Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbcaltop Structured version   Visualization version   GIF version

Theorem sbcaltop 35916
Description: Distribution of class substitution over alternate ordered pairs. (Contributed by Scott Fenton, 25-Sep-2015.)
Assertion
Ref Expression
sbcaltop (𝐴 ∈ V → 𝐴 / 𝑥𝐶, 𝐷⟫ = ⟪𝐴 / 𝑥𝐶, 𝐴 / 𝑥𝐷⟫)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐶(𝑥)   𝐷(𝑥)

Proof of Theorem sbcaltop
StepHypRef Expression
1 nfcsb1v 3903 . . . 4 𝑥𝐴 / 𝑥𝐶
2 nfcsb1v 3903 . . . 4 𝑥𝐴 / 𝑥𝐷
31, 2nfaltop 35915 . . 3 𝑥𝐴 / 𝑥𝐶, 𝐴 / 𝑥𝐷
43a1i 11 . 2 (𝐴 ∈ V → 𝑥𝐴 / 𝑥𝐶, 𝐴 / 𝑥𝐷⟫)
5 csbeq1a 3893 . . . 4 (𝑥 = 𝐴𝐶 = 𝐴 / 𝑥𝐶)
6 altopeq1 35898 . . . 4 (𝐶 = 𝐴 / 𝑥𝐶 → ⟪𝐶, 𝐷⟫ = ⟪𝐴 / 𝑥𝐶, 𝐷⟫)
75, 6syl 17 . . 3 (𝑥 = 𝐴 → ⟪𝐶, 𝐷⟫ = ⟪𝐴 / 𝑥𝐶, 𝐷⟫)
8 csbeq1a 3893 . . . 4 (𝑥 = 𝐴𝐷 = 𝐴 / 𝑥𝐷)
9 altopeq2 35899 . . . 4 (𝐷 = 𝐴 / 𝑥𝐷 → ⟪𝐴 / 𝑥𝐶, 𝐷⟫ = ⟪𝐴 / 𝑥𝐶, 𝐴 / 𝑥𝐷⟫)
108, 9syl 17 . . 3 (𝑥 = 𝐴 → ⟪𝐴 / 𝑥𝐶, 𝐷⟫ = ⟪𝐴 / 𝑥𝐶, 𝐴 / 𝑥𝐷⟫)
117, 10eqtrd 2769 . 2 (𝑥 = 𝐴 → ⟪𝐶, 𝐷⟫ = ⟪𝐴 / 𝑥𝐶, 𝐴 / 𝑥𝐷⟫)
124, 11csbiegf 3912 1 (𝐴 ∈ V → 𝐴 / 𝑥𝐶, 𝐷⟫ = ⟪𝐴 / 𝑥𝐶, 𝐴 / 𝑥𝐷⟫)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  wnfc 2882  Vcvv 3463  csb 3879  caltop 35891
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-sn 4607  df-pr 4609  df-altop 35893
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator