Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbcaltop Structured version   Visualization version   GIF version

Theorem sbcaltop 34210
Description: Distribution of class substitution over alternate ordered pairs. (Contributed by Scott Fenton, 25-Sep-2015.)
Assertion
Ref Expression
sbcaltop (𝐴 ∈ V → 𝐴 / 𝑥𝐶, 𝐷⟫ = ⟪𝐴 / 𝑥𝐶, 𝐴 / 𝑥𝐷⟫)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐶(𝑥)   𝐷(𝑥)

Proof of Theorem sbcaltop
StepHypRef Expression
1 nfcsb1v 3853 . . . 4 𝑥𝐴 / 𝑥𝐶
2 nfcsb1v 3853 . . . 4 𝑥𝐴 / 𝑥𝐷
31, 2nfaltop 34209 . . 3 𝑥𝐴 / 𝑥𝐶, 𝐴 / 𝑥𝐷
43a1i 11 . 2 (𝐴 ∈ V → 𝑥𝐴 / 𝑥𝐶, 𝐴 / 𝑥𝐷⟫)
5 csbeq1a 3842 . . . 4 (𝑥 = 𝐴𝐶 = 𝐴 / 𝑥𝐶)
6 altopeq1 34192 . . . 4 (𝐶 = 𝐴 / 𝑥𝐶 → ⟪𝐶, 𝐷⟫ = ⟪𝐴 / 𝑥𝐶, 𝐷⟫)
75, 6syl 17 . . 3 (𝑥 = 𝐴 → ⟪𝐶, 𝐷⟫ = ⟪𝐴 / 𝑥𝐶, 𝐷⟫)
8 csbeq1a 3842 . . . 4 (𝑥 = 𝐴𝐷 = 𝐴 / 𝑥𝐷)
9 altopeq2 34193 . . . 4 (𝐷 = 𝐴 / 𝑥𝐷 → ⟪𝐴 / 𝑥𝐶, 𝐷⟫ = ⟪𝐴 / 𝑥𝐶, 𝐴 / 𝑥𝐷⟫)
108, 9syl 17 . . 3 (𝑥 = 𝐴 → ⟪𝐴 / 𝑥𝐶, 𝐷⟫ = ⟪𝐴 / 𝑥𝐶, 𝐴 / 𝑥𝐷⟫)
117, 10eqtrd 2778 . 2 (𝑥 = 𝐴 → ⟪𝐶, 𝐷⟫ = ⟪𝐴 / 𝑥𝐶, 𝐴 / 𝑥𝐷⟫)
124, 11csbiegf 3862 1 (𝐴 ∈ V → 𝐴 / 𝑥𝐶, 𝐷⟫ = ⟪𝐴 / 𝑥𝐶, 𝐴 / 𝑥𝐷⟫)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  wnfc 2886  Vcvv 3422  csb 3828  caltop 34185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-sn 4559  df-pr 4561  df-altop 34187
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator