Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfsn | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for singletons. (Contributed by NM, 14-Nov-1995.) |
Ref | Expression |
---|---|
nfsn.1 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfsn | ⊢ Ⅎ𝑥{𝐴} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsn2 4579 | . 2 ⊢ {𝐴} = {𝐴, 𝐴} | |
2 | nfsn.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
3 | 2, 2 | nfpr 4631 | . 2 ⊢ Ⅎ𝑥{𝐴, 𝐴} |
4 | 1, 3 | nfcxfr 2906 | 1 ⊢ Ⅎ𝑥{𝐴} |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnfc 2888 {csn 4566 {cpr 4568 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1544 df-ex 1786 df-nf 1790 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-v 3432 df-un 3896 df-sn 4567 df-pr 4569 |
This theorem is referenced by: nfop 4825 iunopeqop 5437 nfpred 6204 nfsuc 6334 sniota 6421 dfmpo 7926 bnj958 32899 bnj1000 32900 bnj1446 33004 bnj1447 33005 bnj1448 33006 bnj1466 33012 bnj1467 33013 nosupbnd2 33898 noinfbnd2 33913 nfaltop 34261 stoweidlem21 43516 stoweidlem47 43542 nfdfat 44570 |
Copyright terms: Public domain | W3C validator |