Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfpr | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for unordered pairs. (Contributed by NM, 14-Nov-1995.) |
Ref | Expression |
---|---|
nfpr.1 | ⊢ Ⅎ𝑥𝐴 |
nfpr.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfpr | ⊢ Ⅎ𝑥{𝐴, 𝐵} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfpr2 4577 | . 2 ⊢ {𝐴, 𝐵} = {𝑦 ∣ (𝑦 = 𝐴 ∨ 𝑦 = 𝐵)} | |
2 | nfpr.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
3 | 2 | nfeq2 2923 | . . . 4 ⊢ Ⅎ𝑥 𝑦 = 𝐴 |
4 | nfpr.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
5 | 4 | nfeq2 2923 | . . . 4 ⊢ Ⅎ𝑥 𝑦 = 𝐵 |
6 | 3, 5 | nfor 1908 | . . 3 ⊢ Ⅎ𝑥(𝑦 = 𝐴 ∨ 𝑦 = 𝐵) |
7 | 6 | nfab 2912 | . 2 ⊢ Ⅎ𝑥{𝑦 ∣ (𝑦 = 𝐴 ∨ 𝑦 = 𝐵)} |
8 | 1, 7 | nfcxfr 2904 | 1 ⊢ Ⅎ𝑥{𝐴, 𝐵} |
Colors of variables: wff setvar class |
Syntax hints: ∨ wo 843 = wceq 1539 {cab 2715 Ⅎwnfc 2886 {cpr 4560 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-v 3424 df-un 3888 df-sn 4559 df-pr 4561 |
This theorem is referenced by: nfsn 4640 nfop 4817 nfaltop 34209 |
Copyright terms: Public domain | W3C validator |