MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfpr Structured version   Visualization version   GIF version

Theorem nfpr 4715
Description: Bound-variable hypothesis builder for unordered pairs. (Contributed by NM, 14-Nov-1995.)
Hypotheses
Ref Expression
nfpr.1 𝑥𝐴
nfpr.2 𝑥𝐵
Assertion
Ref Expression
nfpr 𝑥{𝐴, 𝐵}

Proof of Theorem nfpr
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfpr2 4668 . 2 {𝐴, 𝐵} = {𝑦 ∣ (𝑦 = 𝐴𝑦 = 𝐵)}
2 nfpr.1 . . . . 5 𝑥𝐴
32nfeq2 2926 . . . 4 𝑥 𝑦 = 𝐴
4 nfpr.2 . . . . 5 𝑥𝐵
54nfeq2 2926 . . . 4 𝑥 𝑦 = 𝐵
63, 5nfor 1903 . . 3 𝑥(𝑦 = 𝐴𝑦 = 𝐵)
76nfab 2914 . 2 𝑥{𝑦 ∣ (𝑦 = 𝐴𝑦 = 𝐵)}
81, 7nfcxfr 2906 1 𝑥{𝐴, 𝐵}
Colors of variables: wff setvar class
Syntax hints:  wo 846   = wceq 1537  {cab 2717  wnfc 2893  {cpr 4650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-v 3490  df-un 3981  df-sn 4649  df-pr 4651
This theorem is referenced by:  nfsn  4732  nfop  4913  nfaltop  35944
  Copyright terms: Public domain W3C validator