| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfsn | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for singletons. (Contributed by NM, 14-Nov-1995.) |
| Ref | Expression |
|---|---|
| nfsn.1 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| nfsn | ⊢ Ⅎ𝑥{𝐴} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsn2 4592 | . 2 ⊢ {𝐴} = {𝐴, 𝐴} | |
| 2 | nfsn.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 3 | 2, 2 | nfpr 4646 | . 2 ⊢ Ⅎ𝑥{𝐴, 𝐴} |
| 4 | 1, 3 | nfcxfr 2889 | 1 ⊢ Ⅎ𝑥{𝐴} |
| Colors of variables: wff setvar class |
| Syntax hints: Ⅎwnfc 2876 {csn 4579 {cpr 4581 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-v 3440 df-un 3910 df-sn 4580 df-pr 4582 |
| This theorem is referenced by: nfop 4843 iunopeqop 5468 nfpred 6258 nfsuc 6385 sniota 6477 dfmpo 8042 nosupbnd2 27644 noinfbnd2 27659 bnj958 34909 bnj1000 34910 bnj1446 35014 bnj1447 35015 bnj1448 35016 bnj1466 35022 bnj1467 35023 nfaltop 35956 stoweidlem21 46006 stoweidlem47 46032 nfdfat 47115 |
| Copyright terms: Public domain | W3C validator |