| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfcii | Structured version Visualization version GIF version | ||
| Description: Deduce that a class 𝐴 does not have 𝑥 free in it. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nfcii.1 | ⊢ (𝑦 ∈ 𝐴 → ∀𝑥 𝑦 ∈ 𝐴) |
| Ref | Expression |
|---|---|
| nfcii | ⊢ Ⅎ𝑥𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcii.1 | . . 3 ⊢ (𝑦 ∈ 𝐴 → ∀𝑥 𝑦 ∈ 𝐴) | |
| 2 | 1 | nf5i 2147 | . 2 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
| 3 | 2 | nfci 2880 | 1 ⊢ Ⅎ𝑥𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 ∈ wcel 2109 Ⅎwnfc 2877 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-10 2142 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-nf 1784 df-nfc 2879 |
| This theorem is referenced by: bnj1316 34817 bnj1385 34829 bnj1400 34832 bnj1468 34843 bnj1534 34850 bnj1542 34854 bnj1228 35008 bnj1307 35020 bnj1448 35044 bnj1466 35050 bnj1463 35052 bnj1491 35054 bnj1312 35055 bnj1498 35058 bnj1520 35063 bnj1525 35066 bnj1529 35067 bnj1523 35068 |
| Copyright terms: Public domain | W3C validator |