Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovnsubadd2lem Structured version   Visualization version   GIF version

Theorem ovnsubadd2lem 46674
Description: (voln*‘𝑋) is subadditive. Proposition 115D (a)(iv) of [Fremlin1] p. 31 . The special case of the union of 2 sets. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
ovnsubadd2lem.x (𝜑𝑋 ∈ Fin)
ovnsubadd2lem.a (𝜑𝐴 ⊆ (ℝ ↑m 𝑋))
ovnsubadd2lem.b (𝜑𝐵 ⊆ (ℝ ↑m 𝑋))
ovnsubadd2lem.c 𝐶 = (𝑛 ∈ ℕ ↦ if(𝑛 = 1, 𝐴, if(𝑛 = 2, 𝐵, ∅)))
Assertion
Ref Expression
ovnsubadd2lem (𝜑 → ((voln*‘𝑋)‘(𝐴𝐵)) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 ((voln*‘𝑋)‘𝐵)))
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛   𝐶,𝑛   𝑛,𝑋   𝜑,𝑛

Proof of Theorem ovnsubadd2lem
StepHypRef Expression
1 ovnsubadd2lem.x . . 3 (𝜑𝑋 ∈ Fin)
2 iftrue 4506 . . . . . . . 8 (𝑛 = 1 → if(𝑛 = 1, 𝐴, if(𝑛 = 2, 𝐵, ∅)) = 𝐴)
32adantl 481 . . . . . . 7 ((𝜑𝑛 = 1) → if(𝑛 = 1, 𝐴, if(𝑛 = 2, 𝐵, ∅)) = 𝐴)
4 ovexd 7440 . . . . . . . . . 10 (𝜑 → (ℝ ↑m 𝑋) ∈ V)
5 ovnsubadd2lem.a . . . . . . . . . 10 (𝜑𝐴 ⊆ (ℝ ↑m 𝑋))
64, 5ssexd 5294 . . . . . . . . 9 (𝜑𝐴 ∈ V)
76, 5elpwd 4581 . . . . . . . 8 (𝜑𝐴 ∈ 𝒫 (ℝ ↑m 𝑋))
87adantr 480 . . . . . . 7 ((𝜑𝑛 = 1) → 𝐴 ∈ 𝒫 (ℝ ↑m 𝑋))
93, 8eqeltrd 2834 . . . . . 6 ((𝜑𝑛 = 1) → if(𝑛 = 1, 𝐴, if(𝑛 = 2, 𝐵, ∅)) ∈ 𝒫 (ℝ ↑m 𝑋))
109adantlr 715 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ 𝑛 = 1) → if(𝑛 = 1, 𝐴, if(𝑛 = 2, 𝐵, ∅)) ∈ 𝒫 (ℝ ↑m 𝑋))
11 simpl 482 . . . . . . . . . . 11 ((¬ 𝑛 = 1 ∧ 𝑛 = 2) → ¬ 𝑛 = 1)
1211iffalsed 4511 . . . . . . . . . 10 ((¬ 𝑛 = 1 ∧ 𝑛 = 2) → if(𝑛 = 1, 𝐴, if(𝑛 = 2, 𝐵, ∅)) = if(𝑛 = 2, 𝐵, ∅))
13 simpr 484 . . . . . . . . . . 11 ((¬ 𝑛 = 1 ∧ 𝑛 = 2) → 𝑛 = 2)
1413iftrued 4508 . . . . . . . . . 10 ((¬ 𝑛 = 1 ∧ 𝑛 = 2) → if(𝑛 = 2, 𝐵, ∅) = 𝐵)
1512, 14eqtrd 2770 . . . . . . . . 9 ((¬ 𝑛 = 1 ∧ 𝑛 = 2) → if(𝑛 = 1, 𝐴, if(𝑛 = 2, 𝐵, ∅)) = 𝐵)
1615adantll 714 . . . . . . . 8 (((𝜑 ∧ ¬ 𝑛 = 1) ∧ 𝑛 = 2) → if(𝑛 = 1, 𝐴, if(𝑛 = 2, 𝐵, ∅)) = 𝐵)
17 ovnsubadd2lem.b . . . . . . . . . . 11 (𝜑𝐵 ⊆ (ℝ ↑m 𝑋))
