![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sbcaltop | Structured version Visualization version GIF version |
Description: Distribution of class substitution over alternate ordered pairs. (Contributed by Scott Fenton, 25-Sep-2015.) |
Ref | Expression |
---|---|
sbcaltop | ⊢ (𝐴 ∈ V → ⦋𝐴 / 𝑥⦌⟪𝐶, 𝐷⟫ = ⟪⦋𝐴 / 𝑥⦌𝐶, ⦋𝐴 / 𝑥⦌𝐷⟫) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcsb1v 3917 | . . . 4 ⊢ Ⅎ𝑥⦋𝐴 / 𝑥⦌𝐶 | |
2 | nfcsb1v 3917 | . . . 4 ⊢ Ⅎ𝑥⦋𝐴 / 𝑥⦌𝐷 | |
3 | 1, 2 | nfaltop 34940 | . . 3 ⊢ Ⅎ𝑥⟪⦋𝐴 / 𝑥⦌𝐶, ⦋𝐴 / 𝑥⦌𝐷⟫ |
4 | 3 | a1i 11 | . 2 ⊢ (𝐴 ∈ V → Ⅎ𝑥⟪⦋𝐴 / 𝑥⦌𝐶, ⦋𝐴 / 𝑥⦌𝐷⟫) |
5 | csbeq1a 3906 | . . . 4 ⊢ (𝑥 = 𝐴 → 𝐶 = ⦋𝐴 / 𝑥⦌𝐶) | |
6 | altopeq1 34923 | . . . 4 ⊢ (𝐶 = ⦋𝐴 / 𝑥⦌𝐶 → ⟪𝐶, 𝐷⟫ = ⟪⦋𝐴 / 𝑥⦌𝐶, 𝐷⟫) | |
7 | 5, 6 | syl 17 | . . 3 ⊢ (𝑥 = 𝐴 → ⟪𝐶, 𝐷⟫ = ⟪⦋𝐴 / 𝑥⦌𝐶, 𝐷⟫) |
8 | csbeq1a 3906 | . . . 4 ⊢ (𝑥 = 𝐴 → 𝐷 = ⦋𝐴 / 𝑥⦌𝐷) | |
9 | altopeq2 34924 | . . . 4 ⊢ (𝐷 = ⦋𝐴 / 𝑥⦌𝐷 → ⟪⦋𝐴 / 𝑥⦌𝐶, 𝐷⟫ = ⟪⦋𝐴 / 𝑥⦌𝐶, ⦋𝐴 / 𝑥⦌𝐷⟫) | |
10 | 8, 9 | syl 17 | . . 3 ⊢ (𝑥 = 𝐴 → ⟪⦋𝐴 / 𝑥⦌𝐶, 𝐷⟫ = ⟪⦋𝐴 / 𝑥⦌𝐶, ⦋𝐴 / 𝑥⦌𝐷⟫) |
11 | 7, 10 | eqtrd 2772 | . 2 ⊢ (𝑥 = 𝐴 → ⟪𝐶, 𝐷⟫ = ⟪⦋𝐴 / 𝑥⦌𝐶, ⦋𝐴 / 𝑥⦌𝐷⟫) |
12 | 4, 11 | csbiegf 3926 | 1 ⊢ (𝐴 ∈ V → ⦋𝐴 / 𝑥⦌⟪𝐶, 𝐷⟫ = ⟪⦋𝐴 / 𝑥⦌𝐶, ⦋𝐴 / 𝑥⦌𝐷⟫) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 Ⅎwnfc 2883 Vcvv 3474 ⦋csb 3892 ⟪caltop 34916 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-sn 4628 df-pr 4630 df-altop 34918 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |