Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfsn | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for singletons. (Contributed by NM, 14-Nov-1995.) |
Ref | Expression |
---|---|
nfsn.1 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfsn | ⊢ Ⅎ𝑥{𝐴} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsn2 4578 | . 2 ⊢ {𝐴} = {𝐴, 𝐴} | |
2 | nfsn.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
3 | 2, 2 | nfpr 4630 | . 2 ⊢ Ⅎ𝑥{𝐴, 𝐴} |
4 | 1, 3 | nfcxfr 2903 | 1 ⊢ Ⅎ𝑥{𝐴} |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnfc 2885 {csn 4565 {cpr 4567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-tru 1542 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-v 3439 df-un 3897 df-sn 4566 df-pr 4568 |
This theorem is referenced by: nfop 4825 iunopeqop 5448 nfpred 6222 nfsuc 6352 sniota 6449 dfmpo 7974 bnj958 32969 bnj1000 32970 bnj1446 33074 bnj1447 33075 bnj1448 33076 bnj1466 33082 bnj1467 33083 nosupbnd2 33968 noinfbnd2 33983 nfaltop 34331 stoweidlem21 43791 stoweidlem47 43817 nfdfat 44863 |
Copyright terms: Public domain | W3C validator |