184, 17ssexd 5294 . . . . . . . . . 10 (𝜑𝐵 ∈ V)
1918, 17elpwd 4581 . . . . . . . . 9 (𝜑𝐵 ∈ 𝒫 (ℝ ↑m 𝑋))
2019ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ ¬ 𝑛 = 1) ∧ 𝑛 = 2) → 𝐵 ∈ 𝒫 (ℝ ↑m 𝑋))
2116, 20eqeltrd 2834 . . . . . . 7 (((𝜑 ∧ ¬ 𝑛 = 1) ∧ 𝑛 = 2) → if(𝑛 = 1, 𝐴, if(𝑛 = 2, 𝐵, ∅)) ∈ 𝒫 (ℝ ↑m 𝑋))
2221adantllr 719 . . . . . 6 ((((𝜑𝑛 ∈ ℕ) ∧ ¬ 𝑛 = 1) ∧ 𝑛 = 2) → if(𝑛 = 1, 𝐴, if(𝑛 = 2, 𝐵, ∅)) ∈ 𝒫 (ℝ ↑m 𝑋))
23 simpl 482 . . . . . . . . . 10 ((¬ 𝑛 = 1 ∧ ¬ 𝑛 = 2) → ¬ 𝑛 = 1)
2423iffalsed 4511 . . . . . . . . 9 ((¬ 𝑛 = 1 ∧ ¬ 𝑛 = 2) → if(𝑛 = 1, 𝐴, if(𝑛 = 2, 𝐵, ∅)) = if(𝑛 = 2, 𝐵, ∅))
25 simpr 484 . . . . . . . . . 10 ((¬ 𝑛 = 1 ∧ ¬ 𝑛 = 2) → ¬ 𝑛 = 2)
2625iffalsed 4511 . . . . . . . . 9 ((¬ 𝑛 = 1 ∧ ¬ 𝑛 = 2) → if(𝑛 = 2, 𝐵, ∅) = ∅)
2724, 26eqtrd 2770 . . . . . . . 8 ((¬ 𝑛 = 1 ∧ ¬ 𝑛 = 2) → if(𝑛 = 1, 𝐴, if(𝑛 = 2, 𝐵, ∅)) = ∅)
28 0elpw 5326 . . . . . . . . 9 ∅ ∈ 𝒫 (ℝ ↑m 𝑋)
2928a1i 11 . . . . . . . 8 ((¬ 𝑛 = 1 ∧ ¬ 𝑛 = 2) → ∅ ∈ 𝒫 (ℝ ↑m 𝑋))
3027, 29eqeltrd 2834 . . . . . . 7 ((¬ 𝑛 = 1 ∧ ¬ 𝑛 = 2) → if(𝑛 = 1, 𝐴, if(𝑛 = 2, 𝐵, ∅)) ∈ 𝒫 (ℝ ↑m 𝑋))
3130adantll 714 . . . . . 6 ((((𝜑𝑛 ∈ ℕ) ∧ ¬ 𝑛 = 1) ∧ ¬ 𝑛 = 2) → if(𝑛 = 1, 𝐴, if(𝑛 = 2, 𝐵, ∅)) ∈ 𝒫 (ℝ ↑m 𝑋))
3222, 31pm2.61dan 812 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ ¬ 𝑛 = 1) → if(𝑛 = 1, 𝐴, if(𝑛 = 2, 𝐵, ∅)) ∈ 𝒫 (ℝ ↑m 𝑋))
3310, 32pm2.61dan 812 . . . 4 ((𝜑𝑛 ∈ ℕ) → if(𝑛 = 1, 𝐴, if(𝑛 = 2, 𝐵, ∅)) ∈ 𝒫 (ℝ ↑m 𝑋))
34 ovnsubadd2lem.c . . . 4 𝐶 = (𝑛 ∈ ℕ ↦ if(𝑛 = 1, 𝐴, if(𝑛 = 2, 𝐵, ∅)))
3533, 34fmptd 7104 . . 3 (𝜑𝐶:ℕ⟶𝒫 (ℝ ↑m 𝑋))
361, 35ovnsubadd 46601 . 2 (𝜑 → ((voln*‘𝑋)‘ 𝑛 ∈ ℕ (𝐶𝑛)) ≤ (Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐶𝑛)))))
37 eldifi 4106 . . . . . . . . . . 11 (𝑛 ∈ (ℕ ∖ {1, 2}) → 𝑛 ∈ ℕ)
3837adantl 481 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℕ ∖ {1, 2})) → 𝑛 ∈ ℕ)
39 eldifn 4107 . . . . . . . . . . . . . 14 (𝑛 ∈ (ℕ ∖ {1, 2}) → ¬ 𝑛 ∈ {1, 2})
40 vex 3463 . . . . . . . . . . . . . . . . 17 𝑛 ∈ V
4140a1i 11 . . . . . . . . . . . . . . . 16 𝑛 ∈ {1, 2} → 𝑛 ∈ V)
