Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovnsubadd2lem Structured version   Visualization version   GIF version

Theorem ovnsubadd2lem 44073
Description: (voln*‘𝑋) is subadditive. Proposition 115D (a)(iv) of [Fremlin1] p. 31 . The special case of the union of 2 sets. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
ovnsubadd2lem.x (𝜑𝑋 ∈ Fin)
ovnsubadd2lem.a (𝜑𝐴 ⊆ (ℝ ↑m 𝑋))
ovnsubadd2lem.b (𝜑𝐵 ⊆ (ℝ ↑m 𝑋))
ovnsubadd2lem.c 𝐶 = (𝑛 ∈ ℕ ↦ if(𝑛 = 1, 𝐴, if(𝑛 = 2, 𝐵, ∅)))
Assertion
Ref Expression
ovnsubadd2lem (𝜑 → ((voln*‘𝑋)‘(𝐴𝐵)) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 ((voln*‘𝑋)‘𝐵)))
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛   𝐶,𝑛   𝑛,𝑋   𝜑,𝑛

Proof of Theorem ovnsubadd2lem
StepHypRef Expression
1 ovnsubadd2lem.x . . 3 (𝜑𝑋 ∈ Fin)
2 iftrue 4462 . . . . . . . 8 (𝑛 = 1 → if(𝑛 = 1, 𝐴, if(𝑛 = 2, 𝐵, ∅)) = 𝐴)
32adantl 481 . . . . . . 7 ((𝜑𝑛 = 1) → if(𝑛 = 1, 𝐴, if(𝑛 = 2, 𝐵, ∅)) = 𝐴)
4 ovexd 7290 . . . . . . . . . 10 (𝜑 → (ℝ ↑m 𝑋) ∈ V)
5 ovnsubadd2lem.a . . . . . . . . . 10 (𝜑𝐴 ⊆ (ℝ ↑m 𝑋))
64, 5ssexd 5243 . . . . . . . . 9 (𝜑𝐴 ∈ V)
76, 5elpwd 4538 . . . . . . . 8 (𝜑𝐴 ∈ 𝒫 (ℝ ↑m 𝑋))
87adantr 480 . . . . . . 7 ((𝜑𝑛 = 1) → 𝐴 ∈ 𝒫 (ℝ ↑m 𝑋))
93, 8eqeltrd 2839 . . . . . 6 ((𝜑𝑛 = 1) → if(𝑛 = 1, 𝐴, if(𝑛 = 2, 𝐵, ∅)) ∈ 𝒫 (ℝ ↑m 𝑋))
109adantlr 711 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ 𝑛 = 1) → if(𝑛 = 1, 𝐴, if(𝑛 = 2, 𝐵, ∅)) ∈ 𝒫 (ℝ ↑m 𝑋))
11 simpl 482 . . . . . . . . . . 11 ((¬ 𝑛 = 1 ∧ 𝑛 = 2) → ¬ 𝑛 = 1)
1211iffalsed 4467 . . . . . . . . . 10 ((¬ 𝑛 = 1 ∧ 𝑛 = 2) → if(𝑛 = 1, 𝐴, if(𝑛 = 2, 𝐵, ∅)) = if(𝑛 = 2, 𝐵, ∅))
13 simpr 484 . . . . . . . . . . 11 ((¬ 𝑛 = 1 ∧ 𝑛 = 2) → 𝑛 = 2)
1413iftrued 4464 . . . . . . . . . 10 ((¬ 𝑛 = 1 ∧ 𝑛 = 2) → if(𝑛 = 2, 𝐵, ∅) = 𝐵)
1512, 14eqtrd 2778 . . . . . . . . 9 ((¬ 𝑛 = 1 ∧ 𝑛 = 2) → if(𝑛 = 1, 𝐴, if(𝑛 = 2, 𝐵, ∅)) = 𝐵)
1615adantll 710 . . . . . . . 8 (((𝜑 ∧ ¬ 𝑛 = 1) ∧ 𝑛 = 2) → if(𝑛 = 1, 𝐴, if(𝑛 = 2, 𝐵, ∅)) = 𝐵)
