MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfcii Structured version   Visualization version   GIF version

Theorem nfcii 2897
Description: Deduce that a class 𝐴 does not have 𝑥 free in it. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypothesis
Ref Expression
nfcii.1 (𝑦𝐴 → ∀𝑥 𝑦𝐴)
Assertion
Ref Expression
nfcii 𝑥𝐴
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem nfcii
StepHypRef Expression
1 nfcii.1 . . 3 (𝑦𝐴 → ∀𝑥 𝑦𝐴)
21nf5i 2146 . 2 𝑥 𝑦𝐴
32nfci 2896 1 𝑥𝐴
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1535  wcel 2108  wnfc 2893
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-10 2141
This theorem depends on definitions:  df-bi 207  df-ex 1778  df-nf 1782  df-nfc 2895
This theorem is referenced by:  bnj1316  34796  bnj1385  34808  bnj1400  34811  bnj1468  34822  bnj1534  34829  bnj1542  34833  bnj1228  34987  bnj1307  34999  bnj1448  35023  bnj1466  35029  bnj1463  35031  bnj1491  35033  bnj1312  35034  bnj1498  35037  bnj1520  35042  bnj1525  35045  bnj1529  35046  bnj1523  35047
  Copyright terms: Public domain W3C validator