| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > csbnestgf | Structured version Visualization version GIF version | ||
| Description: Nest the composition of two substitutions. Usage of this theorem is discouraged because it depends on ax-13 2377. Use the weaker csbnestgfw 4422 when possible. (Contributed by NM, 23-Nov-2005.) (Proof shortened by Mario Carneiro, 10-Nov-2016.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| csbnestgf | ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑦Ⅎ𝑥𝐶) → ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑦⦌𝐶 = ⦋⦋𝐴 / 𝑥⦌𝐵 / 𝑦⦌𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3501 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
| 2 | df-csb 3900 | . . . . . . 7 ⊢ ⦋𝐵 / 𝑦⦌𝐶 = {𝑧 ∣ [𝐵 / 𝑦]𝑧 ∈ 𝐶} | |
| 3 | 2 | eqabri 2885 | . . . . . 6 ⊢ (𝑧 ∈ ⦋𝐵 / 𝑦⦌𝐶 ↔ [𝐵 / 𝑦]𝑧 ∈ 𝐶) |
| 4 | 3 | sbcbii 3846 | . . . . 5 ⊢ ([𝐴 / 𝑥]𝑧 ∈ ⦋𝐵 / 𝑦⦌𝐶 ↔ [𝐴 / 𝑥][𝐵 / 𝑦]𝑧 ∈ 𝐶) |
| 5 | nfcr 2895 | . . . . . . 7 ⊢ (Ⅎ𝑥𝐶 → Ⅎ𝑥 𝑧 ∈ 𝐶) | |
| 6 | 5 | alimi 1811 | . . . . . 6 ⊢ (∀𝑦Ⅎ𝑥𝐶 → ∀𝑦Ⅎ𝑥 𝑧 ∈ 𝐶) |
| 7 | sbcnestgf 4426 | . . . . . 6 ⊢ ((𝐴 ∈ V ∧ ∀𝑦Ⅎ𝑥 𝑧 ∈ 𝐶) → ([𝐴 / 𝑥][𝐵 / 𝑦]𝑧 ∈ 𝐶 ↔ [⦋𝐴 / 𝑥⦌𝐵 / 𝑦]𝑧 ∈ 𝐶)) | |
| 8 | 6, 7 | sylan2 593 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ ∀𝑦Ⅎ𝑥𝐶) → ([𝐴 / 𝑥][𝐵 / 𝑦]𝑧 ∈ 𝐶 ↔ [⦋𝐴 / 𝑥⦌𝐵 / 𝑦]𝑧 ∈ 𝐶)) |
| 9 | 4, 8 | bitrid 283 | . . . 4 ⊢ ((𝐴 ∈ V ∧ ∀𝑦Ⅎ𝑥𝐶) → ([𝐴 / 𝑥]𝑧 ∈ ⦋𝐵 / 𝑦⦌𝐶 ↔ [⦋𝐴 / 𝑥⦌𝐵 / 𝑦]𝑧 ∈ 𝐶)) |
| 10 | 9 | abbidv 2808 | . . 3 ⊢ ((𝐴 ∈ V ∧ ∀𝑦Ⅎ𝑥𝐶) → {𝑧 ∣ [𝐴 / 𝑥]𝑧 ∈ ⦋𝐵 / 𝑦⦌𝐶} = {𝑧 ∣ [⦋𝐴 / 𝑥⦌𝐵 / 𝑦]𝑧 ∈ 𝐶}) |
| 11 | 1, 10 | sylan 580 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑦Ⅎ𝑥𝐶) → {𝑧 ∣ [𝐴 / 𝑥]𝑧 ∈ ⦋𝐵 / 𝑦⦌𝐶} = {𝑧 ∣ [⦋𝐴 / 𝑥⦌𝐵 / 𝑦]𝑧 ∈ 𝐶}) |
| 12 | df-csb 3900 | . 2 ⊢ ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑦⦌𝐶 = {𝑧 ∣ [𝐴 / 𝑥]𝑧 ∈ ⦋𝐵 / 𝑦⦌𝐶} | |
| 13 | df-csb 3900 | . 2 ⊢ ⦋⦋𝐴 / 𝑥⦌𝐵 / 𝑦⦌𝐶 = {𝑧 ∣ [⦋𝐴 / 𝑥⦌𝐵 / 𝑦]𝑧 ∈ 𝐶} | |
| 14 | 11, 12, 13 | 3eqtr4g 2802 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑦Ⅎ𝑥𝐶) → ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑦⦌𝐶 = ⦋⦋𝐴 / 𝑥⦌𝐵 / 𝑦⦌𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2108 {cab 2714 Ⅎwnfc 2890 Vcvv 3480 [wsbc 3788 ⦋csb 3899 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-13 2377 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-v 3482 df-sbc 3789 df-csb 3900 |
| This theorem is referenced by: csbnestg 4429 |
| Copyright terms: Public domain | W3C validator |