MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfcii Structured version   Visualization version   GIF version

Theorem nfcii 2879
Description: Deduce that a class 𝐴 does not have 𝑥 free in it. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypothesis
Ref Expression
nfcii.1 (𝑦𝐴 → ∀𝑥 𝑦𝐴)
Assertion
Ref Expression
nfcii 𝑥𝐴
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem nfcii
StepHypRef Expression
1 nfcii.1 . . 3 (𝑦𝐴 → ∀𝑥 𝑦𝐴)
21nf5i 2134 . 2 𝑥 𝑦𝐴
32nfci 2878 1 𝑥𝐴
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1531  wcel 2098  wnfc 2875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-10 2129
This theorem depends on definitions:  df-bi 206  df-ex 1774  df-nf 1778  df-nfc 2877
This theorem is referenced by:  bnj1316  34521  bnj1385  34533  bnj1400  34536  bnj1468  34547  bnj1534  34554  bnj1542  34558  bnj1228  34712  bnj1307  34724  bnj1448  34748  bnj1466  34754  bnj1463  34756  bnj1491  34758  bnj1312  34759  bnj1498  34762  bnj1520  34767  bnj1525  34770  bnj1529  34771  bnj1523  34772
  Copyright terms: Public domain W3C validator