MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfsn Structured version   Visualization version   GIF version

Theorem nfsn 4732
Description: Bound-variable hypothesis builder for singletons. (Contributed by NM, 14-Nov-1995.)
Hypothesis
Ref Expression
nfsn.1 𝑥𝐴
Assertion
Ref Expression
nfsn 𝑥{𝐴}

Proof of Theorem nfsn
StepHypRef Expression
1 dfsn2 4661 . 2 {𝐴} = {𝐴, 𝐴}
2 nfsn.1 . . 3 𝑥𝐴
32, 2nfpr 4715 . 2 𝑥{𝐴, 𝐴}
41, 3nfcxfr 2906 1 𝑥{𝐴}
Colors of variables: wff setvar class
Syntax hints:  wnfc 2893  {csn 4648  {cpr 4650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-v 3490  df-un 3981  df-sn 4649  df-pr 4651
This theorem is referenced by:  nfop  4913  iunopeqop  5540  nfpred  6337  nfsuc  6467  sniota  6564  dfmpo  8143  nosupbnd2  27779  noinfbnd2  27794  bnj958  34916  bnj1000  34917  bnj1446  35021  bnj1447  35022  bnj1448  35023  bnj1466  35029  bnj1467  35030  nfaltop  35944  stoweidlem21  45942  stoweidlem47  45968  nfdfat  47042
  Copyright terms: Public domain W3C validator