Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfcii | Structured version Visualization version GIF version |
Description: Deduce that a class 𝐴 does not have 𝑥 free in it. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfcii.1 | ⊢ (𝑦 ∈ 𝐴 → ∀𝑥 𝑦 ∈ 𝐴) |
Ref | Expression |
---|---|
nfcii | ⊢ Ⅎ𝑥𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcii.1 | . . 3 ⊢ (𝑦 ∈ 𝐴 → ∀𝑥 𝑦 ∈ 𝐴) | |
2 | 1 | nf5i 2146 | . 2 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
3 | 2 | nfci 2887 | 1 ⊢ Ⅎ𝑥𝐴 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1541 ∈ wcel 2110 Ⅎwnfc 2884 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-10 2141 |
This theorem depends on definitions: df-bi 210 df-ex 1788 df-nf 1792 df-nfc 2886 |
This theorem is referenced by: bnj1316 32513 bnj1385 32525 bnj1400 32528 bnj1468 32539 bnj1534 32546 bnj1542 32550 bnj1228 32704 bnj1307 32716 bnj1448 32740 bnj1466 32746 bnj1463 32748 bnj1491 32750 bnj1312 32751 bnj1498 32754 bnj1520 32759 bnj1525 32762 bnj1529 32763 bnj1523 32764 |
Copyright terms: Public domain | W3C validator |