![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > csbnestgfw | Structured version Visualization version GIF version |
Description: Nest the composition of two substitutions. Version of csbnestgf 4423 with a disjoint variable condition, which does not require ax-13 2371. (Contributed by NM, 23-Nov-2005.) Avoid ax-13 2371. (Revised by Gino Giotto, 26-Jan-2024.) |
Ref | Expression |
---|---|
csbnestgfw | ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑦Ⅎ𝑥𝐶) → ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑦⦌𝐶 = ⦋⦋𝐴 / 𝑥⦌𝐵 / 𝑦⦌𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3492 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
2 | df-csb 3893 | . . . . . . 7 ⊢ ⦋𝐵 / 𝑦⦌𝐶 = {𝑧 ∣ [𝐵 / 𝑦]𝑧 ∈ 𝐶} | |
3 | 2 | eqabri 2877 | . . . . . 6 ⊢ (𝑧 ∈ ⦋𝐵 / 𝑦⦌𝐶 ↔ [𝐵 / 𝑦]𝑧 ∈ 𝐶) |
4 | 3 | sbcbii 3836 | . . . . 5 ⊢ ([𝐴 / 𝑥]𝑧 ∈ ⦋𝐵 / 𝑦⦌𝐶 ↔ [𝐴 / 𝑥][𝐵 / 𝑦]𝑧 ∈ 𝐶) |
5 | nfcr 2888 | . . . . . . 7 ⊢ (Ⅎ𝑥𝐶 → Ⅎ𝑥 𝑧 ∈ 𝐶) | |
6 | 5 | alimi 1813 | . . . . . 6 ⊢ (∀𝑦Ⅎ𝑥𝐶 → ∀𝑦Ⅎ𝑥 𝑧 ∈ 𝐶) |
7 | sbcnestgfw 4417 | . . . . . 6 ⊢ ((𝐴 ∈ V ∧ ∀𝑦Ⅎ𝑥 𝑧 ∈ 𝐶) → ([𝐴 / 𝑥][𝐵 / 𝑦]𝑧 ∈ 𝐶 ↔ [⦋𝐴 / 𝑥⦌𝐵 / 𝑦]𝑧 ∈ 𝐶)) | |
8 | 6, 7 | sylan2 593 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ ∀𝑦Ⅎ𝑥𝐶) → ([𝐴 / 𝑥][𝐵 / 𝑦]𝑧 ∈ 𝐶 ↔ [⦋𝐴 / 𝑥⦌𝐵 / 𝑦]𝑧 ∈ 𝐶)) |
9 | 4, 8 | bitrid 282 | . . . 4 ⊢ ((𝐴 ∈ V ∧ ∀𝑦Ⅎ𝑥𝐶) → ([𝐴 / 𝑥]𝑧 ∈ ⦋𝐵 / 𝑦⦌𝐶 ↔ [⦋𝐴 / 𝑥⦌𝐵 / 𝑦]𝑧 ∈ 𝐶)) |
10 | 9 | abbidv 2801 | . . 3 ⊢ ((𝐴 ∈ V ∧ ∀𝑦Ⅎ𝑥𝐶) → {𝑧 ∣ [𝐴 / 𝑥]𝑧 ∈ ⦋𝐵 / 𝑦⦌𝐶} = {𝑧 ∣ [⦋𝐴 / 𝑥⦌𝐵 / 𝑦]𝑧 ∈ 𝐶}) |
11 | 1, 10 | sylan 580 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑦Ⅎ𝑥𝐶) → {𝑧 ∣ [𝐴 / 𝑥]𝑧 ∈ ⦋𝐵 / 𝑦⦌𝐶} = {𝑧 ∣ [⦋𝐴 / 𝑥⦌𝐵 / 𝑦]𝑧 ∈ 𝐶}) |
12 | df-csb 3893 | . 2 ⊢ ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑦⦌𝐶 = {𝑧 ∣ [𝐴 / 𝑥]𝑧 ∈ ⦋𝐵 / 𝑦⦌𝐶} | |
13 | df-csb 3893 | . 2 ⊢ ⦋⦋𝐴 / 𝑥⦌𝐵 / 𝑦⦌𝐶 = {𝑧 ∣ [⦋𝐴 / 𝑥⦌𝐵 / 𝑦]𝑧 ∈ 𝐶} | |
14 | 11, 12, 13 | 3eqtr4g 2797 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑦Ⅎ𝑥𝐶) → ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑦⦌𝐶 = ⦋⦋𝐴 / 𝑥⦌𝐵 / 𝑦⦌𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∀wal 1539 = wceq 1541 Ⅎwnf 1785 ∈ wcel 2106 {cab 2709 Ⅎwnfc 2883 Vcvv 3474 [wsbc 3776 ⦋csb 3892 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-ex 1782 df-nf 1786 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-v 3476 df-sbc 3777 df-csb 3893 |
This theorem is referenced by: csbnestgw 4420 csbnest1g 4428 |
Copyright terms: Public domain | W3C validator |