| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfpr | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for unordered pairs. (Contributed by NM, 14-Nov-1995.) |
| Ref | Expression |
|---|---|
| nfpr.1 | ⊢ Ⅎ𝑥𝐴 |
| nfpr.2 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfpr | ⊢ Ⅎ𝑥{𝐴, 𝐵} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfpr2 4594 | . 2 ⊢ {𝐴, 𝐵} = {𝑦 ∣ (𝑦 = 𝐴 ∨ 𝑦 = 𝐵)} | |
| 2 | nfpr.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
| 3 | 2 | nfeq2 2912 | . . . 4 ⊢ Ⅎ𝑥 𝑦 = 𝐴 |
| 4 | nfpr.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
| 5 | 4 | nfeq2 2912 | . . . 4 ⊢ Ⅎ𝑥 𝑦 = 𝐵 |
| 6 | 3, 5 | nfor 1905 | . . 3 ⊢ Ⅎ𝑥(𝑦 = 𝐴 ∨ 𝑦 = 𝐵) |
| 7 | 6 | nfab 2900 | . 2 ⊢ Ⅎ𝑥{𝑦 ∣ (𝑦 = 𝐴 ∨ 𝑦 = 𝐵)} |
| 8 | 1, 7 | nfcxfr 2892 | 1 ⊢ Ⅎ𝑥{𝐴, 𝐵} |
| Colors of variables: wff setvar class |
| Syntax hints: ∨ wo 847 = wceq 1541 {cab 2709 Ⅎwnfc 2879 {cpr 4575 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-v 3438 df-un 3902 df-sn 4574 df-pr 4576 |
| This theorem is referenced by: nfsn 4657 nfop 4838 nfaltop 36024 |
| Copyright terms: Public domain | W3C validator |