42 id 22 . . . . . . . . . . . . . . . 16 𝑛 ∈ {1, 2} → ¬ 𝑛 ∈ {1, 2})
4341, 42nelpr1 4630 . . . . . . . . . . . . . . 15 𝑛 ∈ {1, 2} → 𝑛 ≠ 1)
4443neneqd 2937 . . . . . . . . . . . . . 14 𝑛 ∈ {1, 2} → ¬ 𝑛 = 1)
4539, 44syl 17 . . . . . . . . . . . . 13 (𝑛 ∈ (ℕ ∖ {1, 2}) → ¬ 𝑛 = 1)
4641, 42nelpr2 4629 . . . . . . . . . . . . . . 15 𝑛 ∈ {1, 2} → 𝑛 ≠ 2)
4746neneqd 2937 . . . . . . . . . . . . . 14 𝑛 ∈ {1, 2} → ¬ 𝑛 = 2)
4839, 47syl 17 . . . . . . . . . . . . 13 (𝑛 ∈ (ℕ ∖ {1, 2}) → ¬ 𝑛 = 2)
4945, 48, 27syl2anc 584 . . . . . . . . . . . 12 (𝑛 ∈ (ℕ ∖ {1, 2}) → if(𝑛 = 1, 𝐴, if(𝑛 = 2, 𝐵, ∅)) = ∅)
50 0ex 5277 . . . . . . . . . . . . 13 ∅ ∈ V
5150a1i 11 . . . . . . . . . . . 12 (𝑛 ∈ (ℕ ∖ {1, 2}) → ∅ ∈ V)
5249, 51eqeltrd 2834 . . . . . . . . . . 11 (𝑛 ∈ (ℕ ∖ {1, 2}) → if(𝑛 = 1, 𝐴, if(𝑛 = 2, 𝐵, ∅)) ∈ V)
5352adantl 481 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℕ ∖ {1, 2})) → if(𝑛 = 1, 𝐴, if(𝑛 = 2, 𝐵, ∅)) ∈ V)
5434fvmpt2 6997 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ if(𝑛 = 1, 𝐴, if(𝑛 = 2, 𝐵, ∅)) ∈ V) → (𝐶𝑛) = if(𝑛 = 1, 𝐴, if(𝑛 = 2, 𝐵, ∅)))
5538, 53, 54syl2anc 584 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℕ ∖ {1, 2})) → (𝐶𝑛) = if(𝑛 = 1, 𝐴, if(𝑛 = 2, 𝐵, ∅)))
5649adantl 481 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℕ ∖ {1, 2})) → if(𝑛 = 1, 𝐴, if(𝑛 = 2, 𝐵, ∅)) = ∅)
5755, 56eqtrd 2770 . . . . . . . 8 ((𝜑𝑛 ∈ (ℕ ∖ {1, 2})) → (𝐶𝑛) = ∅)
5857ralrimiva 3132 . . . . . . 7 (𝜑 → ∀𝑛 ∈ (ℕ ∖ {1, 2})(𝐶𝑛) = ∅)
59 nfcv 2898 . . . . . . . 8 𝑛(ℕ ∖ {1, 2})
6059iunxdif3 5071 . . . . . . 7 (∀𝑛 ∈ (ℕ ∖ {1, 2})(𝐶𝑛) = ∅ → 𝑛 ∈ (ℕ ∖ (ℕ ∖ {1, 2}))(𝐶𝑛) = 𝑛 ∈ ℕ (𝐶𝑛))
6158, 60syl 17 . . . . . 6 (𝜑 𝑛 ∈ (ℕ ∖ (ℕ ∖ {1, 2}))(𝐶𝑛) = 𝑛 ∈ ℕ (𝐶𝑛))
6261eqcomd 2741 . . . . 5 (𝜑 𝑛 ∈ ℕ (𝐶𝑛) = 𝑛 ∈ (ℕ ∖ (ℕ ∖ {1, 2}))(𝐶𝑛))
63 1nn 12251 . . . . . . . . . 10 1 ∈ ℕ
64 2nn 12313 . . . . . . . . . 10 2 ∈ ℕ
6563, 64pm3.2i 470 . . . . . . . . 9 (1 ∈ ℕ ∧ 2 ∈ ℕ)
66 prssi 4797 . . . . . . . . 9 ((1 ∈ ℕ ∧ 2 ∈ ℕ) → {1, 2} ⊆ ℕ)
