MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfcii Structured version   Visualization version   GIF version

Theorem nfcii 2891
Description: Deduce that a class 𝐴 does not have 𝑥 free in it. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypothesis
Ref Expression
nfcii.1 (𝑦𝐴 → ∀𝑥 𝑦𝐴)
Assertion
Ref Expression
nfcii 𝑥𝐴
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem nfcii
StepHypRef Expression
1 nfcii.1 . . 3 (𝑦𝐴 → ∀𝑥 𝑦𝐴)
21nf5i 2142 . 2 𝑥 𝑦𝐴
32nfci 2890 1 𝑥𝐴
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537  wcel 2106  wnfc 2887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-10 2137
This theorem depends on definitions:  df-bi 206  df-ex 1783  df-nf 1787  df-nfc 2889
This theorem is referenced by:  bnj1316  32800  bnj1385  32812  bnj1400  32815  bnj1468  32826  bnj1534  32833  bnj1542  32837  bnj1228  32991  bnj1307  33003  bnj1448  33027  bnj1466  33033  bnj1463  33035  bnj1491  33037  bnj1312  33038  bnj1498  33041  bnj1520  33046  bnj1525  33049  bnj1529  33050  bnj1523  33051
  Copyright terms: Public domain W3C validator