| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfcii | Structured version Visualization version GIF version | ||
| Description: Deduce that a class 𝐴 does not have 𝑥 free in it. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nfcii.1 | ⊢ (𝑦 ∈ 𝐴 → ∀𝑥 𝑦 ∈ 𝐴) |
| Ref | Expression |
|---|---|
| nfcii | ⊢ Ⅎ𝑥𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcii.1 | . . 3 ⊢ (𝑦 ∈ 𝐴 → ∀𝑥 𝑦 ∈ 𝐴) | |
| 2 | 1 | nf5i 2147 | . 2 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
| 3 | 2 | nfci 2879 | 1 ⊢ Ⅎ𝑥𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 ∈ wcel 2109 Ⅎwnfc 2876 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-10 2142 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-nf 1784 df-nfc 2878 |
| This theorem is referenced by: bnj1316 34810 bnj1385 34822 bnj1400 34825 bnj1468 34836 bnj1534 34843 bnj1542 34847 bnj1228 35001 bnj1307 35013 bnj1448 35037 bnj1466 35043 bnj1463 35045 bnj1491 35047 bnj1312 35048 bnj1498 35051 bnj1520 35056 bnj1525 35059 bnj1529 35060 bnj1523 35061 |
| Copyright terms: Public domain | W3C validator |