MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbnestgf Structured version   Visualization version   GIF version

Theorem csbnestgf 4324
Description: Nest the composition of two substitutions. Usage of this theorem is discouraged because it depends on ax-13 2379. Use the weaker csbnestgfw 4319 when possible. (Contributed by NM, 23-Nov-2005.) (Proof shortened by Mario Carneiro, 10-Nov-2016.) (New usage is discouraged.)
Assertion
Ref Expression
csbnestgf ((𝐴𝑉 ∧ ∀𝑦𝑥𝐶) → 𝐴 / 𝑥𝐵 / 𝑦𝐶 = 𝐴 / 𝑥𝐵 / 𝑦𝐶)

Proof of Theorem csbnestgf
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 elex 3428 . . 3 (𝐴𝑉𝐴 ∈ V)
2 df-csb 3808 . . . . . . 7 𝐵 / 𝑦𝐶 = {𝑧[𝐵 / 𝑦]𝑧𝐶}
32abeq2i 2887 . . . . . 6 (𝑧𝐵 / 𝑦𝐶[𝐵 / 𝑦]𝑧𝐶)
43sbcbii 3755 . . . . 5 ([𝐴 / 𝑥]𝑧𝐵 / 𝑦𝐶[𝐴 / 𝑥][𝐵 / 𝑦]𝑧𝐶)
5 nfcr 2904 . . . . . . 7 (𝑥𝐶 → Ⅎ𝑥 𝑧𝐶)
65alimi 1813 . . . . . 6 (∀𝑦𝑥𝐶 → ∀𝑦𝑥 𝑧𝐶)
7 sbcnestgf 4323 . . . . . 6 ((𝐴 ∈ V ∧ ∀𝑦𝑥 𝑧𝐶) → ([𝐴 / 𝑥][𝐵 / 𝑦]𝑧𝐶[𝐴 / 𝑥𝐵 / 𝑦]𝑧𝐶))
86, 7sylan2 595 . . . . 5 ((𝐴 ∈ V ∧ ∀𝑦𝑥𝐶) → ([𝐴 / 𝑥][𝐵 / 𝑦]𝑧𝐶[𝐴 / 𝑥𝐵 / 𝑦]𝑧𝐶))
94, 8syl5bb 286 . . . 4 ((𝐴 ∈ V ∧ ∀𝑦𝑥𝐶) → ([𝐴 / 𝑥]𝑧𝐵 / 𝑦𝐶[𝐴 / 𝑥𝐵 / 𝑦]𝑧𝐶))
109abbidv 2822 . . 3 ((𝐴 ∈ V ∧ ∀𝑦𝑥𝐶) → {𝑧[𝐴 / 𝑥]𝑧𝐵 / 𝑦𝐶} = {𝑧[𝐴 / 𝑥𝐵 / 𝑦]𝑧𝐶})
111, 10sylan 583 . 2 ((𝐴𝑉 ∧ ∀𝑦𝑥𝐶) → {𝑧[𝐴 / 𝑥]𝑧𝐵 / 𝑦𝐶} = {𝑧[𝐴 / 𝑥𝐵 / 𝑦]𝑧𝐶})
12 df-csb 3808 . 2 𝐴 / 𝑥𝐵 / 𝑦𝐶 = {𝑧[𝐴 / 𝑥]𝑧𝐵 / 𝑦𝐶}
13 df-csb 3808 . 2 𝐴 / 𝑥𝐵 / 𝑦𝐶 = {𝑧[𝐴 / 𝑥𝐵 / 𝑦]𝑧𝐶}
1411, 12, 133eqtr4g 2818 1 ((𝐴𝑉 ∧ ∀𝑦𝑥𝐶) → 𝐴 / 𝑥𝐵 / 𝑦𝐶 = 𝐴 / 𝑥𝐵 / 𝑦𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wal 1536   = wceq 1538  wnf 1785  wcel 2111  {cab 2735  wnfc 2899  Vcvv 3409  [wsbc 3698  csb 3807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-13 2379  ax-ext 2729
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-v 3411  df-sbc 3699  df-csb 3808
This theorem is referenced by:  csbnestg  4326
  Copyright terms: Public domain W3C validator