Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfcii | Structured version Visualization version GIF version |
Description: Deduce that a class 𝐴 does not have 𝑥 free in it. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfcii.1 | ⊢ (𝑦 ∈ 𝐴 → ∀𝑥 𝑦 ∈ 𝐴) |
Ref | Expression |
---|---|
nfcii | ⊢ Ⅎ𝑥𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcii.1 | . . 3 ⊢ (𝑦 ∈ 𝐴 → ∀𝑥 𝑦 ∈ 𝐴) | |
2 | 1 | nf5i 2142 | . 2 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
3 | 2 | nfci 2890 | 1 ⊢ Ⅎ𝑥𝐴 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 ∈ wcel 2106 Ⅎwnfc 2887 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-10 2137 |
This theorem depends on definitions: df-bi 206 df-ex 1783 df-nf 1787 df-nfc 2889 |
This theorem is referenced by: bnj1316 32800 bnj1385 32812 bnj1400 32815 bnj1468 32826 bnj1534 32833 bnj1542 32837 bnj1228 32991 bnj1307 33003 bnj1448 33027 bnj1466 33033 bnj1463 33035 bnj1491 33037 bnj1312 33038 bnj1498 33041 bnj1520 33046 bnj1525 33049 bnj1529 33050 bnj1523 33051 |
Copyright terms: Public domain | W3C validator |