| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfcii | Structured version Visualization version GIF version | ||
| Description: Deduce that a class 𝐴 does not have 𝑥 free in it. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nfcii.1 | ⊢ (𝑦 ∈ 𝐴 → ∀𝑥 𝑦 ∈ 𝐴) |
| Ref | Expression |
|---|---|
| nfcii | ⊢ Ⅎ𝑥𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcii.1 | . . 3 ⊢ (𝑦 ∈ 𝐴 → ∀𝑥 𝑦 ∈ 𝐴) | |
| 2 | 1 | nf5i 2147 | . 2 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
| 3 | 2 | nfci 2879 | 1 ⊢ Ⅎ𝑥𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 ∈ wcel 2109 Ⅎwnfc 2876 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-10 2142 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-nf 1784 df-nfc 2878 |
| This theorem is referenced by: bnj1316 34786 bnj1385 34798 bnj1400 34801 bnj1468 34812 bnj1534 34819 bnj1542 34823 bnj1228 34977 bnj1307 34989 bnj1448 35013 bnj1466 35019 bnj1463 35021 bnj1491 35023 bnj1312 35024 bnj1498 35027 bnj1520 35032 bnj1525 35035 bnj1529 35036 bnj1523 35037 |
| Copyright terms: Public domain | W3C validator |