6765, 66ax-mp 5 . . . . . . . 8 {1, 2} ⊆ ℕ
68 dfss4 4244 . . . . . . . 8 ({1, 2} ⊆ ℕ ↔ (ℕ ∖ (ℕ ∖ {1, 2})) = {1, 2})
6967, 68mpbi 230 . . . . . . 7 (ℕ ∖ (ℕ ∖ {1, 2})) = {1, 2}
70 iuneq1 4984 . . . . . . 7 ((ℕ ∖ (ℕ ∖ {1, 2})) = {1, 2} → 𝑛 ∈ (ℕ ∖ (ℕ ∖ {1, 2}))(𝐶𝑛) = 𝑛 ∈ {1, 2} (𝐶𝑛))
7169, 70ax-mp 5 . . . . . 6 𝑛 ∈ (ℕ ∖ (ℕ ∖ {1, 2}))(𝐶𝑛) = 𝑛 ∈ {1, 2} (𝐶𝑛)
7271a1i 11 . . . . 5 (𝜑 𝑛 ∈ (ℕ ∖ (ℕ ∖ {1, 2}))(𝐶𝑛) = 𝑛 ∈ {1, 2} (𝐶𝑛))
73 fveq2 6876 . . . . . . . . 9 (𝑛 = 1 → (𝐶𝑛) = (𝐶‘1))
74 fveq2 6876 . . . . . . . . 9 (𝑛 = 2 → (𝐶𝑛) = (𝐶‘2))
7573, 74iunxprg 5072 . . . . . . . 8 ((1 ∈ ℕ ∧ 2 ∈ ℕ) → 𝑛 ∈ {1, 2} (𝐶𝑛) = ((𝐶‘1) ∪ (𝐶‘2)))
7663, 64, 75mp2an 692 . . . . . . 7 𝑛 ∈ {1, 2} (𝐶𝑛) = ((𝐶‘1) ∪ (𝐶‘2))
7776a1i 11 . . . . . 6 (𝜑 𝑛 ∈ {1, 2} (𝐶𝑛) = ((𝐶‘1) ∪ (𝐶‘2)))
7863a1i 11 . . . . . . . 8 (𝜑 → 1 ∈ ℕ)
7934, 2, 78, 6fvmptd3 7009 . . . . . . 7 (𝜑 → (𝐶‘1) = 𝐴)
80 id 22 . . . . . . . . . . . 12 (𝑛 = 2 → 𝑛 = 2)
81 1ne2 12448 . . . . . . . . . . . . . 14 1 ≠ 2
8281necomi 2986 . . . . . . . . . . . . 13 2 ≠ 1
8382a1i 11 . . . . . . . . . . . 12 (𝑛 = 2 → 2 ≠ 1)
8480, 83eqnetrd 2999 . . . . . . . . . . 11 (𝑛 = 2 → 𝑛 ≠ 1)
8584neneqd 2937 . . . . . . . . . 10 (𝑛 = 2 → ¬ 𝑛 = 1)
8685iffalsed 4511 . . . . . . . . 9 (𝑛 = 2 → if(𝑛 = 1, 𝐴, if(𝑛 = 2, 𝐵, ∅)) = if(𝑛 = 2, 𝐵, ∅))
87 iftrue 4506 . . . . . . . . 9 (𝑛 = 2 → if(𝑛 = 2, 𝐵, ∅) = 𝐵)
8886, 87eqtrd 2770 . . . . . . . 8 (𝑛 = 2 → if(𝑛 = 1, 𝐴, if(𝑛 = 2, 𝐵, ∅)) = 𝐵)
8964a1i 11 . . . . . . . 8 (𝜑 → 2 ∈ ℕ)
9034, 88, 89, 18fvmptd3 7009 . . . . . . 7 (𝜑 → (𝐶‘2) = 𝐵)
9179, 90uneq12d 4144 . . . . . 6 (𝜑 → ((𝐶‘1) ∪ (𝐶‘2)) = (𝐴𝐵))
92 eqidd 2736 . . . . . 6 (𝜑 → (𝐴𝐵) = (𝐴𝐵))
9377, 91, 923eqtrd 2774 . . . . 5 (𝜑 𝑛 ∈ {1, 2} (𝐶𝑛) = (𝐴𝐵))
9462, 72, 933eqtrd 2774 . . . 4 (𝜑 𝑛 ∈ ℕ (𝐶𝑛) = (𝐴𝐵))
9594fveq2d 6880 . . 3 (𝜑 → ((voln*‘𝑋)‘ 𝑛 ∈ ℕ (𝐶𝑛)) = ((voln*‘𝑋)‘(𝐴𝐵)))
96 nfv 1914 . . . . . 6 𝑛𝜑
97 nnex 12246 . . . . . . 7 ℕ ∈ V
9897a1i 11 . . . . . 6 (𝜑 → ℕ ∈ V)
9967a1i 11 . . . . . 6 (𝜑 → {1, 2} ⊆ ℕ)
1001adantr 480 . . . . . . 7 ((𝜑𝑛 ∈ {1, 2}) → 𝑋 ∈ Fin)
