Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rankaltopb Structured version   Visualization version   GIF version

Theorem rankaltopb 36030
Description: Compute the rank of an alternate ordered pair. (Contributed by Scott Fenton, 18-Dec-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
rankaltopb ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → (rank‘⟪𝐴, 𝐵⟫) = suc suc ((rank‘𝐴) ∪ suc (rank‘𝐵)))

Proof of Theorem rankaltopb
StepHypRef Expression
1 snwf 9708 . . 3 (𝐵 (𝑅1 “ On) → {𝐵} ∈ (𝑅1 “ On))
2 df-altop 36009 . . . . . 6 𝐴, 𝐵⟫ = {{𝐴}, {𝐴, {𝐵}}}
32fveq2i 6831 . . . . 5 (rank‘⟪𝐴, 𝐵⟫) = (rank‘{{𝐴}, {𝐴, {𝐵}}})
4 snwf 9708 . . . . . . 7 (𝐴 (𝑅1 “ On) → {𝐴} ∈ (𝑅1 “ On))
54adantr 480 . . . . . 6 ((𝐴 (𝑅1 “ On) ∧ {𝐵} ∈ (𝑅1 “ On)) → {𝐴} ∈ (𝑅1 “ On))
6 prwf 9710 . . . . . 6 ((𝐴 (𝑅1 “ On) ∧ {𝐵} ∈ (𝑅1 “ On)) → {𝐴, {𝐵}} ∈ (𝑅1 “ On))
7 rankprb 9750 . . . . . 6 (({𝐴} ∈ (𝑅1 “ On) ∧ {𝐴, {𝐵}} ∈ (𝑅1 “ On)) → (rank‘{{𝐴}, {𝐴, {𝐵}}}) = suc ((rank‘{𝐴}) ∪ (rank‘{𝐴, {𝐵}})))
85, 6, 7syl2anc 584 . . . . 5 ((𝐴 (𝑅1 “ On) ∧ {𝐵} ∈ (𝑅1 “ On)) → (rank‘{{𝐴}, {𝐴, {𝐵}}}) = suc ((rank‘{𝐴}) ∪ (rank‘{𝐴, {𝐵}})))
93, 8eqtrid 2778 . . . 4 ((𝐴 (𝑅1 “ On) ∧ {𝐵} ∈ (𝑅1 “ On)) → (rank‘⟪𝐴, 𝐵⟫) = suc ((rank‘{𝐴}) ∪ (rank‘{𝐴, {𝐵}})))
10 snsspr1 4765 . . . . . . . 8 {𝐴} ⊆ {𝐴, {𝐵}}
11 ssequn1 4135 . . . . . . . 8 ({𝐴} ⊆ {𝐴, {𝐵}} ↔ ({𝐴} ∪ {𝐴, {𝐵}}) = {𝐴, {𝐵}})
1210, 11mpbi 230 . . . . . . 7 ({𝐴} ∪ {𝐴, {𝐵}}) = {𝐴, {𝐵}}
1312fveq2i 6831 . . . . . 6 (rank‘({𝐴} ∪ {𝐴, {𝐵}})) = (rank‘{𝐴, {𝐵}})
14 rankunb 9749 . . . . . . 7 (({𝐴} ∈ (𝑅1 “ On) ∧ {𝐴, {𝐵}} ∈ (𝑅1 “ On)) → (rank‘({𝐴} ∪ {𝐴, {𝐵}})) = ((rank‘{𝐴}) ∪ (rank‘{𝐴, {𝐵}})))
155, 6, 14syl2anc 584 . . . . . 6 ((𝐴 (𝑅1 “ On) ∧ {𝐵} ∈ (𝑅1 “ On)) → (rank‘({𝐴} ∪ {𝐴, {𝐵}})) = ((rank‘{𝐴}) ∪ (rank‘{𝐴, {𝐵}})))
16 rankprb 9750 . . . . . 6 ((𝐴 (𝑅1 “ On) ∧ {𝐵} ∈ (𝑅1 “ On)) → (rank‘{𝐴, {𝐵}}) = suc ((rank‘𝐴) ∪ (rank‘{𝐵})))
1713, 15, 163eqtr3a 2790 . . . . 5 ((𝐴 (𝑅1 “ On) ∧ {𝐵} ∈ (𝑅1 “ On)) → ((rank‘{𝐴}) ∪ (rank‘{𝐴, {𝐵}})) = suc ((rank‘𝐴) ∪ (rank‘{𝐵})))
