Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nfaltop Structured version   Visualization version   GIF version

Theorem nfaltop 34209
Description: Bound-variable hypothesis builder for alternate ordered pairs. (Contributed by Scott Fenton, 25-Sep-2015.)
Hypotheses
Ref Expression
nfaltop.1 𝑥𝐴
nfaltop.2 𝑥𝐵
Assertion
Ref Expression
nfaltop 𝑥𝐴, 𝐵

Proof of Theorem nfaltop
StepHypRef Expression
1 df-altop 34187 . 2 𝐴, 𝐵⟫ = {{𝐴}, {𝐴, {𝐵}}}
2 nfaltop.1 . . . 4 𝑥𝐴
32nfsn 4640 . . 3 𝑥{𝐴}
4 nfaltop.2 . . . . 5 𝑥𝐵
54nfsn 4640 . . . 4 𝑥{𝐵}
62, 5nfpr 4623 . . 3 𝑥{𝐴, {𝐵}}
73, 6nfpr 4623 . 2 𝑥{{𝐴}, {𝐴, {𝐵}}}
81, 7nfcxfr 2904 1 𝑥𝐴, 𝐵
Colors of variables: wff setvar class
Syntax hints:  wnfc 2886  {csn 4558  {cpr 4560  caltop 34185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-v 3424  df-un 3888  df-sn 4559  df-pr 4561  df-altop 34187
This theorem is referenced by:  sbcaltop  34210
  Copyright terms: Public domain W3C validator