| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfsn | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for singletons. (Contributed by NM, 14-Nov-1995.) |
| Ref | Expression |
|---|---|
| nfsn.1 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| nfsn | ⊢ Ⅎ𝑥{𝐴} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsn2 4602 | . 2 ⊢ {𝐴} = {𝐴, 𝐴} | |
| 2 | nfsn.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 3 | 2, 2 | nfpr 4656 | . 2 ⊢ Ⅎ𝑥{𝐴, 𝐴} |
| 4 | 1, 3 | nfcxfr 2889 | 1 ⊢ Ⅎ𝑥{𝐴} |
| Colors of variables: wff setvar class |
| Syntax hints: Ⅎwnfc 2876 {csn 4589 {cpr 4591 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-v 3449 df-un 3919 df-sn 4590 df-pr 4592 |
| This theorem is referenced by: nfop 4853 iunopeqop 5481 nfpred 6279 nfsuc 6406 sniota 6502 dfmpo 8081 nosupbnd2 27628 noinfbnd2 27643 bnj958 34930 bnj1000 34931 bnj1446 35035 bnj1447 35036 bnj1448 35037 bnj1466 35043 bnj1467 35044 nfaltop 35968 stoweidlem21 46019 stoweidlem47 46045 nfdfat 47128 |
| Copyright terms: Public domain | W3C validator |