Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nfaltop Structured version   Visualization version   GIF version

Theorem nfaltop 33831
Description: Bound-variable hypothesis builder for alternate ordered pairs. (Contributed by Scott Fenton, 25-Sep-2015.)
Hypotheses
Ref Expression
nfaltop.1 𝑥𝐴
nfaltop.2 𝑥𝐵
Assertion
Ref Expression
nfaltop 𝑥𝐴, 𝐵

Proof of Theorem nfaltop
StepHypRef Expression
1 df-altop 33809 . 2 𝐴, 𝐵⟫ = {{𝐴}, {𝐴, {𝐵}}}
2 nfaltop.1 . . . 4 𝑥𝐴
32nfsn 4600 . . 3 𝑥{𝐴}
4 nfaltop.2 . . . . 5 𝑥𝐵
54nfsn 4600 . . . 4 𝑥{𝐵}
62, 5nfpr 4585 . . 3 𝑥{𝐴, {𝐵}}
73, 6nfpr 4585 . 2 𝑥{{𝐴}, {𝐴, {𝐵}}}
81, 7nfcxfr 2917 1 𝑥𝐴, 𝐵
Colors of variables: wff setvar class
Syntax hints:  wnfc 2899  {csn 4522  {cpr 4524  caltop 33807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-v 3411  df-un 3863  df-sn 4523  df-pr 4525  df-altop 33809
This theorem is referenced by:  sbcaltop  33832
  Copyright terms: Public domain W3C validator