Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rankaltopb Structured version   Visualization version   GIF version

Theorem rankaltopb 34208
Description: Compute the rank of an alternate ordered pair. (Contributed by Scott Fenton, 18-Dec-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
rankaltopb ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → (rank‘⟪𝐴, 𝐵⟫) = suc suc ((rank‘𝐴) ∪ suc (rank‘𝐵)))

Proof of Theorem rankaltopb
StepHypRef Expression
1 snwf 9498 . . 3 (𝐵 (𝑅1 “ On) → {𝐵} ∈ (𝑅1 “ On))
2 df-altop 34187 . . . . . 6 𝐴, 𝐵⟫ = {{𝐴}, {𝐴, {𝐵}}}
32fveq2i 6759 . . . . 5 (rank‘⟪𝐴, 𝐵⟫) = (rank‘{{𝐴}, {𝐴, {𝐵}}})
4 snwf 9498 . . . . . . 7 (𝐴 (𝑅1 “ On) → {𝐴} ∈ (𝑅1 “ On))
54adantr 480 . . . . . 6 ((𝐴 (𝑅1 “ On) ∧ {𝐵} ∈ (𝑅1 “ On)) → {𝐴} ∈ (𝑅1 “ On))
6 prwf 9500 . . . . . 6 ((𝐴 (𝑅1 “ On) ∧ {𝐵} ∈ (𝑅1 “ On)) → {𝐴, {𝐵}} ∈ (𝑅1 “ On))
7 rankprb 9540 . . . . . 6 (({𝐴} ∈ (𝑅1 “ On) ∧ {𝐴, {𝐵}} ∈ (𝑅1 “ On)) → (rank‘{{𝐴}, {𝐴, {𝐵}}}) = suc ((rank‘{𝐴}) ∪ (rank‘{𝐴, {𝐵}})))
85, 6, 7syl2anc 583 . . . . 5 ((𝐴 (𝑅1 “ On) ∧ {𝐵} ∈ (𝑅1 “ On)) → (rank‘{{𝐴}, {𝐴, {𝐵}}}) = suc ((rank‘{𝐴}) ∪ (rank‘{𝐴, {𝐵}})))
93, 8syl5eq 2791 . . . 4 ((𝐴 (𝑅1 “ On) ∧ {𝐵} ∈ (𝑅1 “ On)) → (rank‘⟪𝐴, 𝐵⟫) = suc ((rank‘{𝐴}) ∪ (rank‘{𝐴, {𝐵}})))
10 snsspr1 4744 . . . . . . . 8 {𝐴} ⊆ {𝐴, {𝐵}}
11 ssequn1 4110 . . . . . . . 8 ({𝐴} ⊆ {𝐴, {𝐵}} ↔ ({𝐴} ∪ {𝐴, {𝐵}}) = {𝐴, {𝐵}})
1210, 11mpbi 229 . . . . . . 7 ({𝐴} ∪ {𝐴, {𝐵}}) = {𝐴, {𝐵}}
1312fveq2i 6759 . . . . . 6 (rank‘({𝐴} ∪ {𝐴, {𝐵}})) = (rank‘{𝐴, {𝐵}})
14 rankunb 9539 . . . . . . 7 (({𝐴} ∈ (𝑅1 “ On) ∧ {𝐴, {𝐵}} ∈ (𝑅1 “ On)) → (rank‘({𝐴} ∪ {𝐴, {𝐵}})) = ((rank‘{𝐴}) ∪ (rank‘{𝐴, {𝐵}})))
155, 6, 14syl2anc 583 . . . . . 6 ((𝐴 (𝑅1 “ On) ∧ {𝐵} ∈ (𝑅1 “ On)) → (rank‘({𝐴} ∪ {𝐴, {𝐵}})) = ((rank‘{𝐴}) ∪ (rank‘{𝐴, {𝐵}})))
16 rankprb 9540 . . . . . 6 ((𝐴 (𝑅1 “ On) ∧ {𝐵} ∈ (𝑅1 “ On)) → (rank‘{𝐴, {𝐵}}) = suc ((rank‘𝐴) ∪ (rank‘{𝐵})))
1713, 15, 163eqtr3a 2803 . . . . 5 ((𝐴 (𝑅1 “ On) ∧ {𝐵} ∈ (𝑅1 “ On)) → ((rank‘{𝐴}) ∪ (rank‘{𝐴, {𝐵}})) = suc ((rank‘𝐴) ∪ (rank‘{𝐵})))
18 suceq 6316 . . . . 5 (((rank‘{𝐴}) ∪ (rank‘{𝐴, {𝐵}})) = suc ((rank‘𝐴) ∪ (rank‘{𝐵})) → suc ((rank‘{𝐴}) ∪ (rank‘{𝐴, {𝐵}})) = suc suc ((rank‘𝐴) ∪ (rank‘{𝐵})))
1917, 18syl 17 . . . 4 ((𝐴 (𝑅1 “ On) ∧ {𝐵} ∈ (𝑅1 “ On)) → suc ((rank‘{𝐴}) ∪ (rank‘{𝐴, {𝐵}})) = suc suc ((rank‘𝐴) ∪ (rank‘{𝐵})))
209, 19eqtrd 2778 . . 3 ((𝐴 (𝑅1 “ On) ∧ {𝐵} ∈ (𝑅1 “ On)) → (rank‘⟪𝐴, 𝐵⟫) = suc suc ((rank‘𝐴) ∪ (rank‘{𝐵})))
211, 20sylan2 592 . 2 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → (rank‘⟪𝐴, 𝐵⟫) = suc suc ((rank‘𝐴) ∪ (rank‘{𝐵})))
22 ranksnb 9516 . . . . 5 (𝐵 (𝑅1 “ On) → (rank‘{𝐵}) = suc (rank‘𝐵))
2322uneq2d 4093 . . . 4 (𝐵 (𝑅1 “ On) → ((rank‘𝐴) ∪ (rank‘{𝐵})) = ((rank‘𝐴) ∪ suc (rank‘𝐵)))
24 suceq 6316 . . . 4 (((rank‘𝐴) ∪ (rank‘{𝐵})) = ((rank‘𝐴) ∪ suc (rank‘𝐵)) → suc ((rank‘𝐴) ∪ (rank‘{𝐵})) = suc ((rank‘𝐴) ∪ suc (rank‘𝐵)))
25 suceq 6316 . . . 4 (suc ((rank‘𝐴) ∪ (rank‘{𝐵})) = suc ((rank‘𝐴) ∪ suc (rank‘𝐵)) → suc suc ((rank‘𝐴) ∪ (rank‘{𝐵})) = suc suc ((rank‘𝐴) ∪ suc (rank‘𝐵)))
2623, 24, 253syl 18 . . 3 (𝐵 (𝑅1 “ On) → suc suc ((rank‘𝐴) ∪ (rank‘{𝐵})) = suc suc ((rank‘𝐴) ∪ suc (rank‘𝐵)))
2726adantl 481 . 2 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → suc suc ((rank‘𝐴) ∪ (rank‘{𝐵})) = suc suc ((rank‘𝐴) ∪ suc (rank‘𝐵)))
2821, 27eqtrd 2778 1 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → (rank‘⟪𝐴, 𝐵⟫) = suc suc ((rank‘𝐴) ∪ suc (rank‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  cun 3881  wss 3883  {csn 4558  {cpr 4560   cuni 4836  cima 5583  Oncon0 6251  suc csuc 6253  cfv 6418  𝑅1cr1 9451  rankcrnk 9452  caltop 34185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-r1 9453  df-rank 9454  df-altop 34187
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator