![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > csbnestgf | Structured version Visualization version GIF version |
Description: Nest the composition of two substitutions. Usage of this theorem is discouraged because it depends on ax-13 2363. Use the weaker csbnestgfw 4411 when possible. (Contributed by NM, 23-Nov-2005.) (Proof shortened by Mario Carneiro, 10-Nov-2016.) (New usage is discouraged.) |
Ref | Expression |
---|---|
csbnestgf | ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑦Ⅎ𝑥𝐶) → ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑦⦌𝐶 = ⦋⦋𝐴 / 𝑥⦌𝐵 / 𝑦⦌𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3485 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
2 | df-csb 3886 | . . . . . . 7 ⊢ ⦋𝐵 / 𝑦⦌𝐶 = {𝑧 ∣ [𝐵 / 𝑦]𝑧 ∈ 𝐶} | |
3 | 2 | eqabri 2869 | . . . . . 6 ⊢ (𝑧 ∈ ⦋𝐵 / 𝑦⦌𝐶 ↔ [𝐵 / 𝑦]𝑧 ∈ 𝐶) |
4 | 3 | sbcbii 3829 | . . . . 5 ⊢ ([𝐴 / 𝑥]𝑧 ∈ ⦋𝐵 / 𝑦⦌𝐶 ↔ [𝐴 / 𝑥][𝐵 / 𝑦]𝑧 ∈ 𝐶) |
5 | nfcr 2880 | . . . . . . 7 ⊢ (Ⅎ𝑥𝐶 → Ⅎ𝑥 𝑧 ∈ 𝐶) | |
6 | 5 | alimi 1805 | . . . . . 6 ⊢ (∀𝑦Ⅎ𝑥𝐶 → ∀𝑦Ⅎ𝑥 𝑧 ∈ 𝐶) |
7 | sbcnestgf 4415 | . . . . . 6 ⊢ ((𝐴 ∈ V ∧ ∀𝑦Ⅎ𝑥 𝑧 ∈ 𝐶) → ([𝐴 / 𝑥][𝐵 / 𝑦]𝑧 ∈ 𝐶 ↔ [⦋𝐴 / 𝑥⦌𝐵 / 𝑦]𝑧 ∈ 𝐶)) | |
8 | 6, 7 | sylan2 592 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ ∀𝑦Ⅎ𝑥𝐶) → ([𝐴 / 𝑥][𝐵 / 𝑦]𝑧 ∈ 𝐶 ↔ [⦋𝐴 / 𝑥⦌𝐵 / 𝑦]𝑧 ∈ 𝐶)) |
9 | 4, 8 | bitrid 283 | . . . 4 ⊢ ((𝐴 ∈ V ∧ ∀𝑦Ⅎ𝑥𝐶) → ([𝐴 / 𝑥]𝑧 ∈ ⦋𝐵 / 𝑦⦌𝐶 ↔ [⦋𝐴 / 𝑥⦌𝐵 / 𝑦]𝑧 ∈ 𝐶)) |
10 | 9 | abbidv 2793 | . . 3 ⊢ ((𝐴 ∈ V ∧ ∀𝑦Ⅎ𝑥𝐶) → {𝑧 ∣ [𝐴 / 𝑥]𝑧 ∈ ⦋𝐵 / 𝑦⦌𝐶} = {𝑧 ∣ [⦋𝐴 / 𝑥⦌𝐵 / 𝑦]𝑧 ∈ 𝐶}) |
11 | 1, 10 | sylan 579 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑦Ⅎ𝑥𝐶) → {𝑧 ∣ [𝐴 / 𝑥]𝑧 ∈ ⦋𝐵 / 𝑦⦌𝐶} = {𝑧 ∣ [⦋𝐴 / 𝑥⦌𝐵 / 𝑦]𝑧 ∈ 𝐶}) |
12 | df-csb 3886 | . 2 ⊢ ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑦⦌𝐶 = {𝑧 ∣ [𝐴 / 𝑥]𝑧 ∈ ⦋𝐵 / 𝑦⦌𝐶} | |
13 | df-csb 3886 | . 2 ⊢ ⦋⦋𝐴 / 𝑥⦌𝐵 / 𝑦⦌𝐶 = {𝑧 ∣ [⦋𝐴 / 𝑥⦌𝐵 / 𝑦]𝑧 ∈ 𝐶} | |
14 | 11, 12, 13 | 3eqtr4g 2789 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑦Ⅎ𝑥𝐶) → ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑦⦌𝐶 = ⦋⦋𝐴 / 𝑥⦌𝐵 / 𝑦⦌𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1531 = wceq 1533 Ⅎwnf 1777 ∈ wcel 2098 {cab 2701 Ⅎwnfc 2875 Vcvv 3466 [wsbc 3769 ⦋csb 3885 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-13 2363 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-v 3468 df-sbc 3770 df-csb 3886 |
This theorem is referenced by: csbnestg 4418 |
Copyright terms: Public domain | W3C validator |