17 ovnsubadd2lem.b . . . . . . . . . . 11 (𝜑𝐵 ⊆ (ℝ ↑m 𝑋))
184, 17ssexd 5243 . . . . . . . . . 10 (𝜑𝐵 ∈ V)
1918, 17elpwd 4538 . . . . . . . . 9 (𝜑𝐵 ∈ 𝒫 (ℝ ↑m 𝑋))
2019ad2antrr 722 . . . . . . . 8 (((𝜑 ∧ ¬ 𝑛 = 1) ∧ 𝑛 = 2) → 𝐵 ∈ 𝒫 (ℝ ↑m 𝑋))
2116, 20eqeltrd 2839 . . . . . . 7 (((𝜑 ∧ ¬ 𝑛 = 1) ∧ 𝑛 = 2) → if(𝑛 = 1, 𝐴, if(𝑛 = 2, 𝐵, ∅)) ∈ 𝒫 (ℝ ↑m 𝑋))
2221adantllr 715 . . . . . 6 ((((𝜑𝑛 ∈ ℕ) ∧ ¬ 𝑛 = 1) ∧ 𝑛 = 2) → if(𝑛 = 1, 𝐴, if(𝑛 = 2, 𝐵, ∅)) ∈ 𝒫 (ℝ ↑m 𝑋))
23 simpl 482 . . . . . . . . . 10 ((¬ 𝑛 = 1 ∧ ¬ 𝑛 = 2) → ¬ 𝑛 = 1)
2423iffalsed 4467 . . . . . . . . 9 ((¬ 𝑛 = 1 ∧ ¬ 𝑛 = 2) → if(𝑛 = 1, 𝐴, if(𝑛 = 2, 𝐵, ∅)) = if(𝑛 = 2, 𝐵, ∅))
25 simpr 484 . . . . . . . . . 10 ((¬ 𝑛 = 1 ∧ ¬ 𝑛 = 2) → ¬ 𝑛 = 2)
2625iffalsed 4467 . . . . . . . . 9 ((¬ 𝑛 = 1 ∧ ¬ 𝑛 = 2) → if(𝑛 = 2, 𝐵, ∅) = ∅)
2724, 26eqtrd 2778 . . . . . . . 8 ((¬ 𝑛 = 1 ∧ ¬ 𝑛 = 2) → if(𝑛 = 1, 𝐴, if(𝑛 = 2, 𝐵, ∅)) = ∅)
28 0elpw 5273 . . . . . . . . 9 ∅ ∈ 𝒫 (ℝ ↑m 𝑋)
2928a1i 11 . . . . . . . 8 ((¬ 𝑛 = 1 ∧ ¬ 𝑛 = 2) → ∅ ∈ 𝒫 (ℝ ↑m 𝑋))
3027, 29eqeltrd 2839 . . . . . . 7 ((¬ 𝑛 = 1 ∧ ¬ 𝑛 = 2) → if(𝑛 = 1, 𝐴, if(𝑛 = 2, 𝐵, ∅)) ∈ 𝒫 (ℝ ↑m 𝑋))
3130adantll 710 . . . . . 6 ((((𝜑𝑛 ∈ ℕ) ∧ ¬ 𝑛 = 1) ∧ ¬ 𝑛 = 2) → if(𝑛 = 1, 𝐴, if(𝑛 = 2, 𝐵, ∅)) ∈ 𝒫 (ℝ ↑m 𝑋))
3222, 31pm2.61dan 809 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ ¬ 𝑛 = 1) → if(𝑛 = 1, 𝐴, if(𝑛 = 2, 𝐵, ∅)) ∈ 𝒫 (ℝ ↑m 𝑋))
3310, 32pm2.61dan 809 . . . 4 ((𝜑𝑛 ∈ ℕ) → if(𝑛 = 1, 𝐴, if(𝑛 = 2, 𝐵, ∅)) ∈ 𝒫 (ℝ ↑m 𝑋))
34 ovnsubadd2lem.c . . . 4 𝐶 = (𝑛 ∈ ℕ ↦ if(𝑛 = 1, 𝐴, if(𝑛 = 2, 𝐵, ∅)))
3533, 34fmptd 6970 . . 3 (𝜑𝐶:ℕ⟶𝒫 (ℝ ↑m 𝑋))
361, 35ovnsubadd 44000 . 2 (𝜑 → ((voln*‘𝑋)‘ 𝑛 ∈ ℕ (𝐶𝑛)) ≤ (Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐶𝑛)))))
37 eldifi 4057 . . . . . . . . . . 11 (𝑛 ∈ (ℕ ∖ {1, 2}) → 𝑛 ∈ ℕ)
3837adantl 481 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℕ ∖ {1, 2})) → 𝑛 ∈ ℕ)
39 eldifn 4058 . . . . . . . . . . . . . 14 (𝑛 ∈ (ℕ ∖ {1, 2}) → ¬ 𝑛 ∈ {1, 2})
40 vex 3426 . . . . . . . . . . . . . . . . 17 𝑛 ∈ V
