| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nfaltop | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for alternate ordered pairs. (Contributed by Scott Fenton, 25-Sep-2015.) |
| Ref | Expression |
|---|---|
| nfaltop.1 | ⊢ Ⅎ𝑥𝐴 |
| nfaltop.2 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfaltop | ⊢ Ⅎ𝑥⟪𝐴, 𝐵⟫ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-altop 36002 | . 2 ⊢ ⟪𝐴, 𝐵⟫ = {{𝐴}, {𝐴, {𝐵}}} | |
| 2 | nfaltop.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 3 | 2 | nfsn 4657 | . . 3 ⊢ Ⅎ𝑥{𝐴} |
| 4 | nfaltop.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
| 5 | 4 | nfsn 4657 | . . . 4 ⊢ Ⅎ𝑥{𝐵} |
| 6 | 2, 5 | nfpr 4642 | . . 3 ⊢ Ⅎ𝑥{𝐴, {𝐵}} |
| 7 | 3, 6 | nfpr 4642 | . 2 ⊢ Ⅎ𝑥{{𝐴}, {𝐴, {𝐵}}} |
| 8 | 1, 7 | nfcxfr 2892 | 1 ⊢ Ⅎ𝑥⟪𝐴, 𝐵⟫ |
| Colors of variables: wff setvar class |
| Syntax hints: Ⅎwnfc 2879 {csn 4573 {cpr 4575 ⟪caltop 36000 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-v 3438 df-un 3902 df-sn 4574 df-pr 4576 df-altop 36002 |
| This theorem is referenced by: sbcaltop 36025 |
| Copyright terms: Public domain | W3C validator |