| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > n0f | Structured version Visualization version GIF version | ||
| Description: A class is nonempty if and only if it has at least one element. Proposition 5.17(1) of [TakeutiZaring] p. 20. This version of n0 4333 requires only that 𝑥 not be free in, rather than not occur in, 𝐴. (Contributed by NM, 17-Oct-2003.) |
| Ref | Expression |
|---|---|
| eq0f.1 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| n0f | ⊢ (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne 2934 | . 2 ⊢ (𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅) | |
| 2 | eq0f.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 3 | 2 | neq0f 4328 | . 2 ⊢ (¬ 𝐴 = ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) |
| 4 | 1, 3 | bitri 275 | 1 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1540 ∃wex 1779 ∈ wcel 2109 Ⅎwnfc 2884 ≠ wne 2933 ∅c0 4313 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-12 2178 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-dif 3934 df-nul 4314 |
| This theorem is referenced by: inn0f 4351 cp 9910 ordtconnlem1 33960 iinss2d 45161 r19.3rzf 45162 |
| Copyright terms: Public domain | W3C validator |