![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfpr | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for unordered pairs. (Contributed by NM, 14-Nov-1995.) |
Ref | Expression |
---|---|
nfpr.1 | ⊢ Ⅎ𝑥𝐴 |
nfpr.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfpr | ⊢ Ⅎ𝑥{𝐴, 𝐵} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfpr2 4651 | . 2 ⊢ {𝐴, 𝐵} = {𝑦 ∣ (𝑦 = 𝐴 ∨ 𝑦 = 𝐵)} | |
2 | nfpr.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
3 | 2 | nfeq2 2921 | . . . 4 ⊢ Ⅎ𝑥 𝑦 = 𝐴 |
4 | nfpr.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
5 | 4 | nfeq2 2921 | . . . 4 ⊢ Ⅎ𝑥 𝑦 = 𝐵 |
6 | 3, 5 | nfor 1902 | . . 3 ⊢ Ⅎ𝑥(𝑦 = 𝐴 ∨ 𝑦 = 𝐵) |
7 | 6 | nfab 2909 | . 2 ⊢ Ⅎ𝑥{𝑦 ∣ (𝑦 = 𝐴 ∨ 𝑦 = 𝐵)} |
8 | 1, 7 | nfcxfr 2901 | 1 ⊢ Ⅎ𝑥{𝐴, 𝐵} |
Colors of variables: wff setvar class |
Syntax hints: ∨ wo 847 = wceq 1537 {cab 2712 Ⅎwnfc 2888 {cpr 4633 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-ex 1777 df-nf 1781 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-v 3480 df-un 3968 df-sn 4632 df-pr 4634 |
This theorem is referenced by: nfsn 4712 nfop 4894 nfaltop 35962 |
Copyright terms: Public domain | W3C validator |