Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfsn | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for singletons. (Contributed by NM, 14-Nov-1995.) |
Ref | Expression |
---|---|
nfsn.1 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfsn | ⊢ Ⅎ𝑥{𝐴} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsn2 4585 | . 2 ⊢ {𝐴} = {𝐴, 𝐴} | |
2 | nfsn.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
3 | 2, 2 | nfpr 4637 | . 2 ⊢ Ⅎ𝑥{𝐴, 𝐴} |
4 | 1, 3 | nfcxfr 2902 | 1 ⊢ Ⅎ𝑥{𝐴} |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnfc 2884 {csn 4572 {cpr 4574 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1543 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-v 3443 df-un 3902 df-sn 4573 df-pr 4575 |
This theorem is referenced by: nfop 4832 iunopeqop 5459 nfpred 6237 nfsuc 6367 sniota 6464 dfmpo 8002 nosupbnd2 26962 noinfbnd2 26977 bnj958 33132 bnj1000 33133 bnj1446 33237 bnj1447 33238 bnj1448 33239 bnj1466 33245 bnj1467 33246 nfaltop 34373 stoweidlem21 43887 stoweidlem47 43913 nfdfat 44959 |
Copyright terms: Public domain | W3C validator |