MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfcii Structured version   Visualization version   GIF version

Theorem nfcii 2881
Description: Deduce that a class 𝐴 does not have 𝑥 free in it. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypothesis
Ref Expression
nfcii.1 (𝑦𝐴 → ∀𝑥 𝑦𝐴)
Assertion
Ref Expression
nfcii 𝑥𝐴
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem nfcii
StepHypRef Expression
1 nfcii.1 . . 3 (𝑦𝐴 → ∀𝑥 𝑦𝐴)
21nf5i 2147 . 2 𝑥 𝑦𝐴
32nfci 2880 1 𝑥𝐴
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1538  wcel 2109  wnfc 2877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-10 2142
This theorem depends on definitions:  df-bi 207  df-ex 1780  df-nf 1784  df-nfc 2879
This theorem is referenced by:  bnj1316  34817  bnj1385  34829  bnj1400  34832  bnj1468  34843  bnj1534  34850  bnj1542  34854  bnj1228  35008  bnj1307  35020  bnj1448  35044  bnj1466  35050  bnj1463  35052  bnj1491  35054  bnj1312  35055  bnj1498  35058  bnj1520  35063  bnj1525  35066  bnj1529  35067  bnj1523  35068
  Copyright terms: Public domain W3C validator