![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfpr | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for unordered pairs. (Contributed by NM, 14-Nov-1995.) |
Ref | Expression |
---|---|
nfpr.1 | ⊢ Ⅎ𝑥𝐴 |
nfpr.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfpr | ⊢ Ⅎ𝑥{𝐴, 𝐵} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfpr2 4644 | . 2 ⊢ {𝐴, 𝐵} = {𝑦 ∣ (𝑦 = 𝐴 ∨ 𝑦 = 𝐵)} | |
2 | nfpr.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
3 | 2 | nfeq2 2916 | . . . 4 ⊢ Ⅎ𝑥 𝑦 = 𝐴 |
4 | nfpr.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
5 | 4 | nfeq2 2916 | . . . 4 ⊢ Ⅎ𝑥 𝑦 = 𝐵 |
6 | 3, 5 | nfor 1900 | . . 3 ⊢ Ⅎ𝑥(𝑦 = 𝐴 ∨ 𝑦 = 𝐵) |
7 | 6 | nfab 2905 | . 2 ⊢ Ⅎ𝑥{𝑦 ∣ (𝑦 = 𝐴 ∨ 𝑦 = 𝐵)} |
8 | 1, 7 | nfcxfr 2897 | 1 ⊢ Ⅎ𝑥{𝐴, 𝐵} |
Colors of variables: wff setvar class |
Syntax hints: ∨ wo 846 = wceq 1534 {cab 2705 Ⅎwnfc 2879 {cpr 4627 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-tru 1537 df-ex 1775 df-nf 1779 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-v 3472 df-un 3950 df-sn 4626 df-pr 4628 |
This theorem is referenced by: nfsn 4708 nfop 4886 nfaltop 35571 |
Copyright terms: Public domain | W3C validator |