| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfcii | Structured version Visualization version GIF version | ||
| Description: Deduce that a class 𝐴 does not have 𝑥 free in it. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nfcii.1 | ⊢ (𝑦 ∈ 𝐴 → ∀𝑥 𝑦 ∈ 𝐴) |
| Ref | Expression |
|---|---|
| nfcii | ⊢ Ⅎ𝑥𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcii.1 | . . 3 ⊢ (𝑦 ∈ 𝐴 → ∀𝑥 𝑦 ∈ 𝐴) | |
| 2 | 1 | nf5i 2149 | . 2 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
| 3 | 2 | nfci 2882 | 1 ⊢ Ⅎ𝑥𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1539 ∈ wcel 2111 Ⅎwnfc 2879 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-10 2144 |
| This theorem depends on definitions: df-bi 207 df-ex 1781 df-nf 1785 df-nfc 2881 |
| This theorem is referenced by: bnj1316 34830 bnj1385 34842 bnj1400 34845 bnj1468 34856 bnj1534 34863 bnj1542 34867 bnj1228 35021 bnj1307 35033 bnj1448 35057 bnj1466 35063 bnj1463 35065 bnj1491 35067 bnj1312 35068 bnj1498 35071 bnj1520 35076 bnj1525 35079 bnj1529 35080 bnj1523 35081 |
| Copyright terms: Public domain | W3C validator |