Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbcaltop Structured version   Visualization version   GIF version

Theorem sbcaltop 35486
Description: Distribution of class substitution over alternate ordered pairs. (Contributed by Scott Fenton, 25-Sep-2015.)
Assertion
Ref Expression
sbcaltop (𝐴 ∈ V → 𝐴 / 𝑥𝐶, 𝐷⟫ = ⟪𝐴 / 𝑥𝐶, 𝐴 / 𝑥𝐷⟫)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐶(𝑥)   𝐷(𝑥)

Proof of Theorem sbcaltop
StepHypRef Expression
1 nfcsb1v 3913 . . . 4 𝑥𝐴 / 𝑥𝐶
2 nfcsb1v 3913 . . . 4 𝑥𝐴 / 𝑥𝐷
31, 2nfaltop 35485 . . 3 𝑥𝐴 / 𝑥𝐶, 𝐴 / 𝑥𝐷
43a1i 11 . 2 (𝐴 ∈ V → 𝑥𝐴 / 𝑥𝐶, 𝐴 / 𝑥𝐷⟫)
5 csbeq1a 3902 . . . 4 (𝑥 = 𝐴𝐶 = 𝐴 / 𝑥𝐶)
6 altopeq1 35468 . . . 4 (𝐶 = 𝐴 / 𝑥𝐶 → ⟪𝐶, 𝐷⟫ = ⟪𝐴 / 𝑥𝐶, 𝐷⟫)
75, 6syl 17 . . 3 (𝑥 = 𝐴 → ⟪𝐶, 𝐷⟫ = ⟪𝐴 / 𝑥𝐶, 𝐷⟫)
8 csbeq1a 3902 . . . 4 (𝑥 = 𝐴𝐷 = 𝐴 / 𝑥𝐷)
9 altopeq2 35469 . . . 4 (𝐷 = 𝐴 / 𝑥𝐷 → ⟪𝐴 / 𝑥𝐶, 𝐷⟫ = ⟪𝐴 / 𝑥𝐶, 𝐴 / 𝑥𝐷⟫)
108, 9syl 17 . . 3 (𝑥 = 𝐴 → ⟪𝐴 / 𝑥𝐶, 𝐷⟫ = ⟪𝐴 / 𝑥𝐶, 𝐴 / 𝑥𝐷⟫)
117, 10eqtrd 2766 . 2 (𝑥 = 𝐴 → ⟪𝐶, 𝐷⟫ = ⟪𝐴 / 𝑥𝐶, 𝐴 / 𝑥𝐷⟫)
124, 11csbiegf 3922 1 (𝐴 ∈ V → 𝐴 / 𝑥𝐶, 𝐷⟫ = ⟪𝐴 / 𝑥𝐶, 𝐴 / 𝑥𝐷⟫)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  wnfc 2877  Vcvv 3468  csb 3888  caltop 35461
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-sn 4624  df-pr 4626  df-altop 35463
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator