| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfcii | Structured version Visualization version GIF version | ||
| Description: Deduce that a class 𝐴 does not have 𝑥 free in it. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nfcii.1 | ⊢ (𝑦 ∈ 𝐴 → ∀𝑥 𝑦 ∈ 𝐴) |
| Ref | Expression |
|---|---|
| nfcii | ⊢ Ⅎ𝑥𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcii.1 | . . 3 ⊢ (𝑦 ∈ 𝐴 → ∀𝑥 𝑦 ∈ 𝐴) | |
| 2 | 1 | nf5i 2151 | . 2 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
| 3 | 2 | nfci 2883 | 1 ⊢ Ⅎ𝑥𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1539 ∈ wcel 2113 Ⅎwnfc 2880 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-10 2146 |
| This theorem depends on definitions: df-bi 207 df-ex 1781 df-nf 1785 df-nfc 2882 |
| This theorem is referenced by: bnj1316 34855 bnj1385 34867 bnj1400 34870 bnj1468 34881 bnj1534 34888 bnj1542 34892 bnj1228 35046 bnj1307 35058 bnj1448 35082 bnj1466 35088 bnj1463 35090 bnj1491 35092 bnj1312 35093 bnj1498 35096 bnj1520 35101 bnj1525 35104 bnj1529 35105 bnj1523 35106 |
| Copyright terms: Public domain | W3C validator |