101 simpl 482 . . . . . . . 8 ((𝜑𝑛 ∈ {1, 2}) → 𝜑)
10299sselda 3958 . . . . . . . 8 ((𝜑𝑛 ∈ {1, 2}) → 𝑛 ∈ ℕ)
10335ffvelcdmda 7074 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝐶𝑛) ∈ 𝒫 (ℝ ↑m 𝑋))
104 elpwi 4582 . . . . . . . . 9 ((𝐶𝑛) ∈ 𝒫 (ℝ ↑m 𝑋) → (𝐶𝑛) ⊆ (ℝ ↑m 𝑋))
105103, 104syl 17 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝐶𝑛) ⊆ (ℝ ↑m 𝑋))
106101, 102, 105syl2anc 584 . . . . . . 7 ((𝜑𝑛 ∈ {1, 2}) → (𝐶𝑛) ⊆ (ℝ ↑m 𝑋))
107100, 106ovncl 46596 . . . . . 6 ((𝜑𝑛 ∈ {1, 2}) → ((voln*‘𝑋)‘(𝐶𝑛)) ∈ (0[,]+∞))
10857fveq2d 6880 . . . . . . 7 ((𝜑𝑛 ∈ (ℕ ∖ {1, 2})) → ((voln*‘𝑋)‘(𝐶𝑛)) = ((voln*‘𝑋)‘∅))
1091adantr 480 . . . . . . . 8 ((𝜑𝑛 ∈ (ℕ ∖ {1, 2})) → 𝑋 ∈ Fin)
110109ovn0 46595 . . . . . . 7 ((𝜑𝑛 ∈ (ℕ ∖ {1, 2})) → ((voln*‘𝑋)‘∅) = 0)
111108, 110eqtrd 2770 . . . . . 6 ((𝜑𝑛 ∈ (ℕ ∖ {1, 2})) → ((voln*‘𝑋)‘(𝐶𝑛)) = 0)
11296, 98, 99, 107, 111sge0ss 46441 . . . . 5 (𝜑 → (Σ^‘(𝑛 ∈ {1, 2} ↦ ((voln*‘𝑋)‘(𝐶𝑛)))) = (Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐶𝑛)))))
113112eqcomd 2741 . . . 4 (𝜑 → (Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐶𝑛)))) = (Σ^‘(𝑛 ∈ {1, 2} ↦ ((voln*‘𝑋)‘(𝐶𝑛)))))
11479, 5eqsstrd 3993 . . . . . 6 (𝜑 → (𝐶‘1) ⊆ (ℝ ↑m 𝑋))
1151, 114ovncl 46596 . . . . 5 (𝜑 → ((voln*‘𝑋)‘(𝐶‘1)) ∈ (0[,]+∞))
11690, 17eqsstrd 3993 . . . . . 6 (𝜑 → (𝐶‘2) ⊆ (ℝ ↑m 𝑋))
1171, 116ovncl 46596 . . . . 5 (𝜑 → ((voln*‘𝑋)‘(𝐶‘2)) ∈ (0[,]+∞))
118 2fveq3 6881 . . . . 5 (𝑛 = 1 → ((voln*‘𝑋)‘(𝐶𝑛)) = ((voln*‘𝑋)‘(𝐶‘1)))
119 2fveq3 6881 . . . . 5 (𝑛 = 2 → ((voln*‘𝑋)‘(𝐶𝑛)) = ((voln*‘𝑋)‘(𝐶‘2)))
12081a1i 11 . . . . 5 (𝜑 → 1 ≠ 2)
12178, 89, 115, 117, 118, 119, 120sge0pr 46423 . . . 4 (𝜑 → (Σ^‘(𝑛 ∈ {1, 2} ↦ ((voln*‘𝑋)‘(𝐶𝑛)))) = (((voln*‘𝑋)‘(𝐶‘1)) +𝑒 ((voln*‘𝑋)‘(𝐶‘2))))
12279fveq2d 6880 . . . . 5 (𝜑 → ((voln*‘𝑋)‘(𝐶‘1)) = ((voln*‘𝑋)‘𝐴))
12390fveq2d 6880 . . . . 5 (𝜑 → ((voln*‘𝑋)‘(𝐶‘2)) = ((voln*‘𝑋)‘𝐵))
124122, 123oveq12d 7423 . . . 4 (𝜑 → (((voln*‘𝑋)‘(𝐶‘1)) +𝑒 ((voln*‘𝑋)‘(𝐶‘2))) = (((voln*‘𝑋)‘𝐴) +𝑒 ((voln*‘𝑋)‘𝐵)))
