Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > n0f | Structured version Visualization version GIF version |
Description: A class is nonempty if and only if it has at least one element. Proposition 5.17(1) of [TakeutiZaring] p. 20. This version of n0 4277 requires only that 𝑥 not be free in, rather than not occur in, 𝐴. (Contributed by NM, 17-Oct-2003.) |
Ref | Expression |
---|---|
eq0f.1 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
n0f | ⊢ (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne 2943 | . 2 ⊢ (𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅) | |
2 | eq0f.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
3 | 2 | neq0f 4272 | . 2 ⊢ (¬ 𝐴 = ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) |
4 | 1, 3 | bitri 274 | 1 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 = wceq 1539 ∃wex 1783 ∈ wcel 2108 Ⅎwnfc 2886 ≠ wne 2942 ∅c0 4253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-dif 3886 df-nul 4254 |
This theorem is referenced by: n0OLD 4280 abn0OLD 4312 cp 9580 ordtconnlem1 31776 inn0f 42510 |
Copyright terms: Public domain | W3C validator |