![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfcii | Structured version Visualization version GIF version |
Description: Deduce that a class 𝐴 does not have 𝑥 free in it. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfcii.1 | ⊢ (𝑦 ∈ 𝐴 → ∀𝑥 𝑦 ∈ 𝐴) |
Ref | Expression |
---|---|
nfcii | ⊢ Ⅎ𝑥𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcii.1 | . . 3 ⊢ (𝑦 ∈ 𝐴 → ∀𝑥 𝑦 ∈ 𝐴) | |
2 | 1 | nf5i 2144 | . 2 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
3 | 2 | nfci 2891 | 1 ⊢ Ⅎ𝑥𝐴 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1535 ∈ wcel 2106 Ⅎwnfc 2888 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-10 2139 |
This theorem depends on definitions: df-bi 207 df-ex 1777 df-nf 1781 df-nfc 2890 |
This theorem is referenced by: bnj1316 34813 bnj1385 34825 bnj1400 34828 bnj1468 34839 bnj1534 34846 bnj1542 34850 bnj1228 35004 bnj1307 35016 bnj1448 35040 bnj1466 35046 bnj1463 35048 bnj1491 35050 bnj1312 35051 bnj1498 35054 bnj1520 35059 bnj1525 35062 bnj1529 35063 bnj1523 35064 |
Copyright terms: Public domain | W3C validator |