125113, 121, 1243eqtrd 2774 . . 3 (𝜑 → (Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐶𝑛)))) = (((voln*‘𝑋)‘𝐴) +𝑒 ((voln*‘𝑋)‘𝐵)))
12695, 125breq12d 5132 . 2 (𝜑 → (((voln*‘𝑋)‘ 𝑛 ∈ ℕ (𝐶𝑛)) ≤ (Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐶𝑛)))) ↔ ((voln*‘𝑋)‘(𝐴𝐵)) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 ((voln*‘𝑋)‘𝐵))))
12736, 126mpbid 232 1 (𝜑 → ((voln*‘𝑋)‘(𝐴𝐵)) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 ((voln*‘𝑋)‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2108  wne 2932  wral 3051  Vcvv 3459  cdif 3923  cun 3924  wss 3926  c0 4308  ifcif 4500  𝒫 cpw 4575  {cpr 4603   ciun 4967   class class class wbr 5119  cmpt 5201  cfv 6531  (class class class)co 7405  m cmap 8840  Fincfn 8959  cr 11128  0cc0 11129  1c1 11130  cle 11270  cn 12240  2c2 12295   +𝑒 cxad 13126  Σ^csumge0 46391  voln*covoln 46565
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cc 10449  ax-ac2 10477  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-disj 5087  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8719  df-map 8842  df-pm 8843  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fi 9423  df-sup 9454  df-inf 9455  df-oi 9524  df-dju 9915  df-card 9953  df-acn 9956  df-ac 10130  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-n0 12502  df-z 12589  df-uz 12853  df-q 12965  df-rp 13009  df-xneg 13128  df-xadd 13129  df-xmul 13130  df-ioo 13366  df-ico 13368  df-icc 13369  df-fz 13525  df-fzo 13672  df-fl 13809  df-seq 14020  df-exp 14080  df-hash 14349  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-clim 15504  df-rlim 15505  df-sum 15703  df-prod 15920  df-rest 17436  df-topgen 17457  df-psmet 21307  df-xmet 21308  df-met 21309  df-bl 21310  df-mopn 21311  df-top 22832  df-topon 22849  df-bases 22884  df-cmp 23325  df-ovol 25417  df-vol 25418  df-sumge0 46392  df-ovoln 46566
This theorem is referenced by:  ovnsubadd2  46675
  Copyright terms: Public domain W3C validator