MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfsn Structured version   Visualization version   GIF version

Theorem nfsn 4674
Description: Bound-variable hypothesis builder for singletons. (Contributed by NM, 14-Nov-1995.)
Hypothesis
Ref Expression
nfsn.1 𝑥𝐴
Assertion
Ref Expression
nfsn 𝑥{𝐴}

Proof of Theorem nfsn
StepHypRef Expression
1 dfsn2 4605 . 2 {𝐴} = {𝐴, 𝐴}
2 nfsn.1 . . 3 𝑥𝐴
32, 2nfpr 4659 . 2 𝑥{𝐴, 𝐴}
41, 3nfcxfr 2890 1 𝑥{𝐴}
Colors of variables: wff setvar class
Syntax hints:  wnfc 2877  {csn 4592  {cpr 4594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-v 3452  df-un 3922  df-sn 4593  df-pr 4595
This theorem is referenced by:  nfop  4856  iunopeqop  5484  nfpred  6282  nfsuc  6409  sniota  6505  dfmpo  8084  nosupbnd2  27635  noinfbnd2  27650  bnj958  34937  bnj1000  34938  bnj1446  35042  bnj1447  35043  bnj1448  35044  bnj1466  35050  bnj1467  35051  nfaltop  35975  stoweidlem21  46026  stoweidlem47  46052  nfdfat  47132
  Copyright terms: Public domain W3C validator