![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfsn | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for singletons. (Contributed by NM, 14-Nov-1995.) |
Ref | Expression |
---|---|
nfsn.1 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfsn | ⊢ Ⅎ𝑥{𝐴} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsn2 4661 | . 2 ⊢ {𝐴} = {𝐴, 𝐴} | |
2 | nfsn.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
3 | 2, 2 | nfpr 4715 | . 2 ⊢ Ⅎ𝑥{𝐴, 𝐴} |
4 | 1, 3 | nfcxfr 2906 | 1 ⊢ Ⅎ𝑥{𝐴} |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnfc 2893 {csn 4648 {cpr 4650 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-v 3490 df-un 3981 df-sn 4649 df-pr 4651 |
This theorem is referenced by: nfop 4913 iunopeqop 5540 nfpred 6337 nfsuc 6467 sniota 6564 dfmpo 8143 nosupbnd2 27779 noinfbnd2 27794 bnj958 34916 bnj1000 34917 bnj1446 35021 bnj1447 35022 bnj1448 35023 bnj1466 35029 bnj1467 35030 nfaltop 35944 stoweidlem21 45942 stoweidlem47 45968 nfdfat 47042 |
Copyright terms: Public domain | W3C validator |