MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfsn Structured version   Visualization version   GIF version

Theorem nfsn 4648
Description: Bound-variable hypothesis builder for singletons. (Contributed by NM, 14-Nov-1995.)
Hypothesis
Ref Expression
nfsn.1 𝑥𝐴
Assertion
Ref Expression
nfsn 𝑥{𝐴}

Proof of Theorem nfsn
StepHypRef Expression
1 dfsn2 4579 . 2 {𝐴} = {𝐴, 𝐴}
2 nfsn.1 . . 3 𝑥𝐴
32, 2nfpr 4631 . 2 𝑥{𝐴, 𝐴}
41, 3nfcxfr 2906 1 𝑥{𝐴}
Colors of variables: wff setvar class
Syntax hints:  wnfc 2888  {csn 4566  {cpr 4568
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1544  df-ex 1786  df-nf 1790  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-v 3432  df-un 3896  df-sn 4567  df-pr 4569
This theorem is referenced by:  nfop  4825  iunopeqop  5437  nfpred  6204  nfsuc  6334  sniota  6421  dfmpo  7926  bnj958  32899  bnj1000  32900  bnj1446  33004  bnj1447  33005  bnj1448  33006  bnj1466  33012  bnj1467  33013  nosupbnd2  33898  noinfbnd2  33913  nfaltop  34261  stoweidlem21  43516  stoweidlem47  43542  nfdfat  44570
  Copyright terms: Public domain W3C validator