| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sbcaltop | Structured version Visualization version GIF version | ||
| Description: Distribution of class substitution over alternate ordered pairs. (Contributed by Scott Fenton, 25-Sep-2015.) |
| Ref | Expression |
|---|---|
| sbcaltop | ⊢ (𝐴 ∈ V → ⦋𝐴 / 𝑥⦌⟪𝐶, 𝐷⟫ = ⟪⦋𝐴 / 𝑥⦌𝐶, ⦋𝐴 / 𝑥⦌𝐷⟫) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcsb1v 3894 | . . . 4 ⊢ Ⅎ𝑥⦋𝐴 / 𝑥⦌𝐶 | |
| 2 | nfcsb1v 3894 | . . . 4 ⊢ Ⅎ𝑥⦋𝐴 / 𝑥⦌𝐷 | |
| 3 | 1, 2 | nfaltop 35965 | . . 3 ⊢ Ⅎ𝑥⟪⦋𝐴 / 𝑥⦌𝐶, ⦋𝐴 / 𝑥⦌𝐷⟫ |
| 4 | 3 | a1i 11 | . 2 ⊢ (𝐴 ∈ V → Ⅎ𝑥⟪⦋𝐴 / 𝑥⦌𝐶, ⦋𝐴 / 𝑥⦌𝐷⟫) |
| 5 | csbeq1a 3884 | . . . 4 ⊢ (𝑥 = 𝐴 → 𝐶 = ⦋𝐴 / 𝑥⦌𝐶) | |
| 6 | altopeq1 35948 | . . . 4 ⊢ (𝐶 = ⦋𝐴 / 𝑥⦌𝐶 → ⟪𝐶, 𝐷⟫ = ⟪⦋𝐴 / 𝑥⦌𝐶, 𝐷⟫) | |
| 7 | 5, 6 | syl 17 | . . 3 ⊢ (𝑥 = 𝐴 → ⟪𝐶, 𝐷⟫ = ⟪⦋𝐴 / 𝑥⦌𝐶, 𝐷⟫) |
| 8 | csbeq1a 3884 | . . . 4 ⊢ (𝑥 = 𝐴 → 𝐷 = ⦋𝐴 / 𝑥⦌𝐷) | |
| 9 | altopeq2 35949 | . . . 4 ⊢ (𝐷 = ⦋𝐴 / 𝑥⦌𝐷 → ⟪⦋𝐴 / 𝑥⦌𝐶, 𝐷⟫ = ⟪⦋𝐴 / 𝑥⦌𝐶, ⦋𝐴 / 𝑥⦌𝐷⟫) | |
| 10 | 8, 9 | syl 17 | . . 3 ⊢ (𝑥 = 𝐴 → ⟪⦋𝐴 / 𝑥⦌𝐶, 𝐷⟫ = ⟪⦋𝐴 / 𝑥⦌𝐶, ⦋𝐴 / 𝑥⦌𝐷⟫) |
| 11 | 7, 10 | eqtrd 2765 | . 2 ⊢ (𝑥 = 𝐴 → ⟪𝐶, 𝐷⟫ = ⟪⦋𝐴 / 𝑥⦌𝐶, ⦋𝐴 / 𝑥⦌𝐷⟫) |
| 12 | 4, 11 | csbiegf 3903 | 1 ⊢ (𝐴 ∈ V → ⦋𝐴 / 𝑥⦌⟪𝐶, 𝐷⟫ = ⟪⦋𝐴 / 𝑥⦌𝐶, ⦋𝐴 / 𝑥⦌𝐷⟫) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Ⅎwnfc 2878 Vcvv 3455 ⦋csb 3870 ⟪caltop 35941 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pr 5395 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-ss 3939 df-nul 4305 df-sn 4598 df-pr 4600 df-altop 35943 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |