 = 2) → 𝑛 = 2)
1413iftrued 4480 . . . . . . . . . 10 ((¬ 𝑛 = 1 ∧ 𝑛 = 2) → if(𝑛 = 2, 𝐵, ∅) = 𝐵)
1512, 14eqtrd 2766 . . . . . . . . 9 ((¬ 𝑛 = 1 ∧ 𝑛 = 2) → if(𝑛 = 1, 𝐴, if(𝑛 = 2, 𝐵, ∅)) = 𝐵)
1615adantll 714 . . . . . . . 8 (((𝜑 ∧ ¬ 𝑛 = 1) ∧ 𝑛 = 2) → if(𝑛 = 1, 𝐴, if(𝑛 = 2, 𝐵, ∅)) = 𝐵)
17 ovnsubadd2lem.b . . . . . . . . . . 11 (𝜑𝐵 ⊆ (ℝ ↑m 𝑋))
184, 17ssexd 5260 . . . . . . . . . 10 (𝜑𝐵 ∈ V)
1918, 17elpwd 4553 . . . . . . . . 9 (𝜑𝐵 ∈ 𝒫 (ℝ ↑m 𝑋))
2019ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ ¬ 𝑛 = 1) ∧ 𝑛 = 2) → 𝐵 ∈ 𝒫 (ℝ ↑m 𝑋))
2116, 20eqeltrd 2831 . . . . . . 7 (((𝜑 ∧ ¬ 𝑛 = 1) ∧ 𝑛 = 2) → if(𝑛 = 1, 𝐴, if(𝑛 = 2, 𝐵, ∅)) ∈ 𝒫 (ℝ ↑m 𝑋))
2221adantllr 719 . . . . . 6 ((((𝜑𝑛 ∈ ℕ) ∧ ¬ 𝑛 = 1) ∧ 𝑛 = 2) → if(𝑛 = 1, 𝐴, if(𝑛 = 2, 𝐵, ∅)) ∈ 𝒫 (ℝ ↑m 𝑋))
23 simpl 482 . . . . . . . . . 10 ((¬ 𝑛 = 1 ∧ ¬ 𝑛 = 2) → ¬ 𝑛 = 1)
2423iffalsed 4483 . . . . . . . . 9 ((¬ 𝑛 = 1 ∧ ¬ 𝑛 = 2) → if(𝑛 = 1, 𝐴, if(𝑛 = 2, 𝐵, ∅)) = if(𝑛 = 2, 𝐵, ∅))
25 simpr 484 . . . . . . . . . 10 ((¬ 𝑛 = 1 ∧ ¬ 𝑛 = 2) → ¬ 𝑛 = 2)
2625iffalsed 4483 . . . . . . . . 9 ((¬ 𝑛 = 1 ∧ ¬ 𝑛 = 2) → if(𝑛 = 2, 𝐵, ∅) = ∅)
2724, 26eqtrd 2766 . . . . . . . 8 ((¬ 𝑛 = 1 ∧ ¬ 𝑛 = 2) → if(𝑛 = 1, 𝐴, if(𝑛 = 2, 𝐵, ∅)) = ∅)
28 0elpw 5292 . . . . . . . . 9 ∅ ∈ 𝒫 (ℝ ↑m 𝑋)
2928a1i 11 . . . . . . . 8 ((¬ 𝑛 = 1 ∧ ¬ 𝑛 = 2) → ∅ ∈ 𝒫 (ℝ ↑m 𝑋))
3027, 29eqeltrd 2831 . . . . . . 7 ((¬ 𝑛 = 1 ∧ ¬ 𝑛 = 2) → if(𝑛 = 1, 𝐴, if(𝑛 = 2, 𝐵, ∅)) ∈ 𝒫 (ℝ ↑m 𝑋))
3130adantll 714 . . . . . 6 ((((𝜑𝑛 ∈ ℕ) ∧ ¬ 𝑛 = 1) ∧ ¬ 𝑛 = 2) → if(𝑛 = 1, 𝐴, if(𝑛 = 2, 𝐵, ∅)) ∈ 𝒫 (ℝ ↑m 𝑋))
3222, 31pm2.61dan 812 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ ¬ 𝑛 = 1) → if(𝑛 = 1, 𝐴, if(𝑛 = 2, 𝐵, ∅)) ∈ 𝒫 (ℝ ↑m 𝑋))
3310, 32pm2.61dan 812 . . . 4 ((𝜑𝑛 ∈ ℕ) → if(𝑛 = 1, 𝐴, if(𝑛 = 2, 𝐵, ∅)) ∈ 𝒫 (ℝ ↑m 𝑋))
34 ovnsubadd2lem.c . . . 4 𝐶 = (𝑛 ∈ ℕ ↦ if(𝑛 = 1, 𝐴, if(𝑛 = 2, 𝐵, ∅)))
3533, 34fmptd 7047 . . 3 (𝜑𝐶:ℕ⟶𝒫 (ℝ ↑m 𝑋))
361, 35ovnsubadd 46618 . 2 (𝜑 → ((voln*‘𝑋)‘ 𝑛 ∈ ℕ (𝐶𝑛)) ≤ (Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐶𝑛)))))
37 eldifi 4078 . . . . . . . . . . 11 (𝑛 ∈ (ℕ ∖ {1, 2}) → 𝑛 ∈ ℕ)
3837adantl 481 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℕ ∖ {1, 2})) → 𝑛 ∈ ℕ)
39 eldifn 4079 . . . . . . . . . . . . . 14 (𝑛 ∈ (ℕ ∖ {1, 2}) → ¬ 𝑛 ∈ {1, 2})
40 vex 3440 . . . . . . . . . . . . . . . . 17 𝑛 ∈ V
4140a1i 11 . . . . . . . . . . . . . . . 16 𝑛 ∈ {1, 2} → 𝑛 ∈ V)
42 id 22 . . . . . . . . . . . . . . . 16 𝑛 ∈ {1, 2} → ¬ 𝑛 ∈ {1, 2})
4341, 42nelpr1 4604 . . . . . . . . . . . . . . 15 𝑛 ∈ {1, 2} → 𝑛 ≠ 1)
4443neneqd 2933 . . . . . . . . . . . . . 14 𝑛 ∈ {1, 2} → ¬ 𝑛 = 1)
4539, 44syl 17 . . . . . . . . . . . . 13 (𝑛 ∈ (ℕ ∖ {1, 2}) → ¬ 𝑛 = 1)
4641, 42nelpr2 4603 . . . . . . . . . . . . . . 15 𝑛 ∈ {1, 2} → 𝑛 ≠ 2)
4746neneqd 2933 . . . . . . . . . . . . . 14 𝑛 ∈ {1, 2} → ¬ 𝑛 = 2)
4839, 47syl 17 . . . . . . . . . . . . 13 (𝑛 ∈ (ℕ ∖ {1, 2}) → ¬ 𝑛 = 2)
4945, 48, 27syl2anc 584 . . . . . . . . . . . 12 (𝑛 ∈ (ℕ ∖ {1, 2}) → if(𝑛 = 1, 𝐴, if(𝑛 = 2, 𝐵, ∅)) = ∅)
50 0ex 5243 . . . . . . . . . . . . 13 ∅ ∈ V
5150a1i 11 . . . . . . . . . . . 12 (𝑛 ∈ (ℕ ∖ {1, 2}) → ∅ ∈ V)
5249, 51eqeltrd 2831 . . . . . . . . . . 11 (𝑛 ∈ (ℕ ∖ {1, 2}) → if(𝑛 = 1, 𝐴, if(𝑛 = 2, 𝐵, ∅)) ∈ V)
5352adantl 481 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℕ ∖ {1, 2})) → if(𝑛 = 1, 𝐴, if(𝑛 = 2, 𝐵, ∅)) ∈ V)
5434fvmpt2 6940 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ if(𝑛 = 1, 𝐴, if(𝑛 = 2, 𝐵, ∅)) ∈ V) → (𝐶𝑛) = if(𝑛 = 1, 𝐴, if(𝑛 = 2, 𝐵, ∅)))
5538, 53, 54syl2anc 584 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℕ ∖ {1, 2})) → (𝐶𝑛) = if(𝑛 = 1, 𝐴, if(𝑛 = 2, 𝐵, ∅)))
5649adantl 481 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℕ ∖ {1, 2})) → if(𝑛 = 1, 𝐴, if(𝑛 = 2, 𝐵, ∅)) = ∅)
5755, 56eqtrd 2766 . . . . . . . 8 ((𝜑𝑛 ∈ (ℕ ∖ {1, 2})) → (𝐶𝑛) = ∅)
5857ralrimiva 3124 . . . . . . 7 (𝜑 → ∀𝑛 ∈ (ℕ ∖ {1, 2})(𝐶𝑛) = ∅)
59 nfcv 2894 . . . . . . . 8 𝑛(ℕ ∖ {1, 2})
6059iunxdif3 5041 . . . . . . 7 (∀𝑛 ∈ (ℕ ∖ {1, 2})(𝐶𝑛) = ∅ → 𝑛 ∈ (ℕ ∖ (ℕ ∖ {1, 2}))(𝐶𝑛) = 𝑛 ∈ ℕ (𝐶𝑛))
6158, 60syl 17 . . . . . 6 (𝜑 𝑛 ∈ (ℕ ∖ (ℕ ∖ {1, 2}))(𝐶𝑛) = 𝑛 ∈ ℕ (𝐶𝑛))
6261eqcomd 2737 . . . . 5 (𝜑 𝑛 ∈ ℕ (𝐶𝑛) = 𝑛 ∈ (ℕ ∖ (ℕ ∖ {1, 2}))(𝐶𝑛))
63 1nn 12136 . . . . . . . . . 10 1 ∈ ℕ
64 2nn 12198 . . . . . . . . . 10 2 ∈ ℕ
6563, 64pm3.2i 470 . . . . . . . . 9 (1 ∈ ℕ ∧ 2 ∈ ℕ)
66 prssi 4770 . . . . . . . . 9 ((1 ∈ ℕ ∧ 2 ∈ ℕ) → {1, 2} ⊆ ℕ)
6765, 66ax-mp 5 . . . . . . . 8 {1, 2} ⊆ ℕ
68 dfss4 4216 . . . . . . . 8 ({1, 2} ⊆ ℕ ↔ (ℕ ∖ (ℕ ∖ {1, 2})) = {1, 2})
6967, 68mpbi 230 . . . . . . 7 (ℕ ∖ (ℕ ∖ {1, 2})) = {1, 2}
70 iuneq1 4956 . . . . . . 7 ((ℕ ∖ (ℕ ∖ {1, 2})) = {1, 2} → 𝑛 ∈ (ℕ ∖ (ℕ ∖ {1, 2}))(𝐶𝑛) = 𝑛 ∈ {1, 2} (𝐶𝑛))
7169, 70ax-mp 5 . . . . . 6 𝑛 ∈ (ℕ ∖ (ℕ ∖ {1, 2}))(𝐶𝑛) = 𝑛 ∈ {1, 2} (𝐶𝑛)
7271a1i 11 . . . . 5 (𝜑 𝑛 ∈ (ℕ ∖ (ℕ ∖ {1, 2}))(𝐶𝑛) = 𝑛 ∈ {1, 2} (𝐶𝑛))
73 fveq2 6822 . . . . . . . . 9 (𝑛 = 1 → (𝐶𝑛) = (𝐶‘1))
74 fveq2 6822 . . . . . . . . 9 (𝑛 = 2 → (𝐶𝑛) = (𝐶‘2))
7573, 74iunxprg 5042 . . . . . . . 8 ((1 ∈ ℕ ∧ 2 ∈ ℕ) → 𝑛 ∈ {1, 2} (𝐶𝑛) = ((𝐶‘1) ∪ (𝐶‘2)))
7663, 64, 75mp2an 692 . . . . . . 7 𝑛 ∈ {1, 2} (𝐶𝑛) = ((𝐶‘1) ∪ (𝐶‘2))
7776a1i 11 . . . . . 6 (𝜑 𝑛 ∈ {1, 2} (𝐶𝑛) = ((𝐶‘1) ∪ (𝐶‘2)))
7863a1i 11 . . . . . . . 8 (𝜑 → 1 ∈ ℕ)
7934, 2, 78, 6fvmptd3 6952 . . . . . . 7 (𝜑 → (𝐶‘1) = 𝐴)
80 id 22 . . . . . . . . . . . 12 (𝑛 = 2 → 𝑛 = 2)
81 1ne2 12328 . . . . . . . . . . . . . 14 1 ≠ 2
8281necomi 2982 . . . . . . . . . . . . 13 2 ≠ 1
8382a1i 11 . . . . . . . . . . . 12 (𝑛 = 2 → 2 ≠ 1)
8480, 83eqnetrd 2995 . . . . . . . . . . 11 (𝑛 = 2 → 𝑛 ≠ 1)
8584neneqd 2933 . . . . . . . . . 10 (𝑛 = 2 → ¬ 𝑛 = 1)
8685iffalsed 4483 . . . . . . . . 9 (𝑛 = 2 → if(𝑛 = 1, 𝐴, if(𝑛 = 2, 𝐵, ∅)) = if(𝑛 = 2, 𝐵, ∅))
87 iftrue 4478 . . . . . . . . 9 (𝑛 = 2 → if(𝑛 = 2, 𝐵, ∅) = 𝐵)
8886, 87eqtrd 2766 . . . . . . . 8 (𝑛 = 2 → if(𝑛 = 1, 𝐴, if(𝑛 = 2, 𝐵, ∅)) = 𝐵)
8964a1i 11 . . . . . . . 8 (𝜑 → 2 ∈ ℕ)
9034, 88, 89, 18fvmptd3 6952 . . . . . . 7 (𝜑 → (𝐶‘2) = 𝐵)
9179, 90uneq12d 4116 . . . . . 6 (𝜑 → ((𝐶‘1) ∪ (𝐶‘2)) = (𝐴𝐵))
92 eqidd 2732 . . . . . 6 (𝜑 → (𝐴𝐵) = (𝐴𝐵))
9377, 91, 923eqtrd 2770 . . . . 5 (𝜑 𝑛 ∈ {1, 2} (𝐶𝑛) = (𝐴𝐵))
9462, 72, 933eqtrd 2770 . . . 4 (𝜑 𝑛 ∈ ℕ (𝐶𝑛) = (𝐴𝐵))
9594fveq2d 6826 . . 3 (𝜑 → ((voln*‘𝑋)‘ 𝑛 ∈ ℕ (𝐶𝑛)) = ((voln*‘𝑋)‘(𝐴𝐵)))
96 nfv 1915 . . . . . 6 𝑛𝜑
97 nnex 12131 . . . . . . 7 ℕ ∈ V
9897a1i 11 . . . . . 6 (𝜑 → ℕ ∈ V)
9967a1i 11 . . . . . 6 (𝜑 → {1, 2} ⊆ ℕ)
1001adantr 480 . . . . . . 7 ((𝜑𝑛 ∈ {1, 2}) → 𝑋 ∈ Fin)
101 simpl 482 . . . . . . . 8 ((𝜑𝑛 ∈ {1, 2}) → 𝜑)
10299sselda 3929 . . . . . . . 8 ((𝜑𝑛 ∈ {1, 2}) → 𝑛 ∈ ℕ)
10335ffvelcdmda 7017 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝐶𝑛) ∈ 𝒫 (ℝ ↑m 𝑋))
104 elpwi 4554 . . . . . . . . 9 ((𝐶𝑛) ∈ 𝒫 (ℝ ↑m 𝑋) → (𝐶𝑛) ⊆ (ℝ ↑m 𝑋))
105103, 104syl 17 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝐶𝑛) ⊆ (ℝ ↑m 𝑋))
106101, 102, 105syl2anc 584 . . . . . . 7 ((𝜑𝑛 ∈ {1, 2}) → (𝐶𝑛) ⊆ (ℝ ↑m 𝑋))
107100, 106ovncl 46613 . . . . . 6 ((𝜑𝑛 ∈ {1, 2}) → ((voln*‘𝑋)‘(𝐶𝑛)) ∈ (0[,]+∞))
10857fveq2d 6826 . . . . . . 7 ((𝜑𝑛 ∈ (ℕ ∖ {1, 2})) → ((voln*‘𝑋)‘(𝐶𝑛)) = ((voln*‘𝑋)‘∅))
1091adantr 480 . . . . . . . 8 ((𝜑𝑛 ∈ (ℕ ∖ {1, 2})) → 𝑋 ∈ Fin)
110109ovn0 46612 . . . . . . 7 ((𝜑𝑛 ∈ (ℕ ∖ {1, 2})) → ((voln*‘𝑋)‘∅) = 0)
111108, 110eqtrd 2766 . . . . . 6 ((𝜑𝑛 ∈ (ℕ ∖ {1, 2})) → ((voln*‘𝑋)‘(𝐶𝑛)) = 0)
11296, 98, 99, 107, 111sge0ss 46458 . . . . 5 (𝜑 → (Σ^‘(𝑛 ∈ {1, 2} ↦ ((voln*‘𝑋)‘(𝐶𝑛)))) = (Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐶𝑛)))))
113112eqcomd 2737 . . . 4 (𝜑 → (Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐶𝑛)))) = (Σ^‘(𝑛 ∈ {1, 2} ↦ ((voln*‘𝑋)‘(𝐶𝑛)))))
11479, 5eqsstrd 3964 . . . . . 6 (𝜑 → (𝐶‘1) ⊆ (ℝ ↑m 𝑋))
1151, 114ovncl 46613 . . . . 5 (𝜑 → ((voln*‘𝑋)‘(𝐶‘1)) ∈ (0[,]+∞))
11690, 17eqsstrd 3964 . . . . . 6 (𝜑 → (𝐶‘2) ⊆ (ℝ ↑m 𝑋))
1171, 116ovncl 46613 . . . . 5 (𝜑 → ((voln*‘𝑋)‘(𝐶‘2)) ∈ (0[,]+∞))
118 2fveq3 6827 . . . . 5 (𝑛 = 1 → ((voln*‘𝑋)‘(𝐶𝑛)) = ((voln*‘𝑋)‘(𝐶‘1)))
119 2fveq3 6827 . . . . 5 (𝑛 = 2 → ((voln*‘𝑋)‘(𝐶𝑛)) = ((voln*‘𝑋)‘(𝐶‘2)))
12081a1i 11 . . . . 5 (𝜑 → 1 ≠ 2)
12178, 89, 115, 117, 118, 119, 120sge0pr 46440 . . . 4 (𝜑 → (Σ^‘(𝑛 ∈ {1, 2} ↦ ((voln*‘𝑋)‘(𝐶𝑛)))) = (((voln*‘𝑋)‘(𝐶‘1)) +𝑒 ((voln*‘𝑋)‘(𝐶‘2))))
