MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfsn Structured version   Visualization version   GIF version

Theorem nfsn 4706
Description: Bound-variable hypothesis builder for singletons. (Contributed by NM, 14-Nov-1995.)
Hypothesis
Ref Expression
nfsn.1 𝑥𝐴
Assertion
Ref Expression
nfsn 𝑥{𝐴}

Proof of Theorem nfsn
StepHypRef Expression
1 dfsn2 4636 . 2 {𝐴} = {𝐴, 𝐴}
2 nfsn.1 . . 3 𝑥𝐴
32, 2nfpr 4689 . 2 𝑥{𝐴, 𝐴}
41, 3nfcxfr 2890 1 𝑥{𝐴}
Colors of variables: wff setvar class
Syntax hints:  wnfc 2876  {csn 4623  {cpr 4625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-tru 1537  df-ex 1775  df-nf 1779  df-sb 2061  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-v 3464  df-un 3951  df-sn 4624  df-pr 4626
This theorem is referenced by:  nfop  4887  iunopeqop  5519  nfpred  6309  nfsuc  6440  sniota  6537  dfmpo  8108  nosupbnd2  27743  noinfbnd2  27758  bnj958  34798  bnj1000  34799  bnj1446  34903  bnj1447  34904  bnj1448  34905  bnj1466  34911  bnj1467  34912  nfaltop  35817  stoweidlem21  45678  stoweidlem47  45704  nfdfat  46776
  Copyright terms: Public domain W3C validator