| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfsn | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for singletons. (Contributed by NM, 14-Nov-1995.) |
| Ref | Expression |
|---|---|
| nfsn.1 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| nfsn | ⊢ Ⅎ𝑥{𝐴} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsn2 4614 | . 2 ⊢ {𝐴} = {𝐴, 𝐴} | |
| 2 | nfsn.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 3 | 2, 2 | nfpr 4668 | . 2 ⊢ Ⅎ𝑥{𝐴, 𝐴} |
| 4 | 1, 3 | nfcxfr 2896 | 1 ⊢ Ⅎ𝑥{𝐴} |
| Colors of variables: wff setvar class |
| Syntax hints: Ⅎwnfc 2883 {csn 4601 {cpr 4603 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-v 3461 df-un 3931 df-sn 4602 df-pr 4604 |
| This theorem is referenced by: nfop 4865 iunopeqop 5496 nfpred 6295 nfsuc 6426 sniota 6522 dfmpo 8101 nosupbnd2 27680 noinfbnd2 27695 bnj958 34971 bnj1000 34972 bnj1446 35076 bnj1447 35077 bnj1448 35078 bnj1466 35084 bnj1467 35085 nfaltop 35998 stoweidlem21 46050 stoweidlem47 46076 nfdfat 47156 |
| Copyright terms: Public domain | W3C validator |