MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfsn Structured version   Visualization version   GIF version

Theorem nfsn 4661
Description: Bound-variable hypothesis builder for singletons. (Contributed by NM, 14-Nov-1995.)
Hypothesis
Ref Expression
nfsn.1 𝑥𝐴
Assertion
Ref Expression
nfsn 𝑥{𝐴}

Proof of Theorem nfsn
StepHypRef Expression
1 dfsn2 4592 . 2 {𝐴} = {𝐴, 𝐴}
2 nfsn.1 . . 3 𝑥𝐴
32, 2nfpr 4646 . 2 𝑥{𝐴, 𝐴}
41, 3nfcxfr 2889 1 𝑥{𝐴}
Colors of variables: wff setvar class
Syntax hints:  wnfc 2876  {csn 4579  {cpr 4581
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-v 3440  df-un 3910  df-sn 4580  df-pr 4582
This theorem is referenced by:  nfop  4843  iunopeqop  5468  nfpred  6258  nfsuc  6385  sniota  6477  dfmpo  8042  nosupbnd2  27644  noinfbnd2  27659  bnj958  34909  bnj1000  34910  bnj1446  35014  bnj1447  35015  bnj1448  35016  bnj1466  35022  bnj1467  35023  nfaltop  35956  stoweidlem21  46006  stoweidlem47  46032  nfdfat  47115
  Copyright terms: Public domain W3C validator