| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfsn | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for singletons. (Contributed by NM, 14-Nov-1995.) |
| Ref | Expression |
|---|---|
| nfsn.1 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| nfsn | ⊢ Ⅎ𝑥{𝐴} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsn2 4590 | . 2 ⊢ {𝐴} = {𝐴, 𝐴} | |
| 2 | nfsn.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 3 | 2, 2 | nfpr 4646 | . 2 ⊢ Ⅎ𝑥{𝐴, 𝐴} |
| 4 | 1, 3 | nfcxfr 2893 | 1 ⊢ Ⅎ𝑥{𝐴} |
| Colors of variables: wff setvar class |
| Syntax hints: Ⅎwnfc 2880 {csn 4577 {cpr 4579 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-v 3439 df-un 3903 df-sn 4578 df-pr 4580 |
| This theorem is referenced by: nfop 4842 iunopeqop 5466 nfpred 6261 nfsuc 6388 sniota 6480 dfmpo 8041 nosupbnd2 27675 noinfbnd2 27690 bnj958 35024 bnj1000 35025 bnj1446 35129 bnj1447 35130 bnj1448 35131 bnj1466 35137 bnj1467 35138 nfaltop 36096 stoweidlem21 46181 stoweidlem47 46207 nfdfat 47289 |
| Copyright terms: Public domain | W3C validator |