MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  n0f Structured version   Visualization version   GIF version

Theorem n0f 4276
Description: A class is nonempty if and only if it has at least one element. Proposition 5.17(1) of [TakeutiZaring] p. 20. This version of n0 4280 requires only that 𝑥 not be free in, rather than not occur in, 𝐴. (Contributed by NM, 17-Oct-2003.)
Hypothesis
Ref Expression
eq0f.1 𝑥𝐴
Assertion
Ref Expression
n0f (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴)

Proof of Theorem n0f
StepHypRef Expression
1 df-ne 2944 . 2 (𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅)
2 eq0f.1 . . 3 𝑥𝐴
32neq0f 4275 . 2 𝐴 = ∅ ↔ ∃𝑥 𝑥𝐴)
41, 3bitri 274 1 (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205   = wceq 1539  wex 1782  wcel 2106  wnfc 2887  wne 2943  c0 4256
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-11 2154  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-dif 3890  df-nul 4257
This theorem is referenced by:  n0OLD  4283  abn0OLD  4315  cp  9649  ordtconnlem1  31874  inn0f  42621
  Copyright terms: Public domain W3C validator