12279fveq2d 6826 . . . . 5 (𝜑 → ((voln*‘𝑋)‘(𝐶‘1)) = ((voln*‘𝑋)‘𝐴))
12390fveq2d 6826 . . . . 5 (𝜑 → ((voln*‘𝑋)‘(𝐶‘2)) = ((voln*‘𝑋)‘𝐵))
124122, 123oveq12d 7364 . . . 4 (𝜑 → (((voln*‘𝑋)‘(𝐶‘1)) +𝑒 ((voln*‘𝑋)‘(𝐶‘2))) = (((voln*‘𝑋)‘𝐴) +𝑒 ((voln*‘𝑋)‘𝐵)))
125113, 121, 1243eqtrd 2770 . . 3 (𝜑 → (Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐶𝑛)))) = (((voln*‘𝑋)‘𝐴) +𝑒 ((voln*‘𝑋)‘𝐵)))
12695, 125breq12d 5102 . 2 (𝜑 → (((voln*‘𝑋)‘ 𝑛 ∈ ℕ (𝐶𝑛)) ≤ (Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐶𝑛)))) ↔ ((voln*‘𝑋)‘(𝐴𝐵)) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 ((voln*‘𝑋)‘𝐵))))
12736, 126mpbid 232 1 (𝜑 → ((voln*‘𝑋)‘(𝐴𝐵)) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 ((voln*‘𝑋)‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2111  wne 2928  wral 3047  Vcvv 3436  cdif 3894  cun 3895  wss 3897  c0 4280  ifcif 4472  𝒫 cpw 4547  {cpr 4575   ciun 4939   class class class wbr 5089  cmpt 5170  cfv 6481  (class class class)co 7346  m cmap 8750  Fincfn 8869  cr 11005  0cc0 11006  1c1 11007  cle 11147  cn 12125  2c2 12180   +𝑒 cxad 13009  Σ^csumge0 46408  voln*covoln 46582
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cc 10326  ax-ac2 10354  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-disj 5057  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-dju 9794  df-card 9832  df-acn 9835  df-ac 10007  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-ioo 13249  df-ico 13251  df-icc 13252  df-fz 13408  df-fzo 13555  df-fl 13696  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-rlim 15396  df-sum 15594  df-prod 15811  df-rest 17326  df-topgen 17347  df-psmet 21283  df-xmet 21284  df-met 21285  df-bl 21286  df-mopn 21287  df-top 22809  df-topon 22826  df-bases 22861  df-cmp 23302  df-ovol 25392  df-vol 25393  df-sumge0 46409  df-ovoln 46583
This theorem is referenced by:  ovnsubadd2  46692
  Copyright terms: Public domain W3C validator