Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfpr Structured version   Visualization version   GIF version

Theorem nfpr 4591
 Description: Bound-variable hypothesis builder for unordered pairs. (Contributed by NM, 14-Nov-1995.)
Hypotheses
Ref Expression
nfpr.1 𝑥𝐴
nfpr.2 𝑥𝐵
Assertion
Ref Expression
nfpr 𝑥{𝐴, 𝐵}

Proof of Theorem nfpr
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfpr2 4547 . 2 {𝐴, 𝐵} = {𝑦 ∣ (𝑦 = 𝐴𝑦 = 𝐵)}
2 nfpr.1 . . . . 5 𝑥𝐴
32nfeq2 2975 . . . 4 𝑥 𝑦 = 𝐴
4 nfpr.2 . . . . 5 𝑥𝐵
54nfeq2 2975 . . . 4 𝑥 𝑦 = 𝐵
63, 5nfor 1905 . . 3 𝑥(𝑦 = 𝐴𝑦 = 𝐵)
76nfab 2964 . 2 𝑥{𝑦 ∣ (𝑦 = 𝐴𝑦 = 𝐵)}
81, 7nfcxfr 2956 1 𝑥{𝐴, 𝐵}
 Colors of variables: wff setvar class Syntax hints:   ∨ wo 844   = wceq 1538  {cab 2779  Ⅎwnfc 2939  {cpr 4530 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-v 3446  df-un 3889  df-sn 4529  df-pr 4531 This theorem is referenced by:  nfsn  4606  nfop  4784  nfaltop  33549
 Copyright terms: Public domain W3C validator