Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sbcaltop | Structured version Visualization version GIF version |
Description: Distribution of class substitution over alternate ordered pairs. (Contributed by Scott Fenton, 25-Sep-2015.) |
Ref | Expression |
---|---|
sbcaltop | ⊢ (𝐴 ∈ V → ⦋𝐴 / 𝑥⦌⟪𝐶, 𝐷⟫ = ⟪⦋𝐴 / 𝑥⦌𝐶, ⦋𝐴 / 𝑥⦌𝐷⟫) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcsb1v 3857 | . . . 4 ⊢ Ⅎ𝑥⦋𝐴 / 𝑥⦌𝐶 | |
2 | nfcsb1v 3857 | . . . 4 ⊢ Ⅎ𝑥⦋𝐴 / 𝑥⦌𝐷 | |
3 | 1, 2 | nfaltop 34282 | . . 3 ⊢ Ⅎ𝑥⟪⦋𝐴 / 𝑥⦌𝐶, ⦋𝐴 / 𝑥⦌𝐷⟫ |
4 | 3 | a1i 11 | . 2 ⊢ (𝐴 ∈ V → Ⅎ𝑥⟪⦋𝐴 / 𝑥⦌𝐶, ⦋𝐴 / 𝑥⦌𝐷⟫) |
5 | csbeq1a 3846 | . . . 4 ⊢ (𝑥 = 𝐴 → 𝐶 = ⦋𝐴 / 𝑥⦌𝐶) | |
6 | altopeq1 34265 | . . . 4 ⊢ (𝐶 = ⦋𝐴 / 𝑥⦌𝐶 → ⟪𝐶, 𝐷⟫ = ⟪⦋𝐴 / 𝑥⦌𝐶, 𝐷⟫) | |
7 | 5, 6 | syl 17 | . . 3 ⊢ (𝑥 = 𝐴 → ⟪𝐶, 𝐷⟫ = ⟪⦋𝐴 / 𝑥⦌𝐶, 𝐷⟫) |
8 | csbeq1a 3846 | . . . 4 ⊢ (𝑥 = 𝐴 → 𝐷 = ⦋𝐴 / 𝑥⦌𝐷) | |
9 | altopeq2 34266 | . . . 4 ⊢ (𝐷 = ⦋𝐴 / 𝑥⦌𝐷 → ⟪⦋𝐴 / 𝑥⦌𝐶, 𝐷⟫ = ⟪⦋𝐴 / 𝑥⦌𝐶, ⦋𝐴 / 𝑥⦌𝐷⟫) | |
10 | 8, 9 | syl 17 | . . 3 ⊢ (𝑥 = 𝐴 → ⟪⦋𝐴 / 𝑥⦌𝐶, 𝐷⟫ = ⟪⦋𝐴 / 𝑥⦌𝐶, ⦋𝐴 / 𝑥⦌𝐷⟫) |
11 | 7, 10 | eqtrd 2778 | . 2 ⊢ (𝑥 = 𝐴 → ⟪𝐶, 𝐷⟫ = ⟪⦋𝐴 / 𝑥⦌𝐶, ⦋𝐴 / 𝑥⦌𝐷⟫) |
12 | 4, 11 | csbiegf 3866 | 1 ⊢ (𝐴 ∈ V → ⦋𝐴 / 𝑥⦌⟪𝐶, 𝐷⟫ = ⟪⦋𝐴 / 𝑥⦌𝐶, ⦋𝐴 / 𝑥⦌𝐷⟫) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 Ⅎwnfc 2887 Vcvv 3432 ⦋csb 3832 ⟪caltop 34258 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-sn 4562 df-pr 4564 df-altop 34260 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |