| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nfaltop | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for alternate ordered pairs. (Contributed by Scott Fenton, 25-Sep-2015.) |
| Ref | Expression |
|---|---|
| nfaltop.1 | ⊢ Ⅎ𝑥𝐴 |
| nfaltop.2 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfaltop | ⊢ Ⅎ𝑥⟪𝐴, 𝐵⟫ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-altop 35981 | . 2 ⊢ ⟪𝐴, 𝐵⟫ = {{𝐴}, {𝐴, {𝐵}}} | |
| 2 | nfaltop.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 3 | 2 | nfsn 4688 | . . 3 ⊢ Ⅎ𝑥{𝐴} |
| 4 | nfaltop.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
| 5 | 4 | nfsn 4688 | . . . 4 ⊢ Ⅎ𝑥{𝐵} |
| 6 | 2, 5 | nfpr 4673 | . . 3 ⊢ Ⅎ𝑥{𝐴, {𝐵}} |
| 7 | 3, 6 | nfpr 4673 | . 2 ⊢ Ⅎ𝑥{{𝐴}, {𝐴, {𝐵}}} |
| 8 | 1, 7 | nfcxfr 2897 | 1 ⊢ Ⅎ𝑥⟪𝐴, 𝐵⟫ |
| Colors of variables: wff setvar class |
| Syntax hints: Ⅎwnfc 2884 {csn 4606 {cpr 4608 ⟪caltop 35979 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-v 3466 df-un 3936 df-sn 4607 df-pr 4609 df-altop 35981 |
| This theorem is referenced by: sbcaltop 36004 |
| Copyright terms: Public domain | W3C validator |