| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfsn | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for singletons. (Contributed by NM, 14-Nov-1995.) |
| Ref | Expression |
|---|---|
| nfsn.1 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| nfsn | ⊢ Ⅎ𝑥{𝐴} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsn2 4589 | . 2 ⊢ {𝐴} = {𝐴, 𝐴} | |
| 2 | nfsn.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 3 | 2, 2 | nfpr 4645 | . 2 ⊢ Ⅎ𝑥{𝐴, 𝐴} |
| 4 | 1, 3 | nfcxfr 2892 | 1 ⊢ Ⅎ𝑥{𝐴} |
| Colors of variables: wff setvar class |
| Syntax hints: Ⅎwnfc 2879 {csn 4576 {cpr 4578 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-v 3438 df-un 3907 df-sn 4577 df-pr 4579 |
| This theorem is referenced by: nfop 4841 iunopeqop 5461 nfpred 6253 nfsuc 6380 sniota 6472 dfmpo 8032 nosupbnd2 27656 noinfbnd2 27671 bnj958 34950 bnj1000 34951 bnj1446 35055 bnj1447 35056 bnj1448 35057 bnj1466 35063 bnj1467 35064 nfaltop 36020 stoweidlem21 46065 stoweidlem47 46091 nfdfat 47164 |
| Copyright terms: Public domain | W3C validator |