MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfsn Structured version   Visualization version   GIF version

Theorem nfsn 4712
Description: Bound-variable hypothesis builder for singletons. (Contributed by NM, 14-Nov-1995.)
Hypothesis
Ref Expression
nfsn.1 𝑥𝐴
Assertion
Ref Expression
nfsn 𝑥{𝐴}

Proof of Theorem nfsn
StepHypRef Expression
1 dfsn2 4644 . 2 {𝐴} = {𝐴, 𝐴}
2 nfsn.1 . . 3 𝑥𝐴
32, 2nfpr 4697 . 2 𝑥{𝐴, 𝐴}
41, 3nfcxfr 2901 1 𝑥{𝐴}
Colors of variables: wff setvar class
Syntax hints:  wnfc 2888  {csn 4631  {cpr 4633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1540  df-ex 1777  df-nf 1781  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-v 3480  df-un 3968  df-sn 4632  df-pr 4634
This theorem is referenced by:  nfop  4894  iunopeqop  5531  nfpred  6328  nfsuc  6458  sniota  6554  dfmpo  8126  nosupbnd2  27776  noinfbnd2  27791  bnj958  34933  bnj1000  34934  bnj1446  35038  bnj1447  35039  bnj1448  35040  bnj1466  35046  bnj1467  35047  nfaltop  35962  stoweidlem21  45977  stoweidlem47  46003  nfdfat  47077
  Copyright terms: Public domain W3C validator