4140a1i 11 . . . . . . . . . . . . . . . 16 𝑛 ∈ {1, 2} → 𝑛 ∈ V)
42 id 22 . . . . . . . . . . . . . . . 16 𝑛 ∈ {1, 2} → ¬ 𝑛 ∈ {1, 2})
4341, 42nelpr1 4586 . . . . . . . . . . . . . . 15 𝑛 ∈ {1, 2} → 𝑛 ≠ 1)
4443neneqd 2947 . . . . . . . . . . . . . 14 𝑛 ∈ {1, 2} → ¬ 𝑛 = 1)
4539, 44syl 17 . . . . . . . . . . . . 13 (𝑛 ∈ (ℕ ∖ {1, 2}) → ¬ 𝑛 = 1)
4641, 42nelpr2 4585 . . . . . . . . . . . . . . 15 𝑛 ∈ {1, 2} → 𝑛 ≠ 2)
4746neneqd 2947 . . . . . . . . . . . . . 14 𝑛 ∈ {1, 2} → ¬ 𝑛 = 2)
4839, 47syl 17 . . . . . . . . . . . . 13 (𝑛 ∈ (ℕ ∖ {1, 2}) → ¬ 𝑛 = 2)
4945, 48, 27syl2anc 583 . . . . . . . . . . . 12 (𝑛 ∈ (ℕ ∖ {1, 2}) → if(𝑛 = 1, 𝐴, if(𝑛 = 2, 𝐵, ∅)) = ∅)
50 0ex 5226 . . . . . . . . . . . . 13 ∅ ∈ V
5150a1i 11 . . . . . . . . . . . 12 (𝑛 ∈ (ℕ ∖ {1, 2}) → ∅ ∈ V)
5249, 51eqeltrd 2839 . . . . . . . . . . 11 (𝑛 ∈ (ℕ ∖ {1, 2}) → if(𝑛 = 1, 𝐴, if(𝑛 = 2, 𝐵, ∅)) ∈ V)
5352adantl 481 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℕ ∖ {1, 2})) → if(𝑛 = 1, 𝐴, if(𝑛 = 2, 𝐵, ∅)) ∈ V)
5434fvmpt2 6868 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ if(𝑛 = 1, 𝐴, if(𝑛 = 2, 𝐵, ∅)) ∈ V) → (𝐶𝑛) = if(𝑛 = 1, 𝐴, if(𝑛 = 2, 𝐵, ∅)))
5538, 53, 54syl2anc 583 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℕ ∖ {1, 2})) → (𝐶𝑛) = if(𝑛 = 1, 𝐴, if(𝑛 = 2, 𝐵, ∅)))
5649adantl 481 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℕ ∖ {1, 2})) → if(𝑛 = 1, 𝐴, if(𝑛 = 2, 𝐵, ∅)) = ∅)
5755, 56eqtrd 2778 . . . . . . . 8 ((𝜑𝑛 ∈ (ℕ ∖ {1, 2})) → (𝐶𝑛) = ∅)
5857ralrimiva 3107 . . . . . . 7 (𝜑 → ∀𝑛 ∈ (ℕ ∖ {1, 2})(𝐶𝑛) = ∅)
59 nfcv 2906 . . . . . . . 8 𝑛(ℕ ∖ {1, 2})
6059iunxdif3 5020 . . . . . . 7 (∀𝑛 ∈ (ℕ ∖ {1, 2})(𝐶𝑛) = ∅ → 𝑛 ∈ (ℕ ∖ (ℕ ∖ {1, 2}))(𝐶𝑛) = 𝑛 ∈ ℕ (𝐶𝑛))
6158, 60syl 17 . . . . . 6 (𝜑 𝑛 ∈ (ℕ ∖ (ℕ ∖ {1, 2}))(𝐶𝑛) = 𝑛 ∈ ℕ (𝐶𝑛))
6261eqcomd 2744 . . . . 5 (𝜑 𝑛 ∈ ℕ (𝐶𝑛) = 𝑛 ∈ (ℕ ∖ (ℕ ∖ {1, 2}))(𝐶𝑛))
63 1nn 11914 . . . . . . . . . 10 1 ∈ ℕ
64 2nn 11976 . . . . . . . . . 10 2 ∈ ℕ
6563, 64pm3.2i 470 . . . . . . . . 9 (1 ∈ ℕ ∧ 2 ∈ ℕ)
66 prssi 4751 . . . . . . . . 9 ((1 ∈ ℕ ∧ 2 ∈ ℕ) → {1, 2} ⊆ ℕ)
6765, 66ax-mp 5 . . . . . . . 8 {1, 2} ⊆ ℕ
68 dfss4 4189 . . . . . . . 8 ({1, 2} ⊆ ℕ ↔ (ℕ ∖ (ℕ ∖ {1, 2})) = {1, 2})
6967, 68mpbi 229 . . . . . . 7 (ℕ ∖ (ℕ ∖ {1, 2})) = {1, 2}
70 iuneq1 4937 . . . . . . 7 ((ℕ ∖ (ℕ ∖ {1, 2})) = {1, 2} → 𝑛 ∈ (ℕ ∖ (ℕ ∖ {1, 2}))(𝐶𝑛) = 𝑛 ∈ {1, 2} (𝐶𝑛))
7169, 70ax-mp 5 . . . . . 6 𝑛 ∈ (ℕ ∖ (ℕ ∖ {1, 2}))(𝐶𝑛) = 𝑛 ∈ {1, 2} (𝐶𝑛)
7271a1i 11 . . . . 5 (𝜑 𝑛 ∈ (ℕ ∖ (ℕ ∖ {1, 2}))(𝐶𝑛) = 𝑛 ∈ {1, 2} (𝐶𝑛))
73 fveq2 6756 . . . . . . . . 9 (𝑛 = 1 → (𝐶𝑛) = (𝐶‘1))
74 fveq2 6756 . . . . . . . . 9 (𝑛 = 2 → (𝐶𝑛) = (𝐶‘2))
7573, 74iunxprg 5021 . . . . . . . 8 ((1 ∈ ℕ ∧ 2 ∈ ℕ) → 𝑛 ∈ {1, 2} (𝐶𝑛) = ((𝐶‘1) ∪ (𝐶‘2)))
7663, 64, 75mp2an 688 . . . . . . 7 𝑛 ∈ {1, 2} (𝐶𝑛) = ((𝐶‘1) ∪ (𝐶‘2))
7776a1i 11 . . . . . 6 (𝜑 𝑛 ∈ {1, 2} (𝐶𝑛) = ((𝐶‘1) ∪ (𝐶‘2)))
7863a1i 11 . . . . . . . 8 (𝜑 → 1 ∈ ℕ)
7934, 2, 78, 6fvmptd3 6880 . . . . . . 7 (𝜑 → (𝐶‘1) = 𝐴)
80 id 22 . . . . . . . . . . . 12 (𝑛 = 2 → 𝑛 = 2)
81 1ne2 12111 . . . . . . . . . . . . . 14 1 ≠ 2
8281necomi 2997 . . . . . . . . . . . . 13 2 ≠ 1
8382a1i 11 . . . . . . . . . . . 12 (𝑛 = 2 → 2 ≠ 1)
8480, 83eqnetrd 3010 . . . . . . . . . . 11 (𝑛 = 2 → 𝑛 ≠ 1)
8584neneqd 2947 . . . . . . . . . 10 (𝑛 = 2 → ¬ 𝑛 = 1)
8685iffalsed 4467 . . . . . . . . 9 (𝑛 = 2 → if(𝑛 = 1, 𝐴, if(𝑛 = 2, 𝐵, ∅)) = if(𝑛 = 2, 𝐵, ∅))
87 iftrue 4462 . . . . . . . . 9 (𝑛 = 2 → if(𝑛 = 2, 𝐵, ∅) = 𝐵)
8886, 87eqtrd 2778 . . . . . . . 8 (𝑛 = 2 → if(𝑛 = 1, 𝐴, if(𝑛 = 2, 𝐵, ∅)) = 𝐵)
8964a1i 11 . . . . . . . 8 (𝜑 → 2 ∈ ℕ)
9034, 88, 89, 18fvmptd3 6880 . . . . . . 7 (𝜑 → (𝐶‘2) = 𝐵)
9179, 90uneq12d 4094 . . . . . 6 (𝜑 → ((𝐶‘1) ∪ (𝐶‘2)) = (𝐴𝐵))
92 eqidd 2739 . . . . . 6 (𝜑 → (𝐴𝐵) = (𝐴𝐵))
9377, 91, 923eqtrd 2782 . . . . 5 (𝜑 𝑛 ∈ {1, 2} (𝐶𝑛) = (𝐴𝐵))
9462, 72, 933eqtrd 2782 . . . 4 (𝜑 𝑛 ∈ ℕ (𝐶𝑛) = (𝐴𝐵))
9594fveq2d 6760 . . 3 (𝜑 → ((voln*‘𝑋)‘ 𝑛 ∈ ℕ (𝐶𝑛)) = ((voln*‘𝑋)‘(𝐴𝐵)))
96 nfv 1918 . . . . . 6 𝑛𝜑
97 nnex 11909 . . . . . . 7 ℕ ∈ V
9897a1i 11 . . . . . 6 (𝜑 → ℕ ∈ V)
9967a1i 11 . . . . . 6 (𝜑 → {1, 2} ⊆ ℕ)
1001adantr 480 . . . . . . 7 ((𝜑𝑛 ∈ {1, 2}) → 𝑋 ∈ Fin)
101 simpl 482 . . . . . . . 8 ((𝜑𝑛 ∈ {1, 2}) → 𝜑)
10299sselda 3917 . . . . . . . 8 ((𝜑𝑛 ∈ {1, 2}) → 𝑛 ∈ ℕ)
10335ffvelrnda 6943 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝐶𝑛) ∈ 𝒫 (ℝ ↑m 𝑋))
104 elpwi 4539 . . . . . . . . 9 ((𝐶𝑛) ∈ 𝒫 (ℝ ↑m 𝑋) → (𝐶𝑛) ⊆ (ℝ ↑m 𝑋))
105103, 104syl 17 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝐶𝑛) ⊆ (ℝ ↑m 𝑋))
106101, 102, 105syl2anc 583 . . . . . . 7 ((𝜑𝑛 ∈ {1, 2}) → (𝐶𝑛) ⊆ (ℝ ↑m 𝑋))
107100, 106ovncl 43995 . . . . . 6 ((𝜑𝑛 ∈ {1, 2}) → ((voln*‘𝑋)‘(𝐶𝑛)) ∈ (0[,]+∞))
10857fveq2d 6760 . . . . . . 7 ((𝜑𝑛 ∈ (ℕ ∖ {1, 2})) → ((voln*‘𝑋)‘(𝐶𝑛)) = ((voln*‘𝑋)‘∅))
1091adantr 480 . . . . . . . 8 ((𝜑𝑛 ∈ (ℕ ∖ {1, 2})) → 𝑋 ∈ Fin)
110109ovn0 43994 . . . . . . 7 ((𝜑𝑛 ∈ (ℕ ∖ {1, 2})) → ((voln*‘𝑋)‘∅) = 0)
111108, 110eqtrd 2778 . . . . . 6 ((𝜑𝑛 ∈ (ℕ ∖ {1, 2})) → ((voln*‘𝑋)‘(𝐶𝑛)) = 0)
11296, 98, 99, 107, 111sge0ss 43840 . . . . 5 (𝜑 → (Σ^‘(𝑛 ∈ {1, 2} ↦ ((voln*‘𝑋)‘(𝐶𝑛)))) = (Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐶𝑛)))))
113112eqcomd 2744 . . . 4 (𝜑 → (Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐶𝑛)))) = (Σ^‘(𝑛 ∈ {1, 2} ↦ ((voln*‘𝑋)‘(𝐶𝑛)))))
11479, 5eqsstrd 3955 . . . . . 6 (𝜑 → (𝐶‘1) ⊆ (ℝ ↑m 𝑋))
1151, 114ovncl 43995 . . . . 5 (𝜑 → ((voln*‘𝑋)‘(𝐶‘1)) ∈ (0[,]+∞))
11690, 17eqsstrd 3955 . . . . . 6 (𝜑 → (𝐶‘2) ⊆ (ℝ ↑m 𝑋))
1171, 116ovncl 43995 . . . . 5 (𝜑 → ((voln*‘𝑋)‘(𝐶‘2)) ∈ (0[,]+∞))
118 2fveq3 6761 . . . . 5 (𝑛 = 1 → ((voln*‘𝑋)‘(𝐶𝑛)) = ((voln*‘𝑋)‘(𝐶‘1)))
119 2fveq3 6761 . . . . 5 (𝑛 = 2 → ((voln*‘𝑋)‘(𝐶𝑛)) = ((voln*‘𝑋)‘(𝐶‘2)))
12081a1i 11 . . . . 5 (𝜑 → 1 ≠ 2)
12178, 89, 115, 117, 118, 119, 120sge0pr 43822 . . . 4 (𝜑 → (Σ^‘(𝑛 ∈ {1, 2} ↦ ((voln*‘𝑋)‘(𝐶𝑛)))) = (((voln*‘𝑋)‘(𝐶‘1)) +𝑒 ((voln*‘𝑋)‘(𝐶‘2))))
12279fveq2d 6760 . . . . 5 (𝜑 → ((voln*‘𝑋)‘(𝐶‘1)) = ((voln*‘𝑋)‘𝐴))
12390fveq2d 6760 . . . . 5 (𝜑 → ((voln*‘𝑋)‘(𝐶‘2)) = ((voln*‘𝑋)‘𝐵))
124122, 123oveq12d 7273 . . . 4 (𝜑 → (((voln*‘𝑋)‘(𝐶‘1)) +𝑒 ((voln*‘𝑋)‘(𝐶‘2))) = (((voln*‘𝑋)‘𝐴) +𝑒 ((voln*‘𝑋)‘𝐵)))
125113, 121, 1243eqtrd 2782 . . 3 (𝜑 → (Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐶𝑛)))) = (((voln*‘𝑋)‘𝐴) +𝑒 ((voln*‘𝑋)‘𝐵)))
12695, 125breq12d 5083 . 2 (𝜑 → (((voln*‘𝑋)‘ 𝑛 ∈ ℕ (𝐶𝑛)) ≤ (Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐶𝑛)))) ↔ ((voln*‘𝑋)‘(𝐴𝐵)) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 ((voln*‘𝑋)‘𝐵))))
12736, 126mpbid 231 1 (𝜑 → ((voln*‘𝑋)‘(𝐴𝐵)) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 ((voln*‘𝑋)‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2108  wne 2942  wral 3063  Vcvv 3422  cdif 3880  cun 3881  wss 3883  c0 4253  ifcif 4456  𝒫 cpw 4530  {cpr 4560   ciun 4921   class class class wbr 5070  cmpt 5153  cfv 6418  (class class class)co 7255  m cmap 8573  Fincfn 8691  cr 10801  0cc0 10802  1c1 10803  cle 10941  cn 11903  2c2 11958   +𝑒 cxad 12775  Σ^csumge0 43790  voln*covoln 43964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cc 10122  ax-ac2 10150  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-disj 5036  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-dju 9590  df-card 9628  df-acn 9631  df-ac 9803  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-rlim 15126  df-sum 15326  df-prod 15544  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-rest 17050  df-0g 17069  df-topgen 17071  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-subg 18667  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-cring 19701  df-oppr 19777  df-dvdsr 19798  df-unit 19799  df-invr 19829  df-dvr 19840  df-drng 19908  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-cnfld 20511  df-top 21951  df-topon 21968  df-bases 22004  df-cmp 22446  df-ovol 24533  df-vol 24534  df-sumge0 43791  df-ovoln 43965
This theorem is referenced by:  ovnsubadd2  44074
  Copyright terms: Public domain W3C validator