MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfpr Structured version   Visualization version   GIF version

Theorem nfpr 4659
Description: Bound-variable hypothesis builder for unordered pairs. (Contributed by NM, 14-Nov-1995.)
Hypotheses
Ref Expression
nfpr.1 𝑥𝐴
nfpr.2 𝑥𝐵
Assertion
Ref Expression
nfpr 𝑥{𝐴, 𝐵}

Proof of Theorem nfpr
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfpr2 4613 . 2 {𝐴, 𝐵} = {𝑦 ∣ (𝑦 = 𝐴𝑦 = 𝐵)}
2 nfpr.1 . . . . 5 𝑥𝐴
32nfeq2 2910 . . . 4 𝑥 𝑦 = 𝐴
4 nfpr.2 . . . . 5 𝑥𝐵
54nfeq2 2910 . . . 4 𝑥 𝑦 = 𝐵
63, 5nfor 1904 . . 3 𝑥(𝑦 = 𝐴𝑦 = 𝐵)
76nfab 2898 . 2 𝑥{𝑦 ∣ (𝑦 = 𝐴𝑦 = 𝐵)}
81, 7nfcxfr 2890 1 𝑥{𝐴, 𝐵}
Colors of variables: wff setvar class
Syntax hints:  wo 847   = wceq 1540  {cab 2708  wnfc 2877  {cpr 4594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-v 3452  df-un 3922  df-sn 4593  df-pr 4595
This theorem is referenced by:  nfsn  4674  nfop  4856  nfaltop  35975
  Copyright terms: Public domain W3C validator