18 suceq 6380 . . . . 5 (((rank‘{𝐴}) ∪ (rank‘{𝐴, {𝐵}})) = suc ((rank‘𝐴) ∪ (rank‘{𝐵})) → suc ((rank‘{𝐴}) ∪ (rank‘{𝐴, {𝐵}})) = suc suc ((rank‘𝐴) ∪ (rank‘{𝐵})))
1917, 18syl 17 . . . 4 ((𝐴 (𝑅1 “ On) ∧ {𝐵} ∈ (𝑅1 “ On)) → suc ((rank‘{𝐴}) ∪ (rank‘{𝐴, {𝐵}})) = suc suc ((rank‘𝐴) ∪ (rank‘{𝐵})))
209, 19eqtrd 2766 . . 3 ((𝐴 (𝑅1 “ On) ∧ {𝐵} ∈ (𝑅1 “ On)) → (rank‘⟪𝐴, 𝐵⟫) = suc suc ((rank‘𝐴) ∪ (rank‘{𝐵})))
211, 20sylan2 593 . 2 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → (rank‘⟪𝐴, 𝐵⟫) = suc suc ((rank‘𝐴) ∪ (rank‘{𝐵})))
22 ranksnb 9726 . . . . 5 (𝐵 (𝑅1 “ On) → (rank‘{𝐵}) = suc (rank‘𝐵))
2322uneq2d 4117 . . . 4 (𝐵 (𝑅1 “ On) → ((rank‘𝐴) ∪ (rank‘{𝐵})) = ((rank‘𝐴) ∪ suc (rank‘𝐵)))
24 suceq 6380 . . . 4 (((rank‘𝐴) ∪ (rank‘{𝐵})) = ((rank‘𝐴) ∪ suc (rank‘𝐵)) → suc ((rank‘𝐴) ∪ (rank‘{𝐵})) = suc ((rank‘𝐴) ∪ suc (rank‘𝐵)))
25 suceq 6380 . . . 4 (suc ((rank‘𝐴) ∪ (rank‘{𝐵})) = suc ((rank‘𝐴) ∪ suc (rank‘𝐵)) → suc suc ((rank‘𝐴) ∪ (rank‘{𝐵})) = suc suc ((rank‘𝐴) ∪ suc (rank‘𝐵)))
2623, 24, 253syl 18 . . 3 (𝐵 (𝑅1 “ On) → suc suc ((rank‘𝐴) ∪ (rank‘{𝐵})) = suc suc ((rank‘𝐴) ∪ suc (rank‘𝐵)))
2726adantl 481 . 2 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → suc suc ((rank‘𝐴) ∪ (rank‘{𝐵})) = suc suc ((rank‘𝐴) ∪ suc (rank‘𝐵)))
2821, 27eqtrd 2766 1 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → (rank‘⟪𝐴, 𝐵⟫) = suc suc ((rank‘𝐴) ∪ suc (rank‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  cun 3895  wss 3897  {csn 4575  {cpr 4577   cuni 4858  cima 5622  Oncon0 6312  suc csuc 6314  cfv 6487  𝑅1cr1 9661  rankcrnk 9662  caltop 36007
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6254  df-ord 6315  df-on 6316  df-lim 6317  df-suc 6318  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-ov 7355  df-om 7803  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-r1 9663  df-rank 9664  df-altop 36009
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator