Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > n0f | Structured version Visualization version GIF version |
Description: A class is nonempty if and only if it has at least one element. Proposition 5.17(1) of [TakeutiZaring] p. 20. This version of n0 4247 requires only that 𝑥 not be free in, rather than not occur in, 𝐴. (Contributed by NM, 17-Oct-2003.) |
Ref | Expression |
---|---|
eq0f.1 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
n0f | ⊢ (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne 2952 | . 2 ⊢ (𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅) | |
2 | eq0f.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
3 | 2 | neq0f 4242 | . 2 ⊢ (¬ 𝐴 = ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) |
4 | 1, 3 | bitri 278 | 1 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 209 = wceq 1538 ∃wex 1781 ∈ wcel 2111 Ⅎwnfc 2899 ≠ wne 2951 ∅c0 4227 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-11 2158 ax-12 2175 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-tru 1541 df-ex 1782 df-nf 1786 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-dif 3863 df-nul 4228 |
This theorem is referenced by: n0OLD 4250 abn0OLD 4281 cp 9358 ordtconnlem1 31399 inn0f 42108 |
Copyright terms: Public domain | W3C validator |